Black brane steady states

Based on work with I.Amado, H-C. Chang and A. Karch.

The problem I want to consider is as follows: at $\mathrm{t}=0$ we prepare an initial state connected to two heat baths:

Hot bath

Cold bath

The problem I want to consider is as follows: at $\mathrm{t}=0$ we prepare an initial state connected to two heat baths:
inhomogenous

Hot bath $\begin{aligned} & \text { Interpolating Cold bath } \\ & \text { region }\end{aligned}$
The boundaries are very far away
and are held in thermodynamic equilibrium:

$$
T^{\mu \nu}=\left(\begin{array}{cccc}
\epsilon & 0 & 0 & 0 \\
0 & P & 0 & 0 \\
0 & 0 & P & 0 \\
0 & 0 & 0 & P
\end{array}\right)
$$

The problem I want to consider is as follows: at $\mathrm{t}=0$ we prepare an initial state connected to two heat baths:

What can we say about the final state at late times?

Conjecture: If the conformal field theory thermalizes sufficiently fast* then the late time steady state is universal.

\square a iono tinne

Conjecture: If the conformal field theory thermalizes sufficiently fast* then the late time steady state is universal.

Conjecture: If the conformal field theory thermalizes sufficiently fast* then the late time steady state is universal.

The pressure at late times will take one of 2 values:

$$
\text { (I) } \frac{P}{P_{0}}=\frac{1}{d}\left(2(d-1)-(d-2) \sqrt{1-\delta p^{2}}\right)
$$

Conjecture: If the conformal field theory

 thermalizes sufficiently fast* then the late time steady state is universal.

The pressure at late times will take one of 2 values:
(I) $\frac{P}{P_{0}}=\frac{1}{d}\left(2(d-1)-(d-2) \sqrt{1-\delta p^{2}}\right)$
$P_{0}=\frac{P_{L}+P_{R}}{2}$
$0<\delta p=\frac{P_{L}-P_{R}}{P_{L}+P_{R}}<1 \quad d=$ dimension of spacetime

Conjecture: If the conformal field theory thermalizes sufficiently fast* then the late time steady state is universal.

The pressure at late times will take one of 2 values:

Conjecture: If the conformal field theory thermalizes sufficiently fast* then the late time steady state is universal.

The pressure at late times will take one of 2 values:

Plan:
-Prove the conjecture for 2d CFT's

- Motivate the conjecture
- Provide evidence for the conjecture in non trivial configurations

Steady states in 2d CFT's

Formally, we are asking for the value of the energy momentum tensor at late times, given an initial condition and boundary condition.

In a conformal theory (using $d s^{2}=-d t^{2}+d x^{2}$)

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

Steady states in 2d CFT's

At $x=\infty$ we have the right heat bath

$$
T_{+}(\infty)+T_{-}(\infty)=P_{\text {right }}, \quad T_{-}(\infty)-T_{+}(\infty)=0
$$

At $x=-\infty$ we have the left heat bath

$$
T_{+}(-\infty)+T_{-}(-\infty)=P_{\text {left }}, \quad T_{-}(-\infty)-T_{+}(-\infty)=0
$$

Therefore, at $\mathrm{t}=\boldsymbol{\infty}$ we have (See also, Bermard and Doyon, 2013 ; Bhaseen et. al., 2013)

Steady states in 2d CFT's

Main ingredient:

$$
T^{\mu \nu}=\left(\begin{array}{ll}
T_{+}(t+x)+T_{-}(-t+x) & T_{-}(-t+x)-T_{+}(t+x) \\
T_{-}(-t+x)-T_{+}(t+x) & T_{+}(t+x)+T_{-}(-t+x)
\end{array}\right)
$$

The left and right moving modes push the disturbance to infinity at the speed of light, leaving a steady state region in between.

More than 2 dimensions

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T^{\mu}{ }_{\mu}=0
$$

Within our ansatz

$$
T^{\mu \nu}(t, x)=\left(\begin{array}{ccc}
T^{00} & T^{01} & 0 \\
T^{01} & T^{11} & 0 \\
0 & 0 & T_{\perp}
\end{array}\right)
$$

Let us assume, in addition, that the system is described by a perfect inviscid fluid:

More than 2 dimensions: ideal fluids

Energy momentum conservation and conformal invariance imply:

$$
\partial_{\mu} T^{\mu \nu}=0, \quad T_{\mu}^{\mu}=0
$$

If the pressure difference between the baths is small, then sound modes will dominate the dynamics Let us assume, in addition, that the system is

$$
\begin{aligned}
T^{\delta_{2} P} & \equiv \epsilon^{P}\left(P (x ^ { \mu t } u _ { s } e _ { + }) \left(\eta^{\mu P_{+}}\left(x_{u^{\# t}} u^{Q_{s}}\right)\right.\right. \\
\delta \beta(t, x) & =\beta_{0}+\frac{1}{d P_{0} c_{s}}\left(P_{+}\left(x+c_{s} t\right)-P_{-}\left(x-c_{s} t\right)\right)
\end{aligned}
$$

More than 2 dimensions: ideal fluids

The linearized equations for $\delta \mathrm{P}$ and $\delta \beta$ are wave equations. Their general solution is given by:

So we can use the same strategy as before to obtain the late time behavior of the pressure and velocity.

$$
\begin{aligned}
\delta P & =P_{-}\left(x-c_{s} t\right)+P_{+}\left(x+c_{s} t\right) \\
\delta \beta(t, x) & =\beta_{0}+\frac{1}{d P_{0} c_{s}}\left(P_{+}\left(x+c_{s} t\right)-P_{-}\left(x-c_{s} t\right)\right),
\end{aligned}
$$

More than 2 dimensions: ideal fluids

The linearized equations for δP and $\delta \beta$ are wave equations. Their general solution is given by:

$$
\begin{aligned}
\delta P & =P_{-}\left(x-c_{s} t\right)+P_{+}\left(x+c_{s} t\right) \\
\delta \beta(t, x) & =\beta_{0}+\frac{1}{d P_{0} c_{s}}\left(P_{+}\left(x+c_{s} t\right)-P_{-}\left(x-c_{s} t\right)\right),
\end{aligned}
$$

So we can use the same strategy as before to obtain the late time behavior of the pressure and velocity:

At $x \rightarrow \mp \infty$ we impose that the system is connected to a heat bath. This determines the $t \rightarrow \infty$ behavior

$$
T^{00}(t \rightarrow \infty)=(d-1) P_{0}, \quad T^{01}(t \rightarrow \infty)=\frac{\Delta P}{c_{s}}, \quad T^{11}(t \rightarrow \infty)=P_{0}
$$

More than 2 dimensions: ideal fluids

Once again, the left and right moving modes push the disturbance to infinity (at the speed of sound), leaving a steady state region in between.

If the initial disturbance is discontinuous then one can show that shock waves replace the role of sound

WaVeS. (Marti, Mueller, 1994)

A conjecture

At late times modes propagating towards the heat baths generate an intermediate steady state region.

time independent

$$
\text { Region } 2
$$

$$
\text { Region } 3
$$

A conjecture

At late times modes propagating towards the heat baths generate an intermediate steady state region.
$\stackrel{\square}{\text { Region } 1}$
Region I

$$
T_{1}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{L}} W_{L}\left(x+v_{L} t\right) & W_{L}\left(x+v_{L} t\right) \\
W_{L}\left(x+v_{L} t\right) & -v_{L} W_{L}\left(x+v_{L} t\right)
\end{array}\right)+C_{I}^{\mu \nu}
$$

A conjecture

At late times modes propagating towards the heat baths generate an intermediate steady state region.

Region I

$$
T_{1}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{L}} W_{L}\left(x+v_{L} t\right) & W_{L}\left(x+v_{L} t\right) \\
W_{L}\left(x+v_{L} t\right) & -v_{L} W_{L}\left(x+v_{L} t\right)
\end{array}\right)+C_{I}^{\mu \nu}
$$

Region 2

$$
T^{\mu \nu}(x)=\left(\begin{array}{ll}
\epsilon(x) & J(x) \\
J(x) & P(x)
\end{array}\right)
$$

Conservation:

$$
J^{\prime}(x)=0, \quad P^{\prime}(x)=0
$$

A conjecture

At late times modes propagating towards the heat baths generate an intermediate steady state region.

Region I

$$
T_{1}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{L}} W_{L}\left(x+v_{L} t\right) & W_{L}\left(x+v_{L} t\right) \\
W_{L}\left(x+v_{L} t\right) & -v_{L} W_{L}\left(x+v_{L} t\right)
\end{array}\right)+C_{I}^{\mu \nu}
$$

Region 2

$$
\left.T^{\mu \nu}(\boldsymbol{z})\binom{\epsilon(f(x \in(x) J}{==J(x \mathbb{P})} \begin{array}{l}
J(x) \\
P(x)
\end{array}\right)
$$

Conservation:

$$
J^{\prime}(x)=0, \quad P^{\prime}(x)=0
$$

A conjecture

At late times modes propagating towards the heat baths generate an intermediate steady state region.

Region I

$$
T_{1}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{L}} W_{L}\left(x+v_{L} t\right) & W_{L}\left(x+v_{L} t\right) \\
W_{L}\left(x+v_{L} t\right) & -v_{L} W_{L}\left(x+v_{L} t\right)
\end{array}\right)+C_{I}^{\mu \nu}
$$

Region 2
Region 3

$$
T^{\mu \nu}=\left(\begin{array}{cc}
\epsilon(x) & J \\
J & P
\end{array}\right)
$$

$$
T_{3}^{\mu \nu}=\left(\begin{array}{cc}
-\frac{1}{v_{R}} W_{R}\left(x-v_{R} t\right) & W_{R}\left(x-v_{R} t\right) \\
W_{R}\left(x-v_{R} t\right) & -v_{R} W_{L}\left(x-v_{R} t\right)
\end{array}\right)+C_{I I I}^{\mu \nu}
$$

A conjecture

At late times modes propagating towards the heat baths generate an intermediate steady state region.

We find:

A conjecture

At late times modes propagating towards the heat baths generate an intermediate steady state region.

We find:

Region 2
$d=4$

Region 3
(See also Bhaseen et. al., 20|3)

A conjecture

We find:

Testing the conjecture: viscous hydro

We find ($\mathrm{d}=3, \Delta \mathrm{P} / \mathrm{P}_{0}=0.8$)
(Baier, Romatschke, Son, Starinets, Stephanov, 2007)

A conjecture

We find:

Test I: nonlinear viscous hydrodynamics.
Test 2: Holography.

Testing the conjecture: Holography

Let us start by considering an equilibrated configuration

A planar event horizon:

$$
\begin{aligned}
& P(T)=p_{0}\left(\frac{4 \pi T}{3}\right)^{3} \\
& \text { e.g., in ABJM } \\
& p_{0}=\frac{2 N^{2}}{9 \sqrt{2 \lambda}} \quad \lambda=\frac{N}{k}
\end{aligned}
$$

$$
d s^{2}=2 d t(d r-A(r) d t)+r^{2} d \vec{x}^{2}
$$

$$
A(r)=r^{2}\left(1-\left(\frac{4 \pi T}{3 r}\right)^{3}\right)
$$

Testing the conjecture: Holography

Out of equilibrium we want to start with:

$$
P\left(T_{R}\right)=p_{0}\left(\frac{4 \pi T_{R}}{3}\right)^{3}
$$

A planar event horizon:

$$
\begin{aligned}
& d s^{2}=2 d t(d r-A(r, z) d t)+r^{2} d \vec{x}^{2} \\
& A(r, z)=r^{2}\left(1-\left(\frac{a_{1}(z)}{3 r}\right)^{3}\right) \\
& a_{1}(-\infty)=\frac{4 \pi T_{L}}{3}
\end{aligned}
$$

$$
a_{1}(\infty)=\frac{4 \pi T_{R}}{3}
$$

Testing the conjecture: Holography

Out of equilibrium we want to start with:
and evolve it forward in time

$$
\begin{aligned}
& d s^{2}=2 d t(d r-A(r, z) d t)+r^{2} d \vec{x}^{2} \\
& A(r, z)=r^{2}\left(1-\left(\frac{a_{1}(z)}{3 r}\right)^{3}\right)
\end{aligned}
$$

Testing the conjecture: Holography

Out of equilibrium we want to start with:

$$
\begin{aligned}
& d s^{2}=2 d t(d r-A(r, z) d t)+r^{2} d \vec{x}^{2} \\
& A(r, z)=r^{2}\left(1-\left(\frac{a_{1}(z)}{3 r}\right)^{3}\right)
\end{aligned}
$$

and evolve it forward in time. Using
$d s^{2}=2 d t(d r-A(t, z, r) d t-F(t, z, r) d z)+\Sigma^{2}(t, r, z)\left(e^{B(t, z, r)} d x_{\perp}^{2}+e^{-B(t, z, r)} d z^{2}\right)$
the Einstein equations reduce to a set of nested linear differential equations in the radial coordinate 'r'.We have solved these equations numerically.

Testing the conjecture: Holography

We find ($\mathrm{d}=3, \Delta \mathrm{P} / \mathrm{P}_{0}=0.4$)

Testing the conjecture: Holography

 We find ($\mathrm{d}=3, \Delta \mathrm{P} / \mathrm{P}_{0}=0.4$)For each ' t ' we plot the maximal value of J / P_{0}

$\tanh (x / 10 /)$
t/l

For each 't' we plot the difference: $(\max (J)-J) / J$

Summary

In a 2d CFT we find

$$
\begin{aligned}
& T^{00}=T_{+}(\infty)+T_{-}(-\infty)=\frac{1}{2}\left(P_{\text {left }}+P_{\text {right }}\right), \\
& T^{01}=T_{-}(-\infty)-T_{+}(\infty)=\frac{1}{2}\left(P_{\text {left }}-P_{\text {right }}\right)
\end{aligned}
$$

Summary

Otherwise, using the conjecture:

We find:

What about the blue branch?

Thank you

