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The Conformal Bootstrap

A reincarnation of the bootstrap program for the strong
interactions of Chew and Frautchi (1960)

e Ferrara, Gatto, Grillo, Parisi (1972), Polyakov (1973)...
e Significant analytic results in 2d CFTs: Belavin, Polyakov,

Zamolodchikov (1984)
e It was not expected to succeed in d > 2 due to lack of Virasoro

algebra
e Unexpectedly, conformal bootstrap started producing concrete

numerical results first in d = 4 (Rattazzi, Rychkov, Tonni, Vichi
(2008)) and then in d = 3 (El-Showk, Paulos, Poland, Rychkov,
Simmon-Dufffin, Vichi (2012)).

e Since then many new numerical and analytic results in diverse
space dimensions.

e Purpose of this approach:
Assume conformal invariance of critical systems and explore
consequences
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e A CFT in d dimensions is defined by a set of local operators
{Ok (x)} x ∈ Rd and their correlation functions

〈O1(x1) . . .On(xn)〉
e Local operators can be multiplied. Operator Product Expansion:

Oi(x)Oj(0) ∼
∑

k

cijk fk (x)Ok (0)

e O∆,`,f (x) are labelled by a scaling dimension ∆

O∆,`,f (λx) = λ−∆O∆,`,f (x)

an SO(d) ⊂ SO(d + 1,1) representation ` (spin), and possibly a
flavor index f

e Acting with the Lie algebra of the conformal group {Jµν ,Pµ,Kµ,D}
on a local operator generates a whole representation of the
conformal group.

e A local operator O with [Kµ,O(0)] = 0 is said a primary, the others
are descendants
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e The spectrum of the primaries {[∆i , `i ]} and the set of the OPE
coefficients {cijk} form the CFTdata which completely characterise
the CFT

e Consistent data must satisfy crossing symmetry
e Modern conformal bootstrap is the (analytic or/and numerical)

study of

Ok
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It knows almost everything about critical phenomena!

1
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Crossing symmetry, simplest case

k The 4-pt function of a single scalar operator Φ(x) in a CFT can be
parametrised as
〈Φ(x1)Φ(x2)Φ(x3)Φ(x4)〉 = g(u,v)

|x12|2∆Φ |x34|2∆Φ
,

„
u =

x2
12x2

34
x2

13x2
24
, v =

x2
14x2

23
x2

13x2
24

«
k g(u, v) can be expanded in terms of conformal blocks

Gk (∆k , `k ; u, v) (eigenfunctions of the Casimir operator) :
g(u, v) = 1 +

∑
k pk Gk . pk = c2

ΦΦOk

ø Crossing (or bootstrap) equations
Ê g(u, v) = g(u/v ,1/v) projecting on states of even spin only
Ë g(u, v) v∆Φ = g(v ,u) u∆Φ encoding a huge amount of information

ø sum rule
∑

k pk
v∆Φ Gk (u,v)−u∆Φ Gk (v ,u)

u∆Φ−v∆Φ
= 1

k Put u = zz̄, v = (1− z)(1− z̄) and Taylor expand about the
symmetric point z = z̄ = 1

2
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ë the crossing symmetry constraint can then be rewritten as
one inhomogeneous equation (normalization)

k
∑

k pk f(0,0)
∆Φ,∆k

= 1
and an infinite set of homogeneous equations

k
∑

k pk f(m,n)
∆Φ,∆k

= 0 (m,n ∈ N,m + n 6= 0)

f(m,n)
α,β =

(
∂m

z ∂
n
z̄

vαGβ(u,v)−uαGβ(v ,u)
uα−vα

)
z,z̄= 1

2

known functions of ∆Φ and ∆k

k Assuming unitarity (ë pk ≥ 0) allows to turn bootstrap equations
into a powerful numerical algorithm (linear programming)
producing data with rigorous error bars (see later)

k However many interesting critical systems do not correspond to
unitary (or reflection positive) theories
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The method of determinants (does not assume unitarity)

FG (2013); FG and A.Rago (2014); FG, P.Liendo, M.Meineri and A.Rago (2015); Y.Nakayama

(2016);I.Eststerlis,A.L.Fitzpatrick and D.M.Ramirez (2016); S.Hikami(2017)

k Truncate the sum rule to a finite number N of terms∑N
k f(0,0)

∆Φ,∆k
pk ≈ 1

∑N
k f(m,n)

∆Φ,∆k
pk ≈ 0 (m + n 6= 0)

k Two kinds of unknowns: The low-lying spectrum {∆Φ,∆1, . . .∆N}
and the OPE coefficients {p1 . . . pN }

k If we knew all the ∆k ’s (k ≤ N) we could solve the truncated linear
system and compute the pk ’s
How to get the ∆’s ?

ë look for solutions of an overdetermined system, i.e. with M > N
linear homogeneous equations
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k write the homogeneous system as∑N
k

(
f(m,n)
∆Φ,∆k

)
pk ≡ F~p = 0 (F = rectangular M × N matrix)

k a system of M ≥ N linear homogeneous equations with N
unknowns admits a non-identically vanishing solution if and only if
all the minors of order N are vanishing:
detNFi = fi(∆Φ, [∆1, `1], . . . [∆N , `N ]) = 0

i labels the possible 0 < i ≤
(

M
N

)
minors (i.e. determinants) of

order N. Each of them gives a constraint on the ∆’s
k If the number of independent minors is enough and the associated

constraints are compatible with each other we get a solution of the
truncated bootstrap equations
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Example: scalar free-field theory in d dimensions

From the OPE of two free fields ϕ(x)ϕ(y) we can extract the fusion
rule

[ϕ]× [ϕ] ∼ [1] + λ0[∆ϕ2 ,0] + λ2[d ,2] + . . . λ` [d − 2 + `, `] + . . .

we get the 4-point expansion in conformal blocks

g(u, v) = 1 + u∆ϕ +
(u

v

)∆ϕ

= 1 + λ2
0G∆

ϕ2 ,0 +
∑
`

λ2
`Gd−2+`,`

The free Lagrangian tells us

∆ϕ =
d
2
− 1, ∆ϕ2 = 2∆ϕ
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Example: scalar free-field theory in d dimensions

From the OPE of two free fields ϕ(x)ϕ(y) we can extract the fusion
rule

[ϕ]× [ϕ] ∼ [1] + λ0[∆ϕ2 ,0] + λ2[d ,2] + . . . λ` [d − 2 + `, `] + . . .

we get the 4-point expansion in conformal blocks

g(u, v) = 1 + u∆ϕ +
(u

v

)∆ϕ

= 1 + λ2
0G∆

ϕ2 ,0 +
∑
`

λ2
`Gd−2+`,`

The free Lagrangian tells us

∆ϕ =
d
2
− 1, ∆ϕ2 = 2∆ϕ

How to see it in a pure CFT approach?
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Assume ∆ϕ and ∆ϕ2 unknown and truncate the fusion rule

[ϕ]× [ϕ] ∼ [1] + [∆ϕ2 ,0] + [d ,2] + [d + 2,4]

0.70 0.72 0.74 0.76 0.78 0.80

1.40

1.45

1.50

1.55

1.60

8dim � 3.5<

DΦ

DΦ2

detADΦ,DΦ2E=0

Put d = 3.5, for instance.
í 2 unknowns,
N = 3 conformal blocks,
M = 5 homogeneous equations,
10 different 3× 3 minors.
Each curve represents the locus of
vanishing of a minor in the
(∆ϕ,∆ϕ2) plane .
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with the expected exact value.
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Assume ∆ϕ and ∆ϕ2 unknown and truncate the fusion rule
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N = 3 conformal blocks,
M = 5 homogeneous equations,
10 different 3× 3 minors.
Each curve represents the locus of
vanishing of a minor in the
(∆ϕ,∆ϕ2) plane .
Their mutual intersections coincide
with the expected exact value.
are there other solutions?
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Assume ∆ϕ and ∆ϕ2 unknown and truncate the fusion rule
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are there other solutions?
look on a larger scale
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Assume ∆ϕ and ∆ϕ2 unknown and truncate the fusion rule

[ϕ]× [ϕ] ∼ [1] + [∆ϕ2 ,0] + [d ,2] + [d + 2,4]

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.5

1.0

1.5

2.0

8dim � 3.5<

DΦ

DΦ2

Yang Lee

free field

Φ4

Unitarity bound

Put d = 3.5, for instance.
í 2 unknowns,
N = 3 conformal blocks,
M = 5 homogeneous equations,
10 different 3× 3 minors.
Each curve represents the locus of
vanishing of a minor in the
(∆ϕ,∆ϕ2) plane .
look on a larger scale:
There are (approximate) solutions
corresponding to other CFTs.
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Assume ∆ϕ and ∆ϕ2 unknown and truncate the fusion rule

[ϕ]× [ϕ] ∼ [1] + [∆ϕ2 ,0] + [d ,2] + [d + 2,4]

0.4 0.5 0.6 0.7 0.8 0.9 1.0

0.5

1.0

1.5

2.0

8dim � 3.5<

DΦ

DΦ2

Yang Lee

free field

Φ4

Unitarity bound

Put d = 3.5, for instance.
í 2 unknowns,
N = 3 conformal blocks,
M = 5 homogeneous equations,
10 different 3× 3 minors.
Each curve represents the locus of
vanishing of a minor in the
(∆ϕ,∆ϕ2) plane .
There are (approximate) solutions
corresponding to other CFTs.
Vary the space dimension d in or-
der to see how these new solutions
behave
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Assume ∆ϕ and ∆ϕ2 unknown and truncate the fusion rule

[ϕ]× [ϕ] ∼ [1] + [∆ϕ2 ,0] + [d ,2] + [d + 2,4]

0.6 0.8 1.0 1.2

0.5

1.0

1.5

2.0

8dim � 4.<

DΦ

DΦ2

YL

free field

UB

Put d = 3.5, for instance.
í 2 unknowns,
N = 3 conformal blocks,
M = 5 homogeneous equations,
10 different 3× 3 minors.
Each curve represents the locus of
vanishing of a minor in the
(∆ϕ,∆ϕ2) plane .
At d = 4 the free scalar theory and
the “φ4” solution coalesce.
The merging of the two fixed points
can be treated analytically
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Assume ∆ϕ and ∆ϕ2 unknown and truncate the fusion rule

[ϕ]× [ϕ] ∼ [1] + [∆ϕ2 ,0] + [d ,2] + [d + 2,4]

1.5 2.0 2.5 3.0

2.0

2.5

3.0

3.5

4.0

8dim � 6.<

DΦ

DΦ2

Y L

free field

U B

Φ4

Put d = 3.5, for instance.
í 2 unknowns,
N = 3 conformal blocks,
M = 5 homogeneous equations,
10 different 3× 3 minors.
Each curve represents the locus of
vanishing of a minor in the
(∆ϕ,∆ϕ2) plane .
At d = 6 the “Yang Lee” solution
assumes the exact free field values
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N = 1 SuperCFT in three dimensions
N = 1 supersymmetry implies ∆φ2 = ∆φ + 1
ë truncated fusion rule

[φ]× [φ] ∼ [1] + [∆φ + 1,0] + [d = 3,2] + [∆4,4]

0.50 0.52 0.54 0.56 0.58 0.60

5.0

5.1

5.2

5.3

5.4

8d � 3<

DΦ

D4

Bashkirov

lower bound

í Two unknowns: ∆φ,∆4
Two isolated solutions
Bashkirov (arXiv:1310.8255), using
supersymmetry and Ising bootstrap
data, found the lower bound
∆φ ≥ 0.565
ë ∆φ = 0.5826, ∆4 = 5.34
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Yang-Lee edge singularity

k switch on the interaction by adding to the action a ϕ3 term with
imaginary coupling: S =

∫
dDx

[1
2(∂ϕ)2 + i(h − hc)ϕ+ igϕ3] .

k This non-unitary theory is known to describe in the infrared the
universality class of the Yang-Lee edge singularity.

k Such a singularity occurs in any ferromagnetic D-dimensional
Ising model above its critical temperature T > Tc .

k The zeros of the partition function in the complex plane of the
magnetic field h are located on the imaginary ih axis above a
critical value ihc(T ).

k In the thermodynamic limit the density of these zeros behaves
near hc like (h − hc)σ where σ =

∆ϕ

d−∆ϕ
(edge exponent)

k σ is exactly known only in D=2 and D=6
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Yang-Lee Universality Class

Besides the Ising model at T > Tc , the YL edge exponent is also
related to other exponents of quite different systems:

k The pressure for D− dimensional fluids with repulsive core has a
singularity at negative values of activity with universal exponent
φ(d) = σ(d) + 1

k The number-per-site of large isotropic branched polymers in a
good solvent (undirected lattice animals) obeys a power law
associated with the exponent φI(d) = σ(d − 2) + 2
Monte Carlo simulations on these systems gives accurate results
for σ
Recent calculations of high-temperature, low-field expansion
(through 24th order) improved the accuracy in the whole range
2 ≤ d ≤ 6
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YL fusion algebra

k Improve the free-theory truncated fusion rule
[φ]× [φ] ∼ 1 + [φ2] + [d ,2] + [d + 2,4]

k Standard RG arguments tell us that the upper critical
dimensionality of a model with ϕ3 interaction is Du = 6, above
which the classical mean-field value σ = 1

2 applies.
ë In 6− ε dimensions ϕ2 is a redundant operator, as at the

non-trivial ϕ3 fixed point ϕ2 ∝ ∂2ϕ by the equation of motion
ë ϕ2 and its derivatives are descendant operators of the only

relevant primary operator ϕ of this universality class

ë [ϕ]× [ϕ] ∼ 1 + [ϕ] + [d ,2] + [∆4,4] + . . .

k This fusion algebra characterizes the universality class of the
Yang-Lee edge singularity in any space dimension.
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Yang-Lee in 2 ≤ d ≤ 6
k For d near 6 the basic fusion rule

[ϕ]× [ϕ] ∼ 1 + [ϕ] + [d ,2] + [∆4,4] suffices in giving good results
in accordance with the best numerical evaluations:

d = 5

1.420 1.425 1.430 1.435 1.440 1.445 1.450
6.80

6.85

6.90

6.95

7.00
d = 4

0.76 0.78 0.80 0.82 0.84 0.86 0.88 0.90

5.60

5.65

5.70

5.75

5.80

D4

Dj
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k To obtain accurate results also for d < 4 it is convenient to enlarge
the fusion algebra to [ϕ]× [ϕ] ∼ 1 + [ϕ] + [d ,2] + [∆4,4] + [∆,0]
where [∆] can be associated with the scalar ϕ3

σ

d bootstrap Ising in H Fluids Animals ε−expansion
2 -0.1664(5) -0.1645(20) -0.161(8) -0.165(6) (exact -1/6)
3 0.085(1) 0.077(2) 0.0877(25) 0.080(7) 0.079-0.091
4 0.2685(1) 0.258(5) 0.2648(15) 0.261(12) 0.262-0.266
5 0.4105(5) 0.401(9) 0.402(5) 0.40(2) 0.399-0.400
6 1/2 0.460(50) 0.465(35) — 1/2
d λ2

ϕϕϕ ∆4 ∆φ3

3 -3.88(1) 4.75(1) 5.0(1)
4 -2.72(1) 5.848(1) 6.8(1)
5 -0.95(2) 6.961(1) 6.4(1)
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Unitary models
k Assuming unitarity (ë pk ≥ 0) allows to turn the bootstrap

equations into a minimization problem (known as Linear
Programming) which is much more powerful (but much more
computationally challenging) than the method of determinants

k Schematically, split the unknowns ∆k and pk into two sets
Ê FOCUS SET: ∆’s and/or p’s of few particularly interesting

operators, e.g.ϕ, ϕ2

Ë COMPLEMENT: the rest of unknowns. One is interested whether a
complement exists which makes the crossing equations satisfied for
a fixed focus set

'

&

$

%
' -

s linear programming
focus set

SCAN

�
�
�
�
�
��
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A
A
A
A
AU

&%
'$
No
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Boundary of the unitary solutions of crossing equations

S.El-Showk, M.F.Paulos,D.Poland,S.Rychkov,D.Simmons-Duffin and A.Vichi, (2012):

k Conjecture: the kink in the ∆σ ≡ ∆ϕ, ∆ε ≡ ∆ϕ2 plane is the CFT describing 3d critical
Ising model

k According to QFT, it is described by a bosonic Lagrangian perturbed by a φ4 potential at a
specific value of the coupling constant. However CFT’s have no much to do with
Lagrangians and coupling constants

ë How to define the critical Ising model using only CFT notions?
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k The 3d critical Ising model corresponds to a Z2-symmetric CFT having only one relevant
Z2-odd scalar (σ) and only one relevant Z2-even scalar (ε)

k Adding this info, choosing as focus set σ, ε & cσσε/cεεε and using also the mixed
correlators 〈σσεε〉 &〈εεεε〉 F.Kos, D.Poland, D.Simmons-Duffin and A.Vichi (2016)
obtained:
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k Similarly, the same authors obtained for the O(2) symmetric 3d critical system (XY model):
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Conclusions

Ê Conformal bootstrap equations seem to know everything about
critical phenomena

Ë In the case of Yang-Lee edge singularity and other non-unitary
CFTs the method of determinants gives accurate results in a wide
range of space dimensions

Ì The results are particularly impressive when the data are
constrained by unitarity, in particular in 3d Ising model:
∆σ = 0.5181489(10); ∆ε = 1.412625(10)
cσσε = 1.0518537(41); cεεε = 1.532435(19)
. . . . . .

Í How to get these results analytically?

F. Gliozzi (Physics Department, Torino University) Conformal Bootstrap 11-15 May 2018, GGI 22 / 22


