Measurements of soft MPI

Stefano Camarda

NPQCD Cortona 20-22 April 2015

- Motivation
- Observables
- Recent measurements of underlying event in Drell-Yan, Jets, and tt production at the LHC
- MPI tuning and interplay with PDF
- Conclusions

Motivation

- Measurements at hadron colliders always require modelling of QCD effects
- Almost every observable is influenced by non perturbative QCD effects, including PDF, multi parton interactions, and hadronisation

Perturbative QCD

- A good non perturbative QCD modelling is a prerequisite for precision physics and searches
- Measurements of underlying event associated to QCD and EW signatures help to constrain the parameters of soft QCD models, and to understand the structure of the proton at low-x

Underlying event observables

- Underlying event refers to event activity in hadron collisions, not associated to the hard process
- Includes soft ISR and FSR, MPI, and color reconnection with beam remnants
- Observables are charged particles multiplicity N_{ch} and transverse energy or momentum flow Σp_{T} , ΣE_{T}
- Transverse, toward and away regions are defined with respect to the p_T-leading jet or Z boson
- Toward and transverse regions are sensitive to the UE, away region has larger contributions from high p_T recoil, which is modelled by perturbative QCD
- Transverse regions are further distinguished in trans-max and trans-min, depending on the amount of N_{ch}, Σp_τ, ΣE_τ

Underlying event observables

- Densities and averages
 - Charged particles average p_T
 - Charged particles density
 - Charged particles p_{τ} density
 - Particles E_{T} density
- Particles spectra
 - Charged particle p_{τ} spectrum
 - Charged particle multiplicity spectrum

 $< p_T > N_{\rm ch} / \delta \eta \delta \phi$ $\sum p_T / \delta \eta \delta \phi$ $\sum E_T / \delta \eta \delta \phi$

Event selection of UE measurements

- p_T-leading object
 - > Z boson: 66 < m_{||} < 116, $p_{_{T}}$ > 20, $|\eta^{|}|$ < 2.4
 - > Jet: anti-kt R=0.4, $p_{_{T}}$ > 20 GeV, $|\eta|$ < 2.8

Inclusive jet selection, and dijet exclusive selections in order to suppress QCD radiation

> tt
: dileptonic and semileptonic channels

- Charged particles are identified by tracks with
 - > p_⊤ > 0.5 GeV
 - ≻ |η| < 2.0 or 2.5
- Charged and neutral particles measured with calorimeter clusters (only in the jet measurement)
 - Charged particles p > 0.5 GeV
 - > Neutral particles p > 0.2 GeV
 - ≻ |η| < 4.8

 Measurements are unfolded to the particle level to allow comparison with MC predictions

Subtraction of pile-up of multiple pp interactions

- In the ATLAS Z-boson underlying event measurement with 4.6 fb⁻¹, Pile-up contribution to the underlying event observables needs to be accounted
- To reduce pile-up, tracks are required to be associated to the primary vertex (PV) in $|d_0| < 1.5$ mm and $|z_0| \sin \theta < 1.5$ mm
- Residual contribution is estimated and subtracted with a data driven technique
- Tracks associated to points at distance larger than 2 cm from the PV are selected, and used to estimate the pile-up contribution

 Pile-up correction is checked in subsamples with different average number of pile-up interactions

Underlying event in jets production – ATLAS

 Jets inclusive and dijet exclusive selections

- In the inclusive jet sample, Trans-max region shows increase as a function of jet p_T, trans-min region is flat
- Trans-max has a large contribution from pQCD

- In the exclusive dijet sample also the trans-max region is flat
 - \rightarrow Less sensitive to perturbative QCD effects

Stefano Camarda

Underlying event in jets production – ATLAS

 Jets inclusive and dijet exclusive selections

 Similar distributions also for ΣE_T measured with calorimeter clusters

Underlying event associated to Z boson – ATLAS

- In Z → II events, it is possible to measure the UE in the toward, transverse and away regions
- In the high p_⊤ region, the contribution from pQCD ME starts at different jets multiplicity for the away (Z+≥1jet), toward (Z+≥2jets), trans (Z+≥3 jets)
- Low p_T region is less sensitive to perturbative QCD, and can be used for tuning the non-pQCD parameters

Stefano Camarda

Underlying event associated to Z boson – CMS

- Measured the charged density and energy flow as a function of the dimuon invariant mass → uniform distributions
- Notice that the same Z2 tune with Powheg+Pythia6 is 10% lower than with Pythia6
- Known issue due to MPI interleaving: the first QCD radiation of Powheg is not interleaved → wrong MPI Sudakov
- Can be fixed by starting the PS at the kinematic limit and vetoing emissions above the Powheg emission

Underlying event associated to $t\bar{t} - CMS$

Allows to test models of colour reconnection

tt transverse momentum [GeV]

Comparison between UE and Minimum bias

arXiv:1409.3433

- Underlying event observables can be compared between jets and Z boson production, and also to minimum bias measurements
- Similar behaviour between jets and Z boson, especially in the trans-min region, which is most sensitive to the MPI
- Qualitative check of the universality of the MPI model in different hard processes

Charged particle p_{τ} and multiplicity spectra

- Differential and double differential particles multiplicity and Σp_{T} spectra provide further discrimination between MC models
- Very challenging for the soft QCD models implemented in the MC to describe these observables

Measurements of UE in minimum bias

- The MPI activity is expected to increase with the center-of-mass energy
- Measurements of charged particles density and energy flow at various collider energies provide a stringent test of the MPI models

MPI (and PS) Tunes

- The Underlying and Minimum bias measurements are used to constrain the parameters of the MPI models in the MC generators
- In the Pythia MC model, the MPI is simulated as additional $2 \rightarrow 2$ scattering
- The parameters of the MPI model tuned to the data are
 - MPI cut-off: Regulate the overall charged density and energy flow, behaves as a pedestal
 - Effective value of α_{s} for the MPI: Usually in the range 0.130-0.140
- Other parameters of the MC generators
 - Primordial kT: width of a gaussian smearing of the partons initiating the hard scattering
 - Parton shower ISR and FSR effective values of α_s , shower cut-offs
 - Range (strength) of colour reconnection

ATLAS A14 tune – a global tune of PS and MPI

- New set of tunes exploiting all the available 7 TeV ATLAS data
- The simultaneous Tune of MPI and shower parameters allows to account for correlation between the various parameters
- No need to iterate between shower and MPI tune, no risk of spoiling the shower performance with a MPI retuning
- Studied the dependence of the parameters with respect to the PDF (used only LO PDF, following authors' recommendation)

Param	CTEQ	MSTW	NNPDF	HERA
SigmaProcess:alphaSvalue	0.144	0.140	0.140	0.141
SpaceShower:pT0Ref	1.30	1.62	1.56	1.61
SpaceShower:pTmaxFudge	0.95	0.92	0.91	0.95
SpaceShower:pTdampFudge	1.21	1.14	1.05	1.10
SpaceShower:alphaSvalue	0.125	0.129	0.127	0.128
TimeShower:alphaSvalue	0.126	0.129	0.127	0.130
BeamRemnants:primordialKThard	1.72	1.82	1.88	1.83
MultipartonInteractions:pT0Ref	1.98	2.22	2.09	2.14
MultipartonInteractions:alphaSvalue	0.118	0.127	0.126	0.123
BeamRemnants:reconnectRange	2.08	1.87	1.71	1.78

ATL-PHYS-PUB-2014-021

A14 tune

Differential jet shape for light-jets with 30 GeV $< p_T < 40$ GeV

- Overall good performance on jets, W/Z, and tt processes, success of the global tune strategy
- However, small tensions between the various processes are observed and complementary work on specific tunes is needed to identify these tensions, possible model pitfalls, need for higher order corrections

MPI energy extrapolation – CMS CUET tunes

- The study of the UE as a function of the hard scale at several centre-ofmass energies provides an insight into the UE dynamics, its evolution with the collision energy, and further constrains of MPI parameters
- Tunes of Pythia6 and Pythia8
- The MPI cut-off is parametrised as a function of the center-of-mass energy E_{CM} :

$$p_{\mathrm{T}_{0}}(\mathrm{E}_{\mathrm{cm}}) = p_{\mathrm{T}_{0}^{\mathrm{REF}}} \times (\mathrm{E}_{\mathrm{cm}}/\mathrm{E}_{0})^{\epsilon}$$

- E₀ is an arbitrary reference energy (1.8 TeV)
 p_{T,0}^{REF} is the cut-off at E₀
 ε controls the energy dependence

tunable parameters

- Other colour reconnection and impact
- parameter profile model switches are tuned

MPI energy extrapolation – CMS CUET tunes

- Figures from R. Field
- Pythia8 tune fails to describe simultaneously 300 GeV and 7 TeV data, 300 GeV removed from the tune
- Pythia6 tune works better
- Effect under investigation, excluded the different matter profile between P6 and P8,

Central and forward charged particles density

- Combined measurement of charge particles density in the central and forward regions with CMS and TOTEM
- None of the models and tunes is able to describe both regions simultaneously
- A reasonable agreement can be achieved db adding a linear term at low-x to the gluon PDF, and retuning
- The procedure (slightly) violates momentum sum rule, is there a better way to account for the interplay of MPI and PDF?

Stefano Camarda

- Recent LHC measurements of underlying event observables in Jets, Z-boson, and tt production, and in minimum bias, provide stringent tests of the MPI model
- Measurements are sensitive to MPI models and to other nonperturbative QCD parameters, and can be used to tune the MC generators
- Started to study the interplay between MPI parameters and PDF, but still much work to do to develop frameworks for fitting together soft QCD parameters and PDF
- Underlying event measurements in Run 2 will provide further insight into the center-of-mass energy dependence of the MPI parameters

BACKUP

Systematic uncertainties

- Jet reconstruction / lepton identication and scale
- Track reconsttruction efficiency
- Calorimeter reconstruction
- Pile-up
- Background
- Unfolding

Quantity	Inclusive jets			Exclusive dijets			
All observables	Pile-up and merged vertices 1–3%			Pile-up and merged vertices 1–5%			
Charged tracks $\sum P_T$ N_{ch} mean p_T	Unfolding 3% 1–2% 1%	Efficiency 1–7% 3–4% 0–4%		Unfolding 3–13% 3–22% 1–9%	Efficiency 2–7% 3–7% 1%		
Calo clusters $\sum E_{\rm T}, \eta < 4.8$ $\sum E_{\rm T}, \eta < 2.5$	Unfolding 2–3% 3–5%	Efficiency 4–6% 4–6%		Unfolding 5–21% 1–21%	Efficiency 4–9% 4–7%		
Jets $p_{\rm T}^{\rm lead}$	Energy resolution 0.3–1%	JES 0.3–4%	Efficiency 0.1–2%	Energy resolution 0.4–3%	JES 1–3%	Efficiency 0.3–3%	

Observable	Correlation	$N_{ m ch} \ { m vs} \ p_{ m T}^{ m Z}$	$\sum p_{\mathrm{T}} \mathrm{vs} p_{\mathrm{T}}^{\mathrm{Z}}$	Mean $p_{\rm T}$ vs $p_{\rm T}^{\rm Z}$	Mean $p_{\rm T}$ vs $N_{\rm ch}$
Lepton selection	No	0.5 - 1.0	0.1 - 1.0	< 0.5	0.1 - 2.5
Track reconstruction	Yes	1.0 - 2.0	0.5 - 2.0	< 0.5	< 0.5
Impact parameter requirement	Yes	0.5 - 1.0	1.0 - 2.0	0.1 - 2.0	< 0.5
Pile-up removal	Yes	0.5 - 2.0	0.5 - 2.0	< 0.2	0.2 - 0.5
Background correction	No	0.5 - 2.0	0.5 - 2.0	< 0.5	< 0.5
Unfolding	No	0.5 - 3.0	0.5 - 3.0	< 0.5	0.2 - 2.0
Electron isolation	No	0.1 - 1.0	0.5 - 2.0	0.1 - 1.5	< 1.0
Combined systematic uncertainty		1.0 - 3.0	1.0 - 4.0	< 1.0	1.0 - 3.5

The Monte Carlo event generator model

ATTBAR tunes

- The modelling of ISR and FSR radiation in ttbar production is one of the dominant uncertainties for many top measurements
- Important to verify the universality of the ISR and FSR parton shower between Z and ttbar production, to benefit from global tunes for reducing PS uncertainties

• For the first time in parton shower MC tuning, the uncertainty correlations are accounted in the χ^2 definition

 \rightarrow Improved sensitivity to the PS parameters