# Searching for O (100 MeV) lines and sources with eAstrogam

Galina Vankova, Venelin Kozhuharov, Stefan Lalkovski,

University of Sofia "St. Kl. Ohridski"

2<sup>nd</sup> e-ASTROGAM Workshop 13-14 October 2017



## Jump into the unknown

- WIMP miracle particle with mass ~ O(100 GeV) suitable for a dark matter candidate
  - Weakly interacting
  - Correct matter density in the Universe

#### However ... no particle with such characteristics discovered so far...

- Multiparticle structure of the Standard Model
  - Why the DM should be composed of a single particle?
- The picture should be simple, but not simpler than necessary

The childhood of DM is over and it is time to stop believing in miracles

### **New interactions**

The simplest effective interaction that can be studied is



- $-q_f \rightarrow 0$  for some flavours
- Such textbook scenario could address the  $(g_{\mu}-2)$  discrepancy, abundance of antimatter in cosmic rays, signals for DM scattering
  - General U'(1) and kinetic mixing with B (A', Z')
    - Universal coupling proportional to the q<sub>em</sub>  $L_{mix} = -\frac{\epsilon}{2} F_{\mu\nu}^{QED} F_{dark}^{\mu\nu}$
    - Just single additional parameter  $\epsilon$
  - Leptophilic/leptophobic dark photon
- Other messenger types possible (neutrino, higgs, ALP)
- Rich dark sector?

## **Dark mediator phenomenology**

- Production mechanisms
  - DM annihilation
- Decays
  - To SM model particles if nothing in the DS lighter than A'
    - Note that that it is not "fundamentally" granted that the mediator will decay with the same strength to positrons (if at all) and to heavier leptons!
  - A'  $\rightarrow \gamma \gamma \gamma$ , if M(A') < 2m<sub>e</sub> , small width, A' quasi stable
  - − To DS particles with Br(A'  $\rightarrow \chi \chi$ ) = 1
- Contribution to g-2:
  - About 3  $\sigma$  discrepancy theory vs experiment

#### Dark matter annihilation





## **Lepton (non)universality**

PDG:



- Electron case: Phys.Rev.Lett.106:080801,2011  $|a_e^{th} a_e^{exp}| = (1.06 \pm 0.82) \times 10^{-12}$
- However, the theoretical value uses input for  $\alpha_{\rm EM}$  measured again with electrons and relying on the knowledge of  $g_{\rm e}$  in bound states...
- In fact, the discrepancy is not in  $g_{\mu}$ -2 itself, it's in the consistency of  $g_{\mu}$  &  $g_{\mu}$
- Proton radius: measured from Hydrogen spectrum

Beyer et al., Science 358, 79-85 (2017)

$$R_{_{_{D}}}^{\mu H} = 10973731.568076(96) m^{-1}$$
  
 $r_{_{_{D}}}^{\mu H} = 0.8335(95) fm$ 



#### <u>CODATA</u>

$$R_{\infty} = 10 \ 973 \ 731.568 \ 508(65) \ m^{-1}$$
  
 $r_{p} = 0.8751(61) \ fm$ 

5

• The consistency of the electron measurements of  $a_{\rm EM}$  and anomalous magnetic moment might be misleading for the perfection of the theory and may be we already face a manifestation of violation of lepton universality (LUV)

## **Gammas, DM, and LUV**

- Observation of 511 keV line indicates rich e<sup>+</sup> regions
  - Possible various production mechanism
- Can similar signature be observed in other channels?
- Muons:  $M\mu = 105.66$  MeV,  $\tau_{\mu} = 2.2 \mu s$ 
  - Short, but still much longer than the rest of the unstable elementary particles
- Sources of muons
  - − High energy proton collisions → mesons production  $(\pi, K...)$  → decays
  - Exotic sources
    - DM annihilation, through a (possibly virtual) mediator
      - $\chi\chi$   $\rightarrow$  A'A'  $\rightarrow$   $\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$  ,  $\chi\chi$   $\rightarrow$  A'\*  $\rightarrow$   $\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$
    - Due to finite lifetime low energy muons do not propagate far from the emission source, even for  $M\chi = 100 \text{ GeV} \rightarrow \text{point like sources}$
- Signature of regions with high muon density: a gamma line of  $\mu\mu$  annihilation!
  - E $\gamma$  = 105.66 MeV, just within the sensitive region of eASTROGAM

## **Conclusions**

- Physics goal: Perform an all sky mapping with O (100 MeV) gammas and search identifiable emission regions and point-like sources.
- Such a survey on the possible regions with  $\mu\mu$  annihilation has not been performed so far
- There is no natural abundance of  $\mu^-$  as for the case for  $e^-$ , both  $\mu^+$  and  $\mu^-$  should be produced through a local mechanism
- The excess of signal in the abundance of positrons is intriguing, but any observation of a similar phenomena in the muon channel is equally important
- The signals in the electron mode and in muon mode might in fact be unrelated: if DM (and the mediator) possess lepton flavour violating characteristics, as seem to be preferred by some recent results, it might be that only the muons are the "golden" observation channel
- Apart from DM, also the possible creation of  $\mu^+$ - $\mu^-$  atoms in astrophysical objects could be probed.