

Overview of (*n*) meson nucleon interactions and mesic nuclei

Wojciech Krzemień

on behalf of the WASA-at-COSY collaboration

MesonNet Meeting 29th September 2014 - 1st October 2014

Outline

- General motivation,
- η -nucleon interaction and η -mesic nuclei,
- previous experiments,
- WASA-at-COSY measurements:
 - experimental method,
 - results (2008),
 - current status and future prospects (2010 & 2014 data),
- future activities

Meson-nucleon interaction

- Is interaction attractive or repulsive?
- How strong is the interaction?
- What type: strong + Coulomb

Meson-nucleon interaction

- Is interaction attractive or repulsive?
- How strong is the interaction?
- What type: strong + Coulomb

• Can a bound system be formed ?

Meson-nucleon interaction

- Is interaction attractive or repulsive?
- How strong is the interaction?
- What type: strong + Coulomb

• Can a bound system be formed ?

Experimental aspect: for short-lived mesons beams are unavailable We can only study it in the final state (FSI)

"Exotic" systems

η -nucleon interaction

Still not well established !!

 $0.18 fm \le \operatorname{Re} a_{\eta N} \le 1.03 fm$ $0.16 fm \le \operatorname{Im} a_{\eta N} \le 0.49 fm$

N. G. Kelkar, et al., Rep. Prog. Phys. 76, 066301 (2013).

Still not well established !!

 $0.18 fm \le \operatorname{Re} a_{\eta N} \le 1.03 fm$ $0.16 fm \le \operatorname{Im} a_{\eta N} \le 0.49 fm$

N. G. Kelkar, et al., Rep. Prog. Phys. 76, 066301 (2013).

For low energies η -N interaction is dominated by N*(1535)/S₁₁ resonance

- N*(1535)/S₁₁
- $J^{P} = \frac{1}{2}$
- m = 1535 MeV
- **F** = 150 MeV

- Main decay channels:
 - $N^* \rightarrow \pi N \sim 35-55 \%$
 - $N^* \rightarrow \eta N \sim 30-55 \%$
- $N^* \rightarrow \pi \pi N \sim 1-10 \%$

- N*(1535)/S₁₁
- $J^{P} = \frac{1}{2}$
- m = 1535 MeV
- **F** = 150 MeV

- Main decay channels:
 - $N^* \rightarrow \pi N \sim 35-55 \%$
 - $N^* \rightarrow \eta N \sim 30-55 \%$
- $N^* \rightarrow \pi \pi N \sim 1-10 \%$

R.S. Bhalerao and L.C. Liu, Phys. Rev. Lett. 54, 865 (1985).

η bound states?

First η -mesic nuclei predictions (for A>12)

Q. Haider, L.C. Liu, Phys. Lett. B172, 257 (1986).

 η -mesic nucleus = only strong interaction

For recent calculations see:

E. Friedman, A. Gal and J. Mares, Phys. Lett. B725 (2013) 334.

How to look for bound states

• Direct method:

Search for some peak structure below the production threshold

• Indirect methods:

Based on cross-section behaviour above the threshold (some

theoretical model must be assumed)

• Via N* resonance decay : $\eta + N \rightarrow N^* \rightarrow N + \pi$ (inside nucleus)

• Via N* resonance decay : $\eta + N \rightarrow N^* \rightarrow N + \pi$ (inside nucleus)

• Via N* resonance decay : $\eta + N \rightarrow N^* \rightarrow N + \pi$ (inside nucleus)

- Absorption of orbiting η :
 - $\eta \rightarrow 2\gamma$ (inside nucleus)

- Absorption of orbiting η :
 - $\eta \rightarrow 2\gamma$ (inside nucleus)

- Non-resonant decay (absorption on two nucleons):
 - η + N N \rightarrow NN (inside nucleus)

- Non-resonant decay (absorption on two nucleons):
 - η + N N \rightarrow NN (inside nucleus)

- Non-resonant decay (absorption on two nucleons):
 - $n + N N \rightarrow NN$ (inside nucleus)

- Via N* resonance decay :
- $\eta + N \rightarrow N^* \rightarrow N + \pi$ (inside nucleus)
- Absorption of an orbiting n:
- $\eta \rightarrow 6\gamma$ (inside nucleus)
- Non-resonant decay (absorption on two nucleons):
- η + N N \rightarrow NN (inside nucleus)

Why n-mesic nuclei

- New bound state of hadrons
- Investigation *n*-N interactions
- Studies of η quark structure

Binding energy and effective mass of η are sensitive to the gluon component of the flavour singlet function $|\eta_0\rangle$

(more gluon content \rightarrow more attractive binding \rightarrow higher binding energy)

(S.D. Bass, A.W. Thomas, Phys. Lett. B634 (2008))

• Study of in-medium properties of N*(1535) resonance:

N- η system is strongly coupled with N*(1535) resonances. η -mesic nucleus as a probe for testing different N* models

Jido, Oka, Hosaka, Nemoto, PTP106(01)873 Jido, Hatsuda, Kunirhiro, NPA671(00)471) Garcia-Recio, Nieves, Inoue, Oset, PLB550(02)47 Jido, Nagahiro., Hirenzaki, PRC66(02)045202 Inoue, Oset, NPA710(02) 354

Previous experiments (direct method)

Heavy-nuclei

- BNL R.E. Chrien *et al.*, *Phys. Rev. Lett.* **60**, 2595 (1988). $\pi^{+} + {}^{16}\text{O} \rightarrow \text{p} + \eta {}^{-15}\text{O}$
- LAMPF: J.D. Johnson *et al.*, *Phys. Rev.* C47, 2571 (1993). $\pi^{+} + {}^{18}\text{O} \rightarrow \pi^{-} + \eta - {}^{18}\text{O}$

- GSI: A. Gillitzer, Acta Phys. Slov. 56, 269 (2006).
 - $d + {}^{7}Li \rightarrow {}^{3}He + \eta {}^{6}He$ $d + {}^{12}C \rightarrow {}^{3}He + \eta - {}^{11}Be$

Heavy-nuclei

• LPI: Sokol et al., LPI-HEPD-T-99-5 Journal-ref: Fizika B (Zagreb) 8 (1999) 85-90.

 γ +¹²C \rightarrow p(n)+ η -¹¹Be (η -¹¹C) \rightarrow π ⁺ + n +X

G. Sokol et al. Fizika B8, 85 (1999) Part. Nucl. Lett. 5[102], 71 (2000) Yad Fiz 71, 532 (2008)

• JINR, LHEP:

S.V. Afanasiev Nucl.Phys.Proc.Suppl. 245 (2013) 173-176.

 $d^{+12}C \rightarrow X + \eta - A \rightarrow \pi + p + X$

$\begin{array}{l} COSY-GEM \ results \\ p+^{27}Al \rightarrow {}^{3}He+(\eta - {}^{25}Mg) \rightarrow {}^{3}He \ +\pi^{-} + p \ +X \end{array}$

A. Budzanowski et al., Phys Rev. C79 (2009).

n-mesic nuclei in heavy systems

C. Garcia-Recio, T. Inoue, E. Oset Phys. Lett. B550 (2002) 47

Experimental indications for light systems (⁴He, ³He)

Experimental indications of existence of a ⁴He-*n* bound system

R. Frascaria et al., Phys. Rev. C 50 (1994) 573.
N. Willis et al., Phys. Lett. B 406 (1997) 14.
A. Wrońska et al., Eur.Phys.J. A26 (2005) 421-428.
A. Budzanowski et al., Nucl. Phys. A821, (2009) 193.

Experimental indications of existence of the ³He-*n* bound system

ANKE: T. Mersmann et al., Phys. Rev. Lett. 98 242301 (2007) COSY-11: J. Smyrski et al., Phys. Lett B 649 258-262 (2007) Enhancement independent of input channel \rightarrow Strong ³He- η FSI

Experimental indications of existence of the ³He-*n* bound system

C.Wilkin et al., Phys. Lett. B654 (2007) 92

$$\frac{d\sigma}{d\Omega} = \frac{\sigma_{tot}}{4\pi} [1 + \alpha \cos \theta_{\eta}],$$

Experimental indications of existence of the ³He-*n* bound system

Tensor analysing power T_{20} almost flat \rightarrow independent of the input channel state $S = \frac{1}{2} I S = 3/2$

Khoukaz et al. Acta Phys. Pol. B (2014)

⁴He- η vs ³He- η systems

Machner et al. Acta Phys. Pol. B (2014).

Experimental method

dd \rightarrow (η -⁴He)_{bound} \rightarrow N + π + ³He

dd \rightarrow (η -⁴He)_{bound} \rightarrow N + π + ³He

dd \rightarrow (η -⁴He)_{bound} \rightarrow N + π + ³He

- relative $N-\pi$ angle in the $CM : \theta_{cm} \sim 180^{\circ}$
- low ³He momentum in the CM

dd \rightarrow (η -⁴He)_{bound} \rightarrow N + π + ³He

dd \rightarrow (η -⁴He)_{bound} \rightarrow N + π + ³He

Search for a resonance-like structure with maximum below the η -⁴He production threshold

Signatures of the bound state

WASA detector

(Wide Angle Shower Apparatus)

Central Detector:

- photons and charged particles $(\Delta E-p, \Delta E-E)$
- Θ_{central} 20-170°

"Forward" Detector:

- charged particles (ΔE - ΔE , ΔE -E)
- $\Theta_{_{forward}}$ 3-18°

Experiments

June 2008

- Q: -51 to 22 MeV
- P: 2.185 to 2.4 GeV/c

November-December 2010

Channels:

- dd $\rightarrow {}^{3}$ He $p \pi^{-}$ dd $\rightarrow {}^{3}$ He $n \pi^{o} \rightarrow {}^{3}$ He $n \gamma\gamma$ Normalization:
 - $dd \rightarrow {}^{3}He n$
 - Q: -70 to 30 MeV
 - P: 2.127 to 2.422 GeV/c

Experiments

June 2008

Q: -51 to 22 MeV

P: 2.185 to 2.4 GeV/c

Ρ

Ρ

min

max

Channels:

November-December 2010

WASA-at-COSY

WASA-at-COSY

0.4

³He ions identification in Forward Detector

Pion identification in the Central Detector

dd \rightarrow ³He $p \pi^{-}$

 π^{-} identification

dd \rightarrow ³He $n \pi^0 \rightarrow$ ³He $n \gamma\gamma$

 π^{o} identification

Results from 2008 data

Upper limit of the maximum cross-section

for the reaction dd \rightarrow (⁴He $-\eta$)_{bound} \rightarrow ³He p π^-

Preliminary results from 2010 data

Preliminary results from 2010

red line: dd \rightarrow ³He *n* π^{0} blue line: dd \rightarrow ³He *p* π^{-} black line(MC): dd \rightarrow (⁴He $-\eta$)_{bound} \rightarrow ³He n π^{0}

New experiment (May-June 2014)

May-June 2014

Q: -50 to 20 MeV P: 1.468 to 1.615 GeV/c

Test plot from experiment

Predictions for He system

Conclusions

- Exotic atoms and nuclei as systems to study meson-nucleon interaction and partial restoration of the chiral symmetry,
- η -nucleon interaction still not well described, despite many years of studies,
- η -mesic nuclei not unequivocally confirmed so far,
- Search for a light mesic nuclei in η -³He and η -⁴He systems with WASA-at-COSY: Exclusive, high-acceptance measurement with ramped beam. New data set (η -³He) with perspectives to lower the current upper limit ~ 30 times,
- New experiments planned (**η'-mesic nuclei)**: J-PARC, GSI, ELSA

$\boldsymbol{\omega}$ and $\boldsymbol{\eta}'$ mesic nuclei

Many results from CBELSA/TAPS, CB/TAPS:

- Transparency ratios
- Excitation functions
- Momentum distributions

 $| Im \cup | > | Re \cup | ; \Rightarrow \omega$ not a good candidate to search for meson-nucleus bound states!

 $| Re \cup | >> | Im \cup | ; \Rightarrow \eta' promising$ candidate to search for mesic states

V. Metag's talk at EXA 2014, Vienna, Austria

https://indico.gsi.de/conferenceTimeTable.py?confId=2604#20140915

η ' mesic nuclei

Experiments planned:

- GSI
- ELSA
- J-PARC

formation and decay of η '-mesic state

V. Metag's talk EXA 2014, Vienna, Austria

η' mesic nuclei ?

$$\operatorname{Re}(a_{p\eta'}) = 0 \pm 0.43 \text{ fm and } \operatorname{Im}(a_{p\eta'}) = 0.37 \stackrel{+0.40}{_{-0.16}} \text{ fm}$$

COSY-11: Phys. Rev. Lett. 113 (2014) 062004

Thank you

Backup slides

Other decay channels

- Via N* resonance decay: $p+d \rightarrow (^{3}He-n)_{bound} \rightarrow p + p + p + \pi^{-}$ $p+d \rightarrow (^{3}He-n)_{bound} \rightarrow d + p + \pi^{0}$ $p+d \rightarrow (^{3}He-n)_{bound} \rightarrow p + p + n + \pi^{0}$ $p+d \rightarrow (^{3}He-n)_{bound} \rightarrow d + n + \pi^{+}$
- Absorption of an orbiting η : p+d \rightarrow (³He- η)_{bound} \rightarrow ³He + 6 γ

• Non-resonant decay (absorption on two nucleons): $p+d \rightarrow (^{3}He-n)_{bound} \rightarrow p + p + n$ $p+d \rightarrow (^{3}He-n)_{bound} \rightarrow p + d$

New experiment predictions

Via N* decay:

- x-section(n-³He) ~ 80 nb , x-section(background) ~ 2500 nb, sensitivity ~ 10 nb
 Orbiting n:
- x-section(n-3He) ~ 0.4 nb, x-section(background) ~ 16 nb, sensitivity~ 0.4 nb

Colin Wilkin	Is it possible to detect the decay of an η -meson while it is orbiting a nucleus?
	Total η width is about 1.3 keV, of which 39% corresponds to 2γ decay. The $^{3}_{\eta}$ He width is less than 500 keV. Hence, if this is a quasi-bound system, about one in a thousand should decay through 2γ emission. The 6γ branch will be slightly less. Small but clean!

Experiment at LPI

N4 N3 N2 N1 Pb А N-arm 90° 12C 90° Pb T1 C-arm T2 ΔE1 ΔE2 AE3

G. Sokol et al. Fizika B8, 85 (1999) Part. Nucl. Lett. 5[102], 71 (2000) Yad Fiz 71, 532 (2008)

E= 850 MeV

E =650 MeV (for background measurement) TOF resolution ~ 200 ps (1sigma)

TOF base: 1.3 m

Experiment at JINR (NUCLOTRON)

 $d^{+12}C \rightarrow X + \eta - A \rightarrow \pi + p + X$

Td = 1,1 -2.2 GeV/nucl

Resolution ~ 10 MeV

Figure 2: The effective mass of correlated πp pairs after background subtraction for $T_d = 2.1$ GeV/nucl.

 $1447.8 \pm 3.6 \text{ MeV}/c^2$ with the width 38.8 ± 10.4

$$M_{\rm eff} = \frac{m_1}{\sqrt{1 - \beta_1^2}} + \frac{m_2}{\sqrt{1 - \beta_2^2}}$$

$$\sigma(A_{\eta}) \approx \frac{4\pi}{\Omega} \frac{N_{\text{effect}} - N_{\text{backgr}}}{N_{\text{in}}} \sigma_{\text{in}} \approx 11 \pm 8 \,\mu\text{b}.$$

Theoretical predictions

 $d + d \rightarrow {}^{4}He \eta \rightarrow {}^{3}He N \pi$

- Binding energies close to threshold, ~MeV
- Half width : 1 20 MeV
- Cross-section : 4.5 nb (Wycech et Krzemień. Acta Phys. Polon. B 45 (2014) 745)

COSY accelerator in Juelich (Germany)

Beam:

• Unpolarized and polarized protons or deuterons.

Energy range:

- T_{p} to 2.8 GeV
- T_d to 2.3 GeV

(maximum momentum: 3.7 GeV/c)

Cooling:

- stochastic
- electron beam

Nb of particles: 10¹¹

(COoler SYnchrotron)

Ramped beam

particles T_{stop} < T < 2T_{stop}

stopped particles T<T

3-8%

1.5-3%

WASA-at-COSY

$4~\pi$ detector for charged and neutral particles

³He ions identification in Forward Detector

Nucleon identification (missing mass method)

dd \rightarrow ³He $p \pi^{-}$

