

Andreas Freise GWADW, Elba 2016 LIGO-G1601205

Which one is better?

Cheapest way to get to a given sensitivity

Near-optimal for one site

The question should be 'Which one is better for me?' when writing a specific detector proposal.

Motivations Leading to \triangle

- Facility for long-term future (50 years)
- Allow for iterative installation and upgrade of instruments
- Provide 24/7 coverage of the GW-sky for a wide range of known or possible sources
- Targeting an underground site
`Triple Michelson interferometer for a third-generation gravitational wave detector' CQG, 2009, 26, 085012 (14pp)

Example Triangle Layout

Detailed, interactive drawing: http://www.gwoptics.org/research/et/layout/

Other examples:

- LISA
- Original GEO

3 Detectors

Might be confusing: current ET design has two interferometers per detectors (xylophone). But those could be replaced by one Michelson/ speedmeter/... each. This is not relevant for the discussion of the triangle as a detector shape.

Simple Equations

$$
h(t)=F_{+}(t) h_{+}(t)+F_{\times}(t) h_{\times}(t)
$$

[P Jaranowski et al, Phys Rev D 58 1998]

Opening angle:
$h(t)=\sin (\zeta) \times(\ldots)$
$\sin \left(60^{\circ}\right)=\sqrt{3 / 4}=0.87$

Simple Equations

$$
\begin{aligned}
h(\gamma)= & \sin \zeta\left[\left(C_{1} \sin 2 \gamma+C_{2} \cos 2 \gamma\right) h_{+}\right. \\
& \left.+\left(C_{3} \sin 2 \gamma+C_{4} \cos 2 \gamma\right) h_{\times}\right]
\end{aligned}
$$

Oriented at different angles the instrument measure combinations of the different polarisations. Combine signals for reconstructing signals from other orientations:

$$
\begin{aligned}
-h_{0^{\circ}} & =h_{240^{\circ}}+h_{120^{\circ}} \\
h_{45^{\circ}} & =\frac{1}{\sqrt{3}}\left(h_{240^{\circ}}-h_{120^{\circ}}\right)
\end{aligned}
$$

Simple Equations

Sensitivity:

Simple Equations

Co-aligned, and both polarisation:
$\mathrm{SNR}_{2 L, 7.5 \mathrm{~km}}=\frac{2}{\sqrt{2}} \frac{7.5}{10} \mathrm{SNR}_{L, 10 \mathrm{~km}} \approx 1.06 \mathrm{SNR}_{L, 10 \mathrm{~km}}$

Simple Equations

- Same sensitivity, same features
- 30 km `tunnel’ length, 60 km beam tube length
- Triangle expected to be cheaper because of lower number of vertices

Co-located, Co-aligned

- Un-modelled incoherent signals (bursts, stochastic):
- null-stream, can check for coherence, separating between signal and noise
- high frequency (> ~30 Hz) require co-located detectors

Both Polarisations

- CBC: Break degeneracy between distance and inclination angle, better distance and sky location and any derived results (can be done by a distributed network)
- Burst: different information in h_{x} and h_{+} (at high frequency, local detectors have advantages)

Redundancy

- Build two interferometers instead of one
- Sequential installation of instruments
- Iterative upgrades of instruments while taking data
- Connecting commissioning and maintenance (maybe even $\mathrm{R}+\mathrm{D}$) at a center for gravitational wave research
- Retention and development of knowledge and experts on site long term

Detector Networks

- Network of three L-shaped detectors:
- locate them at large distances
- mis-align them for detection of both polarisations
- 3G detector in a heterogenous network:
- Longer L or shorter \triangle ?
- Science case still evolving

Lanky et al: `Detecting gravitational-wave memory with LIGO: implications of GW150914', https://arxiv.org/abs/1605.01415

Costs

- Cost will be the key factor for what type of network and what type of detector we build
- However early cost estimates have large error bars (steel prize, tunnel digging)
- More detailed design studies are needed to tradeoff detector concepts

Summary

- \triangle is a near-optimal single-site detector
- It includes co-aligned detectors for both polarisations
- It is one possible option for a 3G detector design in a future network
- Expect changing opinions with more details on science case and cost emerge soon

