
The SuperB Accelerator
Control System:

Plans and R&D Status
—

i.e. an attempt to innovate the standar
model of control systems

R. Ammendola (INFN Roma TV)

C. Bisegni (INFN-LNF)

S. Calabrò (LAL & INFN-LNF)

L. Catani (INFN Roma TV)

P. Ciuffetti (INFN-LNF)

G. Di Pirro (INFN-LNF)

L. Foggetta (LAL & INFN-LNF)

G. Mazzitelli (INFN-LNF)

A. Stecchi (INFN-LNF)

F. Zani (INFN Roma TV)

SuperB Computing R&D Workshop 2011 Ferrara, 4-7 July 2011

“The standard model consists of a local area
network providing communication between
front end microcomputers, connected to the
accelerator, and workstations, providing the

operator interface and computational support.”

accelerator

control room

middle-layer

“standard model”

accelerator

control room

DAQ

standard model + DAQ

two different
topologies

the starting point

goal: develop a new solution for a control
system’s DAQ

use key/value db as alternative to
RDBMS

fast, scalable, distributed storage, low-
cost servers

the next step

extended goal: key/value db looks great, can we use
it for live data ?

 data retrieving still slow

use distributed caching instead

same topology, same data structure, same
scalability

bottleneck ?

the new paradigm

control room

accelerator

accelerator

control room moreclients

moredevices more

devi
ces

more
clients

the new paradigm:
(scalability eliminates bottleneck)

m
o

n
go

d
b

m
em

ca
ch

e

m
o

n
go

d
b

m
em

ca
ch

e

m
o

n
go

d
b

m
em

ca
ch

e

m
o

n
go

d
b

m
em

ca
ch

e

co
m

m
an

ds

query db data

write db data

pull live data

push live data

meta-data
server

orchestrator

Control Lib.

Control Unit

accelerator
I/O channels

core services
candidates

live datahistory db

core services
alternatives

Control Library e Control Unit

•The Control Library (CL) is the set
of functions needed to hw-drivers
developers for communicating with
the CS. It allows:

•managing configurations
•writing data to Live and History
•Commands dispatching & handling

•Each Control Unit employ the CL to
export to the CS an accelerator
component or a family thereof.

m
o

n
go

d

m
em

ca
c

m
o

n
go

d

m
em

 o o. . .

multi-threads

init Control Library

init Command Manager

init Control Units Manager

add Control Unit

start Control Library

start
Cmd Mgr

start
Ctl Mgr

start
Data Mgr

Start RPC Adaptor

Make CU SandBox

fo
r

ea
ch

 C
U

Get Added CU

start CUs
-

CU#1 CU#2 CU#n

start CUs

CU#1 CU#2 CU#n

push data
according

to push-rate

Command Mgr

command
received by

RPC Adapter

exec command

stop All

fo
r

ea
ch

 C
U

init Data Manager

Start RPC Dispatcher

Init CU Sandbox

Start CU Sandbox

forward the
CMD MSG to

dispatcher Queue

Post Message
to Sandbox
MSG Queue

CM
D

 T
hr

ea
d

CU
 R

un
 T

hr
ea

d

D
isp

at
ch

er
 T

hr
ea

d

CMD Queue

get next
command by

queue

CU
 C

om
m

an
d

Th
re

ad

thanks to C. Bisegni

start Control Library

Ctl Mgr

Make CU SandBox

fo
r

ea
ch

 C
U

Get Added CU

CU SBox

Init SandBox

Read CU Static CFG
Init CU SandBox

Data MgrCmd Mgr

Metadata
Server

register CU Send CU(CFG+MSG) to MS

New IODataStorage

Manage CU
Registration,
Configuration

Config. Message From MSReceived Config. Message
with last CFG for CU

Init DeviceID DataStorage

Add IODataStorage for DeviceID

Update CU and
data Driver With received Conf

fo
r

ea
ch

 D
ev

ic
eI

D

Register CU Custom Command
Into Dispatcher

Start CU SandBox Start CU Scheduler

thanks to C. Bisegni

m
o

n
go

d

m
em

ca
c

m
o

n
go

d

m
em

 o o. . .

Live data

•Allows high-performance caching of
data produced by any component
managed by CS.

•one key per data (a single “container”
continuously updated)

•dynamical keys re-distribution allows
automatic failover by redirecting to
other servers the load of failed one.
•Scalability is also guaranteed by the
same feature

r/w of a value
subset now available !

m
o

n
go

d

m
em

ca
c

m
o

n
go

d

m
em

 o o. . .

History data

•key/value non-relational database

•scalability and load balancing by
sharding

•fast record writing (simpler structure
because it doesn’t use tables)

•fast queries on primary keys

•(fast) parallel search on cluster nodes

Metadata Server

•CU configuration manager
(e.g. managing of pushing data rate)

•Semantic of data (e.g. db records
structure)

•Command’s list and semantic

•Naming service

m
o

n
go

d

m
em

ca
c

m
o

n
go

d

m
em

 o o. . .

Orchestrator

•Provides middle-layer services,
e.g. locking of CUs to prevent
command conflicts

•multi-CUs commands, e.g.
•global set-points save/restore
•software feedback
•on-line measurements
•...

m
o

n
go

d

m
em

ca
c

m
o

n
go

d

m
em

 o o. . .

Abstraction of components

Control System

live data

Orchestrator

history data

•each service isn’t directly offered
to users; glueing and wrapping
routines will be developed to
provide an high level of abstraction

•updates of core services doesn’t
influence the user applications

•higher flexibility in defining API

service wrapping
library

Meta-data Svr

wrapped
core service

m
em

ca
c

memcache_get(deviceID)

get value from memory hash

Bson parsing

client live data servermeta-data server

deviceID

get value from db (MySQL)

getDeviceID(deviceName)

Bson serialization of
ALL cached value

pull live data

build Command

client meta-data server

device socket

get value from db (e.g. MySQL)

getDeviceSocket(deviceName)

send Command
{

command

msg received

detect CU

message dispatched

(....)
exec

m
em

ca
c

m
o

n
go

in
cr

ea
se

 li
ve

&
hs

t
re

fr
es

h
ra

te
 d

ur
in

g
m

es
sa

ge
 e

xe
cu

tio
n

Control Unit HostControl
Library

Control
Unit

send command

{push live data

m
em

ca
c

read value from HW

Control
Unit

make bson serialization

Control
Library

push on CL Output Buffer

fill data object

send to live data driver

store bson serialization
into memory hash table

memcached performance

test#3.1
memcached

8 core
RAM 16GB

writing every...
(msec)

#CU
(Write)

#clients
(Read)

#servers #processes/
server

CPU load (%)

20 60 20 1 1 3-5

20 80 20 1 1 4-6

20 80 20 2 1 2-3

50 60 20 1 1 1-3

50 80 20 2 1 0-2

100 60 20 1 1 ?

100 80 20 2 1 ?

20 x reading
clients

n x writing
CU

thanks to C.Bisegni/F.Zani

test#3.2
memcached

8 core
RAM 16GB

writing every...
(msec)

#CU
(Write)

#clients
(Read) #servers

#processes/
server CPU load (%)

20 80 20 1 4 (1 per core) 2-3

20 80 40 1 4 (1 per core) 2-3

40 1 4 (1 per core) 0

20-40 x reading
clients

thanks to C.Bisegni/F.Zani

test#4

0

5

10

15

20

25

30

0 50 100 150 200 250 300 350 400 450 500 550 600 650 7000 5 10 15 20 25 30 35 40

memcached
20 x 100kB @50 Hz

91,2 MBytes/sec !

0

5

10

15

20

25

30

35

0 50 100 150 200 250 300 350 400 450 500 550 600 650 7000 10 20 30 40

s4_hardware1_w20_m20_buff100000_rd10.log s4_hardware1_w20_m20_buff100000_rd12.log

2 x reading
clients

8 core
RAM 12GB

thanks to C.Bisegni/F.Zani

The R&D activity

conclusions and
future plans

motivated by the preliminary results and consistency
of the overall design:

• start an R&D activity (funded by INFN CSN5)
for completing system design and continue
performance and stress tests of components

• continue tests on the field by adding CS
components to Dafne&SPARC prototypes

• finalize the project as a candidate for the SuperB
Control and DAQ System

• evaluate costs, man power and define time
schedule

A. Stecchi! ! INFN - LNF
R. Ammendola! INFN Roma-TV
C. Bisegni! ! INFN - LNF
S. Calabrò! ! LAL / INFN - LNF
L. Catani!! ! INFN Roma-TV
P. Ciuffetti! ! INFN - LNF
G. Di Pirro! ! INFN - LNF
L. Foggetta! ! LAL / INFN - LNF
G. Mazzitelli! ! INFN - LNF
F. Zani! ! ! INFN Roma-TV

Memcached functional tests in two real
contexts: the DAFNE Control System
and the SPARC Control System

dual port RAM

DEVIL

CPU VIC
VME cipset

VME bus

3 MB
page

The DAFNE Control System relies on many distributed
VME embedded processors (the 3rd level)

one of the many VME bus at 3rd level

dual port RAM

DEVIL

CPU VIC
VME cipset

VME bus

3 MB
page

other DEVILs ...

Employing many point-to-point VME optical links, all the
distributed processors contribute, with theirs RAMs, to the
constitution of a common VME address space (the 2nd
level)...

common VME address space
at 2nd level

common VME address space
at 2nd level

 ... that is available to the console applications
 (the 1st level)

console

display

control
loop

command
loop

CPU Each distributed CPU runs a
LabVIEW® application that takes
care of monitoring and controlling
the devices under its responsability

The 3rd level at a glance

The control loop

• reads the devices by means of proper drivers

• for each device:
‣ builds a data structure with the current values

‣ updates the data structure in the local
RAM

CPU

The 3rd level at a glance

The idea: replace the 2nd level VME address space
with the Memcached associative memory

DEVIL

CPU

at 2nd level
Memcached is employed
instead of the VME
address space

At 3rd level the CPU writes
the data structure of each
element to Memcached
using the element name as
key and the serialized data
structure as value

console

display At 1st level the i-th console fetches
the data from Memcached

For the preliminary test on the DAFNE Control
System, Memcached has been installed on a very
basic machine:

Sun V20z
AMD Opteron 244 @ 1.8 GHz
2 GB RAM
Ethernet @ 100Mbps

The OS is Linux
CentOS 5.5 (64 bit)

Memcached version 1.4.5 (latest stable)
with 512 MB of RAM allocated

The modification has been applied to the element class
ICE (Ion cleaning Electrodes)

new code for writing to
Memcached

In the 3rd level CPU a new
LabVIEW routine for writing to
memcached has been inserted

Besides a few initialization
tasks, all the rest of the code
stays unmodified.

This simple and localized
change is sufficient for making
the data available to
Memcached.

The first level reads the element data from
Memcached and de-serializes it to restore
the original element data structure.

LabVIEW routine
for reading from
Memcached

1.Memcached
connection

2.Memcached
read

3.de-serialization
4.display

Preliminary measurements

data size: 64 bytes for packet read

fetch frequency ~ 100 Hz
with no dependency on the number of fetching
consoles (up to 7 in our test)

Memcached server load (measured with the top command)
CPU: 0.3% - 0.7% memory: ~ 0.1%

An similar test has been carried out on the SPARC
Control System
Memcached has been used for storing the beam spot image from a digital camera

• network: Ethernet @1 Gbps
• image size: 640x480@8 bit = 300 kByte
• measured fetch frequency: ~ 25 Hz with no dependency on the number of fetching

consoles (up to 4 in our test)

Conclusions:

Memcached demonstrated to be very stable, and to
have a low impact on the CPU load

Very good overall performance (Ethernet 100Mbps has been
employed instead of 1 Gbps or even 40 Gbps Infiniband in the future...)

We are seriously considering the possibility to adopt
Memcached for a real upgrade of the DAFNE &
SPARC Control Systems

We are encouraged to go on with a deeper integration
of" components in the DAFNE Control System

