Surprises from the resummation of ladders for the $\mathrm{ABJ}(\mathrm{M})$ cusp anomalous dimension

Michelangelo Preti

Universitá degli studi di Parma Dipartimento di Fisica e Scienze della Terra INFN Gruppo Collegato di Parma
based on arXiv:1603.00541 (JHEP)
M. Bonini, L. Griguolo, M. P., D. Seminara

GGI, May $20^{\text {th }} 2016$

Outline

Introduction

Cusp anomalous dimension in $\mathcal{N}=4$ SYM

Cusp anomalous dimension in $\mathrm{ABJ}(\mathrm{M})$

Conclusions

Outline

Introduction

Cusp anomalous dimension in $\mathcal{N}=4$ SYM

Cusp anomalous dimension in $\mathrm{ABJ}(\mathrm{M})$

Conclusions

Wilson loop

In any gauge theory

$$
W_{\mathcal{R}}[\mathcal{C}]=\frac{1}{\operatorname{dim}_{\mathcal{R}}} \operatorname{Tr}_{\mathcal{R}} \mathcal{P} e^{\left(i \oint_{\mathcal{C}} A_{\mu} \dot{x}^{\mu} d \tau\right)}
$$

measures the phase of an external particle.

For a given theory the Wilson loop depends on

- The trajectory of the particle $\mathcal{C} \rightarrow x^{\mu}(\tau)$
- The flavor/charge of the particle
$\mathcal{R} \rightarrow$ gauge group repr.

There are a lot of interesting implications...

Wilson loop in $\mathcal{N}=4$ SYM

- Vector supermultiplet $\left(A_{\mu}, \lambda_{\alpha}^{a}, \Phi^{\prime}\right)$;
- Free parameters: $g_{\mathrm{YM}}, N \rightarrow$ 't Hooft coupling $\lambda=g_{\mathrm{YM}}^{2} N$.

The loops couple also the scalars:

$$
W_{\mathcal{R}}[\mathcal{C}]=\frac{1}{\operatorname{dim}_{\mathcal{R}}} \operatorname{Tr}_{\mathcal{R}} \mathcal{P} \exp \oint_{\mathcal{C}} d \tau\left(i A_{\mu}(x) \dot{x}^{\mu}(\tau)+\dot{y}_{I}(\tau) \Phi^{\prime}\right)
$$

The scalar coupling must satisfy $\dot{x}^{2}=\dot{y}^{2} \rightarrow$ local SUSY
With a suitable choice of scalar coupling \rightarrow global SUSY

- Zarembo $\dot{y}_{I}=M_{I}^{\mu} \dot{x}_{\mu} \rightarrow\langle W\rangle=1$ [K.Zarembo '02]
- DGRT $\dot{y}_{I}=-\dot{x}_{\mu} \sigma_{i}^{\mu \nu} x_{\nu} M_{I}^{i} \rightarrow$ loops on S^{3}
[N.Drukker, S.Giombi, R.Ricci, D.Trancanelli '07]

The number of preserved supercharges depends on the path $x_{\mu}(\tau)$

Wilson loop $\mathrm{ABJ}(\mathrm{M})$

- $\left(A_{\mu}, \psi^{\prime}, C^{\prime}\right)$ in the bifundamental of the group $U(N) \times U(M)$;
- Free parameters: $\kappa, N, M \rightarrow$ 't Hooft coupling $\lambda_{1}=\frac{N}{\kappa}, \lambda_{2}=\frac{M}{\kappa}$.

The contours couple also the scalars and the fermions:

$$
W_{\mathcal{R}}[\mathcal{C}]=\frac{1}{\operatorname{dim}_{\mathcal{R}}} \operatorname{Tr}_{\mathcal{R}}\left[\mathcal{P} \exp \left(-i \int_{\mathcal{C}} d \tau \mathcal{L}(\tau)\right)\right]
$$

the $U(N) \times U(M)$ gauge connection with the super-connection

$$
\mathcal{L}(\tau) \equiv-i\left(\begin{array}{cc}
i \mathcal{A} & \sqrt{\frac{2 \pi}{\kappa}}|\dot{x}| \eta_{l} \bar{\psi}^{\prime} \\
\left.\sqrt{\frac{2 \pi}{\kappa}}|\dot{x}| \psi \right\rvert\, \psi_{l} \bar{\eta}^{\prime} & i \hat{\mathcal{A}}
\end{array}\right) \text { with }\left\{\begin{array}{l}
\mathcal{A} \equiv A_{\mu} \dot{x}^{\mu}-\frac{2 \pi i}{\kappa}|\dot{x}| M_{\jmath}{ }^{\prime} C_{l} \bar{C}^{J} \\
\hat{\mathcal{A}} \equiv \hat{A}_{\mu} \dot{x}^{\mu}-\frac{2 \pi i}{\kappa}|\dot{x}| \hat{M}_{J}{ }^{\prime} \bar{C}^{J} C_{l},
\end{array}\right.
$$

belonging to the super-algebra of $U(N \mid M)$.
[N. Drukker, D.Trancanelli '10]
Michelangelo Preti

Cusp anomalous dimension「CUSP

$$
W \sim e^{-\log \left(\frac{L}{\epsilon}\right) \Gamma_{\operatorname{CUSP}}(\lambda, \varphi)}
$$

with L and ϵ the IR and UV cut-off

Supersymmetric configuration: $\varphi=0$

- Universal cusp anomaly $\Gamma_{\operatorname{CUSP}}(\lambda, \varphi) \xrightarrow[\varphi \rightarrow \infty]{\varphi \rightarrow i \varphi} \varphi \gamma_{\operatorname{CUSP}}(\lambda)$
- $Q \bar{Q}$-potential

$$
\Gamma_{\operatorname{CUSP}}(\lambda, \varphi) \xrightarrow{\varphi \rightarrow \pi} \frac{V(\lambda)}{\pi-\varphi}
$$

- Bremsstrahlung function $\Gamma_{C U S P}(\lambda, \varphi) \xrightarrow{\varphi \rightarrow 0}-\varphi^{2} \mathcal{B}(\lambda)$

Deforming the observable

R-symmetry deformation $\vec{n} \cdot \vec{n}^{\prime}=\cos \theta$

$$
W \sim e^{-\log \left(\frac{L}{\epsilon}\right) \Gamma \operatorname{Cusp}(\lambda, \theta, \varphi)}
$$

with $\Gamma_{\operatorname{CUSP}}(\lambda, \theta, \varphi)$ the generalized cusp anomalous dimension [N.Drukker, V.Forini '11] [D.Correa, J.Henn, J.Maldacena, A.Sever '12]

Supersymmetric configuration: $\varphi= \pm \theta$
It is possible to have exact result for the generalized cusp?

Outline

Introduction

Cusp anomalous dimension in $\mathcal{N}=4$ SYM

Cusp anomalous dimension in $\mathrm{ABJ}(\mathrm{M})$

Conclusions

Bethe-Salpeter equation for generalized cusp in $\mathcal{N}=4$ SYM

We study the scaling limit which selects only ladder diagrams

$$
i \theta \rightarrow \infty, \quad \lambda \rightarrow 0 \quad \text { with } \quad \hat{\lambda}=\frac{\lambda e^{i \theta}}{4} \quad \text { finite. }
$$

[Correa, Henn, Maldacena, Sever '12]

Ladder diagram resummation \rightarrow Bethe-Salpeter equation

$$
F(S, T)=1+\int_{0}^{S} d s \int_{0}^{T} d t F(s, t) P(s, t)
$$

Integral equation \rightarrow Schroedinger equation with potential depending on the integral kernel $P(s, t)$

The 1-d Schroedinger problem

It is convenient to think about the problem on the sphere $\left(s=e^{\sigma}, t=e^{\tau}\right)$

$$
\partial_{\sigma^{\prime}} \partial_{\tau^{\prime}} F\left(\sigma^{\prime}, \tau^{\prime}\right)=P\left(\sigma^{\prime}, \tau^{\prime}\right) F\left(\sigma^{\prime}, \tau^{\prime}\right)
$$

Defining $x=\tau^{\prime}-\sigma^{\prime}$ and $y=\tau^{\prime}+\sigma^{\prime} / 2$ and making the ansatz $F=\sum_{n} e^{-E_{n} y} \Psi_{n}(x)$

$$
\left[-\partial_{x}^{2}-P(x, y)\right] \Psi(x)=-\frac{E^{2}}{4} \Psi(x)
$$

when $T=S \rightarrow \infty, F$ is governed by the lowest eigenvalue then

$$
E_{0}=-\Gamma_{\text {cusp }}
$$

- The energy can be computed exactly for $\varphi=0$
- For arbitrary φ the Schroedinger problem is not exactly solvable

$$
\Gamma_{\text {cusp }}=-\frac{\sqrt{\hat{\lambda}}}{2 \pi \cos \varphi / 2} \quad \hat{\lambda} \gg 1 \quad \text { in agreement with AdS/CFT }
$$

[Correa, Henn, Maldacena, Sever '12] [Henn, Huber '12]

$$
\text { Michelangelo Preti } \quad \text { GGI, May } 20^{\text {th }} 2016
$$

A sketch of the NLO

[Henn, Huber '12]

Outline

Introduction

Cusp anomalous dimension in $\mathcal{N}=4$ SYM

Cusp anomalous dimension in $\mathrm{ABJ}(\mathrm{M})$

Conclusions

The $\mathrm{ABJ}(\mathrm{M})$ kernels

The $A B J$ scaling limit

$$
i \theta \rightarrow \infty, \quad \lambda_{1,2} \rightarrow 0 \quad \text { with } \quad \hat{\lambda}_{1,2}=\frac{\lambda_{1,2} e^{i \theta}}{2} \quad \text { finite. }
$$

At leading order the relevant contributions are

$$
\begin{aligned}
& =\int d s d t P^{(F)}(s, t) \\
& =\left(\frac{2 \pi}{\kappa}\right) M N \frac{\Gamma\left(\frac{1}{2}-\epsilon\right)}{4 \pi^{3 / 2-\epsilon}}(\mu L)^{2 \epsilon} \frac{1}{\epsilon} \frac{\cos \frac{\theta}{2}}{\cos \frac{\varphi}{2}} .
\end{aligned}
$$

$$
=\int d s d t P^{(B)}(s, t)
$$

$$
=-\left(\frac{2 \pi}{\kappa}\right)^{2} M N^{2} \frac{\Gamma^{2}\left(\frac{1}{2}-\epsilon\right)}{16 \pi^{3-2 \epsilon}}(\mu L)^{4 \epsilon} \cos ^{2} \frac{\theta}{2} \frac{1}{\epsilon} \frac{\varphi}{\sin \varphi} .
$$

Michelangelo Preti GGI, May $20^{\text {th }} 2016$

Bethe-Salpeter equation for generalized cusp in $\mathrm{ABJ}(\mathrm{M})$

$F(S, T)=\sqrt{N}+\int_{0}^{S} d s \int_{0}^{T} d t M N F(s, t) P^{(B)}(s, t)+\sqrt{M N} \hat{F}(s, t) P^{(F)}(s, t)$
$\hat{F}(S, T)=\sqrt{M}+\int_{0}^{S} d s \int_{0}^{T} d t \sqrt{M N} F(s, t) P^{(F)}(s, t)+M N \hat{F}(s, t) P^{(B)}(s, t)$.

$$
\left\langle\mathcal{W}_{ \pm}\right\rangle=\frac{\left\langle\mathcal{W}_{\uparrow}\right\rangle \pm\left\langle\mathcal{W}_{\downarrow}\right\rangle}{N \pm M} \quad \Rightarrow \quad\left\langle\mathcal{W}_{ \pm}\right\rangle=\frac{\sqrt{N} F \pm \sqrt{M} \hat{F}}{N \pm M}
$$

Bethe-Salpeter equation for generalized cusp in $\mathrm{ABJ}(\mathrm{M})$ (II)

We decouple the integral equations defining

$$
\mathcal{H}(x, y)=F+\hat{F}=h(y) \psi_{+}(x) \quad \mathcal{K}(x, y)=F-\hat{F}=k(y) \psi_{-}(x)
$$

Two SUSY-QM Schroedinger equations

$$
\begin{aligned}
& \left(-\partial_{x}^{2}+a^{2} W^{2}(x)-a W^{\prime}(x)\right) \psi_{+}(x)=E \psi_{+}(x) \\
& \left(-\partial_{x}^{2}+a^{2} W^{2}(x)+a W^{\prime}(x)\right) \psi_{-}(x)=\tilde{E} \psi_{-}(x) \\
& h(y)=C_{1} e^{2 \sqrt{-E+\frac{\partial^{2}}{2}} y}+C_{2} e^{-2 \sqrt{-E+\frac{\partial^{2}}{2}} y} \\
& k(y)=C_{3} e^{2 \sqrt{-\tilde{E}+\frac{\partial^{2}}{2}} y}+C_{4} e^{-2 \sqrt{-\tilde{E}+\frac{\partial^{2}}{2}} y}
\end{aligned}
$$

Solving the equations we get

$$
\begin{aligned}
&\left\langle\mathcal{W}_{+}\right\rangle= \frac{(\sqrt{M}+\sqrt{N})^{2}}{2(M+N)} e^{\sqrt{2} a \log \frac{\Lambda_{U V}}{\Lambda_{I R}}+\frac{(\sqrt{M}-\sqrt{N})^{2}}{2(M+N)} e^{-\sqrt{2} a \log \frac{\Lambda_{U V}}{\Lambda_{I R}}}} \begin{array}{r}
\left\langle\mathcal{W}_{-}\right\rangle=
\end{array} \\
& \frac{1}{2} e^{\sqrt{2} a \log \frac{\Lambda_{U V}}{\Lambda_{I R}}}+\frac{1}{2} e^{-\sqrt{2} a \log \frac{\Lambda_{U V}}{\Lambda_{I R}}} . \\
& \text { Michelangelo Preti Bonini, L.Griguolo, M.P., D.Seminara '16] } \quad \text { GGI, May } 20^{\text {th }} 2016
\end{aligned}
$$

Bethe-Salpeter equation for generalized cusp in $\mathrm{ABJ}(\mathrm{M})$ (III)

The straight-line case $(\varphi=0)$ is exactly solvable with $\epsilon \neq 0$

$$
\begin{aligned}
& \square \mathcal{H}\left(x^{\prime}, y^{\prime}\right)=\left[\vec{\nabla} W\left(x^{\prime}, y^{\prime}\right) \cdot \vec{\nabla} W\left(x^{\prime}, y^{\prime}\right)-\square W\left(x^{\prime}, y^{\prime}\right)\right] \mathcal{H}\left(x^{\prime}, y^{\prime}\right) \\
& \square \mathcal{K}\left(x^{\prime}, y^{\prime}\right)=\left[\vec{\nabla} W\left(x^{\prime}, y^{\prime}\right) \cdot \vec{\nabla} W\left(x^{\prime}, y^{\prime}\right)+\square W\left(x^{\prime}, y^{\prime}\right)\right] \mathcal{K}\left(x^{\prime}, y^{\prime}\right)
\end{aligned}
$$

with

$$
W\left(x^{\prime}, y^{\prime}\right)=\frac{2^{\epsilon-1 / 2} a_{\epsilon}}{\epsilon} e^{\epsilon y^{\prime}} \cos ^{2 \epsilon} \frac{x^{\prime}}{2}, \quad a_{\epsilon}=\sqrt{\hat{\lambda}_{1} \hat{\lambda}_{2}} \frac{\Gamma(1 / 2-\epsilon)(\mu L)^{2 \epsilon}}{(2 \pi)^{1 / 2-\epsilon}}
$$

Solving the equations we get

$$
\begin{gathered}
\left\langle\mathcal{W}_{+}^{\varphi=0}\right\rangle=\frac{(\sqrt{M}+\sqrt{N})^{2}}{2(M+N)} e^{-\frac{2^{\epsilon-1 / 2}}{\epsilon} a_{\epsilon}}+\frac{(\sqrt{M}-\sqrt{N})^{2}}{2(M+N)} e^{\frac{2^{\epsilon-1 / 2}}{\epsilon} a_{\epsilon}}, \\
\left\langle\mathcal{W}_{-}^{\varphi=0}\right\rangle=\frac{1}{2} e^{-\frac{2^{\epsilon-1 / 2}}{\epsilon} a_{\epsilon}}+\frac{1}{2} e^{{\frac{2}{}{ }^{\epsilon-1 / 2}}_{\epsilon}^{\epsilon} a_{\epsilon}} . \\
\text { Michelangelo Preti } \quad \begin{array}{c}
\text { GM.Bonini, L.Griguolo, M.P., D.Seminara '16] } 20^{\text {th }} 2016
\end{array}
\end{gathered}
$$

The mixing matrix and the cusp anomaly

The two operators mix $(a, b= \pm)$

$$
\mathcal{W}_{a}^{B}=\tilde{Z}_{a b} \mathcal{W}_{b}^{R}, \quad \tilde{Z}_{a b}=\left(Z_{\text {open }} \tilde{Z}_{\text {cusp }}\right)_{a b} \xrightarrow{i \theta \rightarrow \infty}\left(\tilde{Z}_{\text {cusp }}\right)_{a b}
$$

the cusp anomalous dimension is defined by

$$
\left(\Gamma_{\text {cusp }}\right)_{a b}=\left[\mu \frac{\partial}{\partial \mu} \log \tilde{Z}_{\text {cusp }}\right]_{a b} .
$$

Thus we have 2 cusp anomalous dimensions for $\varphi=0$

$$
\Gamma_{\text {cusp }}^{(1)}=-\Gamma_{\text {cusp }}^{(2)}=-\sqrt{\hat{\lambda}_{1} \hat{\lambda}_{2}}
$$

and the same for $\varphi \neq 0$

$$
\Gamma_{\text {cusp }}^{(1)}(\varphi)=-\Gamma_{\text {cusp }}^{(2)}(\varphi)=-\frac{\sqrt{\hat{\lambda}_{1} \hat{\lambda}_{2}}}{\cos \frac{\varphi}{2}}
$$

In the "strong coupling" limit \Rightarrow no match with the $\sqrt{\hat{\lambda}}$ behavior of ST
The limits do not commute

$$
\lambda \rightarrow 0, i \theta \rightarrow \infty+\hat{\lambda} \rightarrow \infty \neq \lambda \rightarrow \infty+i \theta \rightarrow \infty
$$

Michelangelo Preti GGI, May $20^{\text {th }} 2016$

Outline

Introduction

Cusp anomalous dimension in $\mathcal{N}=4$ SYM

Cusp anomalous dimension in $\mathrm{ABJ}(\mathrm{M})$

Conclusions

Conclusions and Outlook

Conclusions

- Using the BS resummation approach we have computed the VEV's for the traced and supertraced operator;
- We have extracted the two cusp anomalous dimensions from the VEV's noticing that the two operators mix;
- We propose a new double exponentiation for the cusped WL;
- We argue that the disagreement with the AdS/CFT prediction is due to the fact that the scaling limit does not commute with the strong-coupling limit.

Outlook

- To check the double exponentiation using PT;
- Study the mixing problem relaxing the scaling limit;
- Compute the NLO kernels and perform Bethe-Salpeter resummation.

NLO kernel

Michelangelo Preti
GGI, May $20^{\text {th }} 2016$

Thank you

for your

Attention

