
Black brane steady 
states

Based on work with I. Amado, H-C. Chang and A. Karch.
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The problem I want to consider is as follows: at 
t=0 we prepare an initial state connected to two 
heat baths:

What can we say about the final state at late 
times?
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See also Bhaseen et. al., 2013
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Plan:

•Prove the conjecture for 2d CFT’s

•Motivate the conjecture

•Provide evidence for the conjecture in non 
trivial configurations



Steady states in 2d CFT’s
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Formally, we are asking for the value of the energy 
momentum tensor at late times, given an initial 
condition and boundary condition.
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Steady states in 2d CFT’s

T+(1) + T�(1) = Pright , T�(1)� T+(1) = 0

At x=∞ we have the right heat bath

(See also, Bernard and Doyon, 2013; Bhaseen et. al., 2013)
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Steady states in 2d CFT’s
Main ingredient:
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The left and right moving modes push the 
disturbance to infinity at the speed of light, leaving a 
steady state region in between.



More than 2 dimensions
Energy momentum conservation and conformal 
invariance imply:
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Let us assume, in addition, that the system is 
described by a perfect inviscid fluid:

Tµ⌫ = ✏(P )uµu⌫ + (⌘µ⌫ + uµu⌫)P

energy density 4-velocity Pressure
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More than 2 dimensions: ideal fluids
Energy momentum conservation and conformal 
invariance imply:
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If the pressure difference between the baths is small, 
then sound modes will dominate the dynamics
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So we can use the same strategy as before to obtain 
the late time behavior of the pressure and velocity.

The linearized equations for δP and δβ are wave 
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The linearized equations for δP and δβ are wave 
equations. Their general solution is given by:

�P = P�(x� cst) + P+(x+ cst)

��(t, x) = �0 +
1
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So we can use the same strategy as before to obtain 
the late time behavior of the pressure and velocity:

At x→∓∞ we impose that the system is connected to 
a heat bath. This determines the t→∞ behavior

T 00(t ! 1) = (d� 1)P0 , T 01(t ! 1) =
�P

cs
, T 11(t ! 1) = P0

More than 2 dimensions: ideal fluids



P

Once again, the left and right moving modes push the 
disturbance to infinity (at the speed of sound), leaving 
a steady state region in between.

If the initial disturbance is discontinuous then one can 
show that shock waves replace the role of sound 
waves. (Marti, Mueller, 1994)

More than 2 dimensions: ideal fluids
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We find:

(See also Bhaseen et. al., 2013)
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We find:

Test 1: nonlinear viscous hydrodynamics



Testing the conjecture: viscous hydro
We find (d=3, ΔP/P0=0.8)

(Baier, Romatschke, Son, Starinets, Stephanov, 2007)



A conjecture

Test 1: nonlinear viscous hydrodynamics.

We find:

Test 2: Holography.



Testing the conjecture: Holography

Let us start by considering an equilibrated 
configuration
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Testing the conjecture: Holography

Out of equilibrium we want to start with:
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Testing the conjecture: Holography

Out of equilibrium we want to start with:

and evolve it forward in time
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the Einstein equations reduce to a set of nested linear 
differential equations in the radial coordinate ‘r’. We 
have solved these equations numerically.

and evolve it forward in time. Using

Testing the conjecture: Holography

Out of equilibrium we want to start with:
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the Einstein equations reduce to a set of nested linear 
differential equations in the radial coordinate ‘r’.

(Chesler, Yaffe, 2012)
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Testing the conjecture: Holography
We find (d=3, ΔP/P0=0.4)



Testing the conjecture: Holography
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Summary
Otherwise, using the conjecture:

We find:
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What about the blue branch?
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