The resonant behaviour of the 12C+12C fusion cross section at astrophysical energies A. Tumino^{1,2,*}, C. Spitaleri^{2,3}, M. La Cognata², S. Cherubini^{2,3}, G.L. Guardo², M. Gulino^{1,2}, S. Hayakawa^{2,4}, I. Indelicato², L. Lamia^{2,3}, H. Petrascu⁵, R.G. Pizzone², S.M.R. Puglia², G.G. Rapisarda², S. Romano^{2,3}, M.L. Sergi², R. Spartá², L. Trache⁵ The ¹²C+¹²C fusion channel at low energy plays a critical role in astrophysics to understand stellar burning scenarios in carbon-rich environments [?, ?, ?]. The temperature for carbon burning to occur ranges from 0.8 to 1.2 GK, corresponding to center-of-mass energies from 1 to 2 MeV. The dominant evaporation channels below 2 MeV are alpha and proton, leading respectively to ²⁰Ne, ²³Na. In spite of the considerable efforts devoted to measure the $^{12}\text{C}(^{12}\text{C},\alpha)^{20}\text{Ne}$ and $^{12}\text{C}(^{12}\text{C},p)^{23}\text{Na}$ cross sections at astrophysical energies, they have been measured only down to 2.14 MeV, still at the beginning of the astrophysical region [?]. As known, direct measurements at lower energies are extremely difficult. Moreover, in the present case the extrapolation procedure from current data to the ultra-low energies is complicated by the presence of possible resonant structures even in the low-energy part of the excitation function. For these reasons the Trojan Horse Method [?, ?] can represent a unique way for an accurate investigation at the relevant energies. This has been done recently by measuring the 12 C(14 N, α^{20} Ne) 2 H and 12 C(14 N, p^{23} Na) 2 H three-body processes at 30 MeV of beam energy in the quasi-free (QF) kinematics regime, where ²H from the ¹⁴N Trojan Horse nucleus is spectator to the ¹²C+¹²C two-body processes. The cross section experiences a strong resonant behaviour with resonances associated to ²⁴Mg levels. As a consequence, the reaction rate is strongly enhanced at the relevant temperatures. Results, which have been recently accepted for publication in Nature, will be presented and discussed. ## References - [1] E. Garcia-Berro et al., Astrophys. J. 286 (1997) 765. - [2] L. Piersanti *et al.*, Astrophys. J. **598** (2003)1229. - [3] A. Cumming et al., Astrophys. J. **646** (2006)429. - [4] T. Spillane et al., Phys. Rev. Lett. **98** (2007)122501 and references therein. - [5] C. Spitaleri et al., Phys. At. Nucl., **74** (2011)1763. - [6] R.E. Tribble et al., Rep. Prog. Phys., **76** (2014)106901. ¹Facoltá di Ingegneria e Architettura, Universitá degli Studi di Enna "Kore", Enna, Italy ²INFN, Laboratori Nazionali del Sud, Catania, Italy ³Dipartimento di Fisica e Astronomia, Università degli Studi di Catania, Catania, Italy ⁴Center for Nuclear Studies, The University of Tokyo, Tokyo, Japan ⁵Horia Hulubei National Institute for R&D in Physics and Nuclear Engineering, Bucharest-Maguerele, Romania