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What is the “prehistory” of the
material that makes up the Solar
System?
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‘.‘ How can we use radioactive nuclei ;
- understand this prehistory?
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Abundance ratio of a radioactive to a stable nucleus
(produced by the same process) in a parcel of galactic matter
just after the last contributing nucleosynthetic event
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Abundance ratio of a radioactive to a stable nucleus
(produced by the same process) in a parcel of galactic matter
just after the last contributing nucleosynthetic event




Abundance ratio of a radioactive to a stable nucleus
(produced by the same process) in a parcel of galactic matter
just after the last contributing nucleosynthetic event
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Abundance ratio of a radioactive to a stable nucleus
(produced by the same process) in a parcel of galactic matter
just after the last contributing nucleosynthetic event
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Abundance ratio of a radioactive to a stable nucleus
(produced by the same process) in a parcel of galactic matter
just after the last contributing nucleosynthetic event
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Radioactive isotopes with 3 Myr < T,,, < 100 Myr
present in the early solar system (i.e., N, is available)

Radio half life  Stable
isotope (Myr) isotope
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247Cm  15.6 235
244py  80.0 238
107pd 6.5 108p
182Hf  8.90 180Hf
(205Pb  17.3 204ppy)
92Nb 34.7 92Mo

1466m 68 or 103? 144Sm
>3Mn 3.74 >>Mn




Radioactive isotopes with 3 Myr < T,,, < 100 Myr
present in the early solar system (i.e., N, is available)

Radio half life  Stable Nucleosyth.
isotope (Myr) isotope process

129) 15.7 127) r
24’Cm  15.6 235\ r
244py 80.0 2381 r
197pd 6.5 108pd S+r
182Hf 8.90 180H§ S+r
(205Pb  17.3 204ph) s
92N 34.7 2Mo 0

146Sm 68 or 103? 144Sm p(y)
53Mn 3.74 55Mn NSE(SNIa)




Radioactive isotopes with 3 Myr < T,,, < 100 Myr
present in the early solar system (i.e., N, is available)
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The times of last events

Ranges obtained by varying the parameters K and 9, we are
working on them (Cété et al. in prep, Wehmeyer et al. in prep)
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The times of last events

Ranges obtained by varying the parameters K and 9, we are
working on them (Cété et al. in prep, Wehmeyer et al. in prep)
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the stellar production Dstable

ratios!




The times of last events

Ranges obtained by varying the parameters K and 9, we are
working on them (Cété et al. in prep, Wehmeyer et al. in prep)
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Uncertainties on the stellar production ratios
hampering the results:
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hampering the results:
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Times before Sun formation from the last s and r
process events that contributed to the galactic

parcel of gas from which the Sun formec
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