

Recent measurements using monoenergetic and thermal neutrons at the National Physical Laboratory

Nigel Hawkes, Catalin Matei, Neil Roberts, Graeme Taylor, David Thomas

Bushy House

NPL was founded in 1900 in a former royal residence

New laboratories

Completed 2010

Neutron facility

Chadwick Building

3.5 MV Van de Graaff accelerator

Showing ion source, pulser and accelerator tube

Experimental area

Showing low scatter area for monoenergetic & radioisotope neutrons (left side) and thermal pile (right)

Low-scatter area

At least 6 m from the neutron source to the shield walls & real floor. Low-mass detector supports & walkways.

Neutron fluence

National Physical Laboratory

- Measured using a Long Counter (BF₃ counter inside a cylindrical moderator)
- The efficiency, about 11 counts per (neutron per cm²), varies relatively little with energy
- Efficiency established by (e.g.) using neutron sources with accurately known output (measured in NPL Mn bath)

Monoenergetic neutrons

Typically used for:

- Calibrating external neutron standards
- Testing and characterising novel detectors
- Nuclear data

Specific example:

- •Nuclear modelling relies on accurate and precise data.
- ■Calculations for Generation IV nuclear reactors require
 ²⁴²Pu fission cross section to 3 5 percent.
- ■But currently the uncertainty is 19 21 percent.
- •This is currently being addressed in an IRMM / NPL / PTB collaboration as part of the EMRP Metrofission project

²⁴²Pu target in ionization chamber NPL

Experimental setup

²⁴²Pu (n,f) cross section

Thermal Pile

Graphite block about 2.8 m long by 1.4 m wide by 1.6 m high

Thermal Pile

Central cavity:

- Isotropic field
- Up to 2×10⁷ cm⁻² s⁻¹
- Diameter ~12 cm
- Cd ratio ~33

Thermal column:

Beam geometry

Up to 4×10⁴ cm⁻² s⁻¹

Diameter ~30 cm Boronated

Cd ratio ~6.5

Central cavity – fluence rate (at max setting) & Cd ratio

MCNP simulation

- Behaviour of Thermal Pile modelled using MCNP
- Neutrons that enter the central cavity commonly do so multiple times (2.3 on average)

Measuring the fluence delivered

Gold foil activation followed by off-line β –counting in a 4π low background β –counter (or β – γ counter).

Conclusions

- The NPL Neutron Metrology Group has a 3.5 MV Van de Graaff accelerator and a range of experimental facilities.
- Well-characterised neutron fields can be produced in the fast and thermal energy regions.
- These can be used for calibrations, activations, reactor instrument testing, and cross section measurements.