Short-lived radionuclei as clocks for the prehistory of the Solar System

Maria Lugaro

Konkoly Observatory, Budapest, Hungarian Academy of Sciences Monash Centre for Astrophysics, Australia

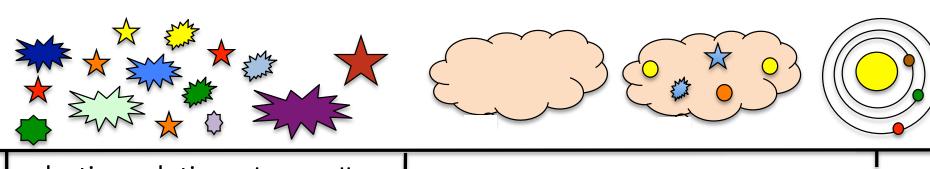
Ulrich Ott

Atomki, Debrecen, Hungarian Academy of Sciences Max-Planck Institute for Chemistry, Germany

Kai Zuber

Institut für Kern- und Teilchenphysik, Technische Universitat Dresden, Germany

Benoit Côté


Konkoly Observatory, Budapest, Hungarian Academy of Sciences Michigan State University USA; JINA; NuGRID

Benjamin Wehmeyer

Department of Physics, North Carolina State University, Raleigh, North Carolina

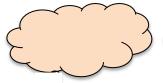
What is the "prehistory" of the material that makes up the Solar System?

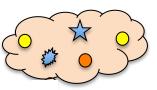
galactic evolution last stellar enrichment by stellar additions winds, supernovae, compact binary mergers, ...

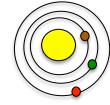
Galaxy age ~ 10 Gyr

star-forming cloud

star birth
self-pollution by
stars with short
lifetimes


Solar System formation


Isolation time: 1 - 50 Myr?



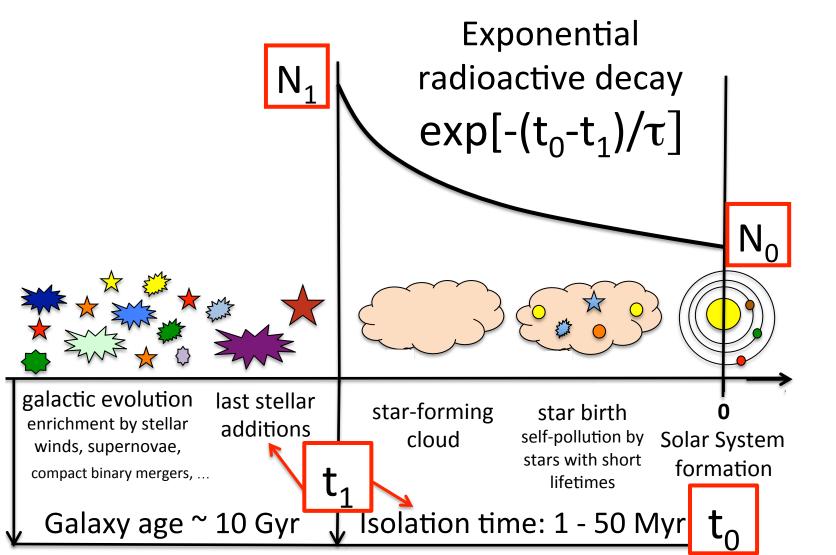
galactic evolution enrichment by stellar winds, supernovae, compact binary mergers, ...

last stellar additions

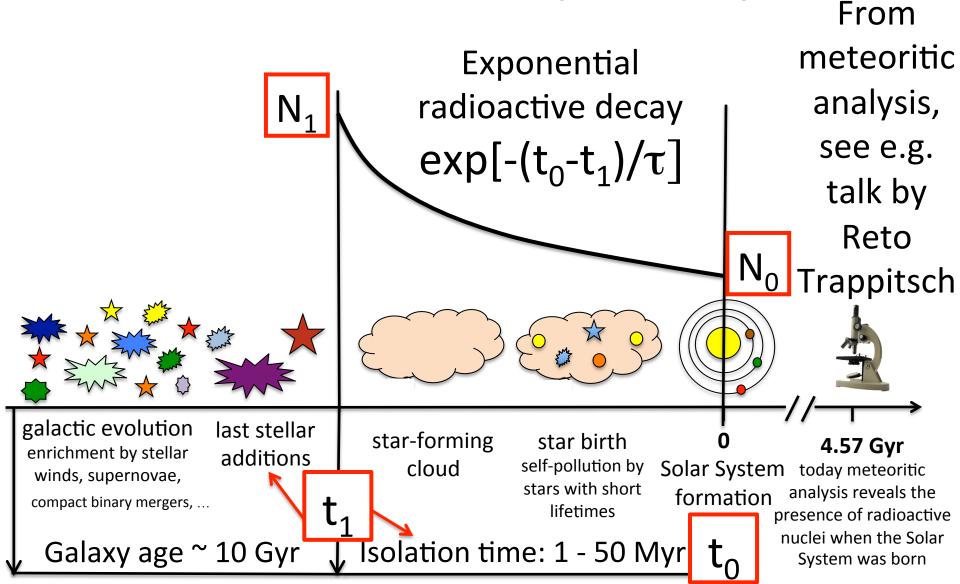
compact binary mergers, .

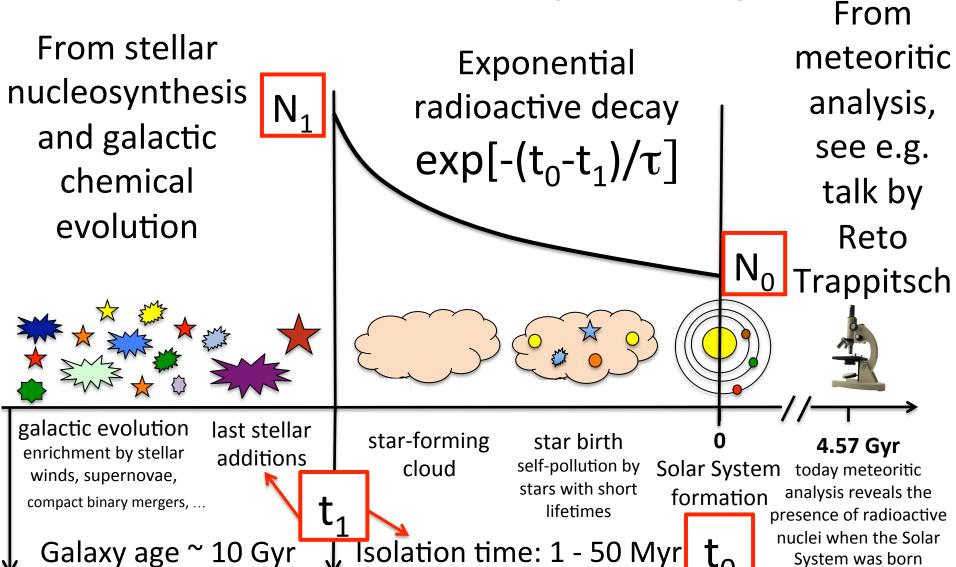
Galaxy age ~ 10 Gyr

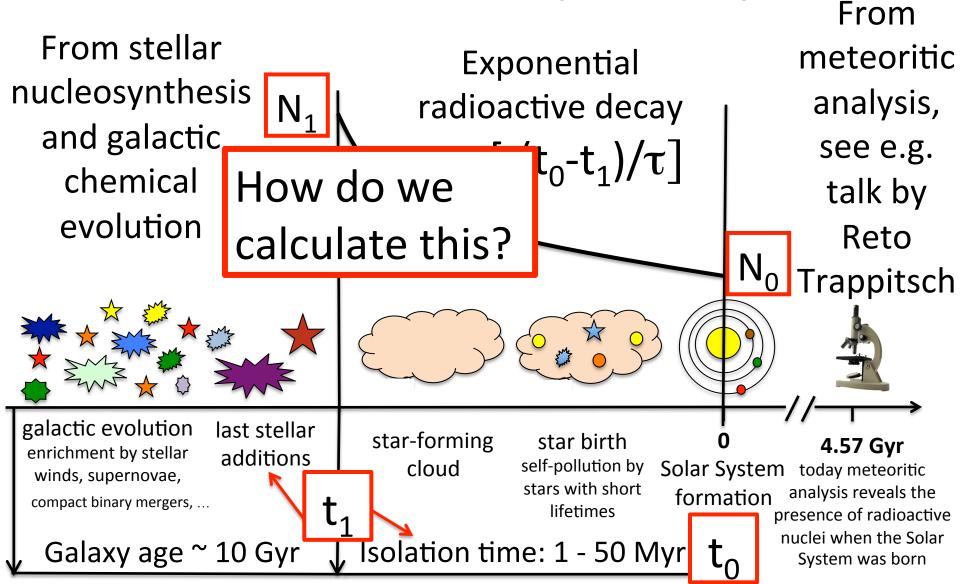
star-forming cloud

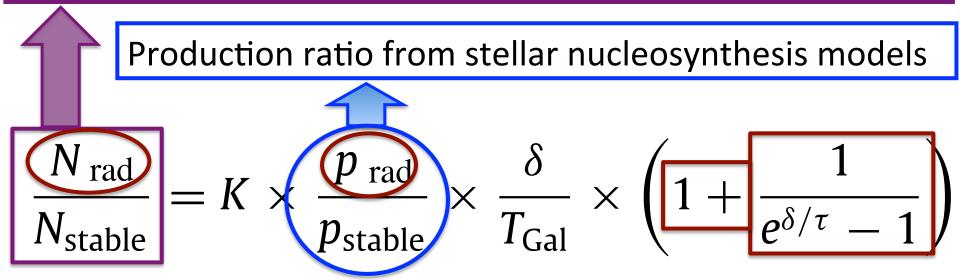

star birth self-pollution by stars with short lifetimes

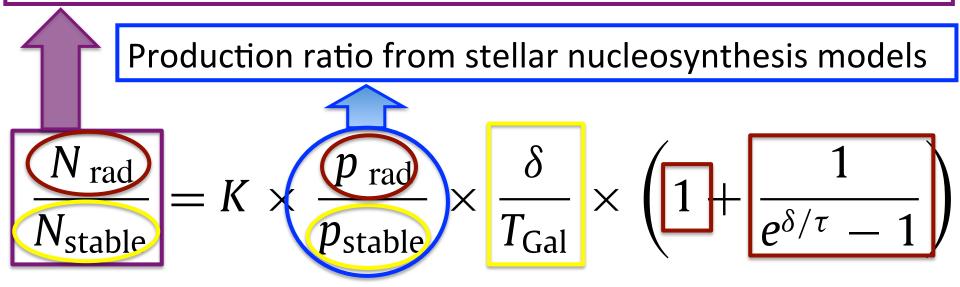
Solar System formation


Isolation time: 1 - 50 Myr?



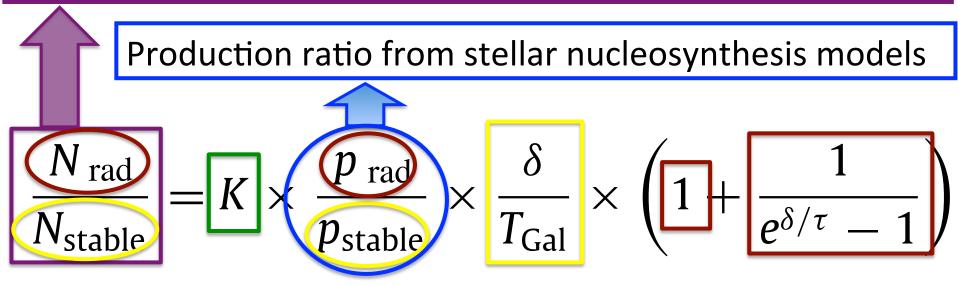





$$\frac{N_{\text{rad}}}{N_{\text{stable}}} = K \times \frac{p_{\text{rad}}}{p_{\text{stable}}} \times \frac{\delta}{T_{\text{Gal}}} \times \left(1 + \frac{1}{e^{\delta/\tau} - 1}\right)$$

Production ratio from stellar nucleosynthesis models $\frac{N_{\text{rad}}}{N_{\text{stable}}} = K \times \frac{p_{\text{rad}}}{p_{\text{stable}}} \times \frac{\delta}{T_{\text{Gal}}} \times \left(1 + \frac{1}{e^{\delta/\tau} - 1}\right)$

Last event +


the "memory" term $\delta = \text{time interval}$ between the production events

 T_{Gal}/δ = number of events T_{Gal} = lifetime of the Galaxy before the Sun's birth

Last event +

the "memory" term $\delta = \text{time interval} \\ \text{between the} \\ \text{production events}$

K > 1: effect of galactic infall on the star formation rate

 T_{Gal}/δ = number of events T_{Gal} = lifetime of the Galaxy before the Sun's birth

Last event +

the "memory" term $\delta = \text{time interval}$ between the production events

Radioactive isotopes with 3 Myr $< T_{1/2} < 100$ Myr present in the early solar system (i.e., N_0 is available)

Radio	half life	Stable
isotope	e (Myr)	isotope

127_|

235

238

¹⁰⁸Pd

¹⁸⁰Hf

⁹²Mo

¹⁴⁴Sm

⁵⁵Mn

²⁰⁴Pb)

129_|

²⁴⁷Cm

²⁴⁴Pu

¹⁰⁷Pd

¹⁸²Hf

(²⁰⁵Pb

⁹²Nb

¹⁴⁶Sm

⁵³Mn

15.7

15.6

80.0

6.5

8.90

17.3

34.7

68 or 103?

3.74

Radioactive isotopes with 3 Myr $< T_{1/2} < 100$ Myr present in the early solar system (i.e., N_0 is available) Radio half life Stable Nucleosyth.

process

s+r

s+r

S

p

 $p(\gamma)$

NSE(SNIa)

isotope

127_|

235

238

¹⁰⁸Pd

¹⁸⁰Hf

²⁰⁴Pb)

⁹²Mo

¹⁴⁴Sm

⁵⁵Mn

(Myr)

15.7

15.6

80.0

6.5

8.90

17.3

34.7

68 or 103?

3.74

isotope

129

²⁴⁷Cm

²⁴⁴Pu

¹⁰⁷Pd

¹⁸²Hf

(²⁰⁵Pb

⁹²Nb

¹⁴⁶Sm

⁵³Mn

Radioactive isotopes with 3 Myr < T_{1/2} < 100 Myr present in the early solar system (i.e., N₀ is available) Radio half life Stable Nucleosyth.

isotope (Myr) isotope process 129_| 127_| 15.7 ²⁴⁷Cm 235[] 15.6 ²⁴⁴Pu 238[] 80.0 ¹⁰⁷Pd ¹⁰⁸Pd 6.5 s+r ¹⁸²Hf ¹⁸⁰Hf 8.90 s+r

S

p

 $p(\gamma)$

NSE(Snla)

²⁰⁴Pb)

⁹²Mo

¹⁴⁴Sm

⁵⁵Mn

(²⁰⁵Pb

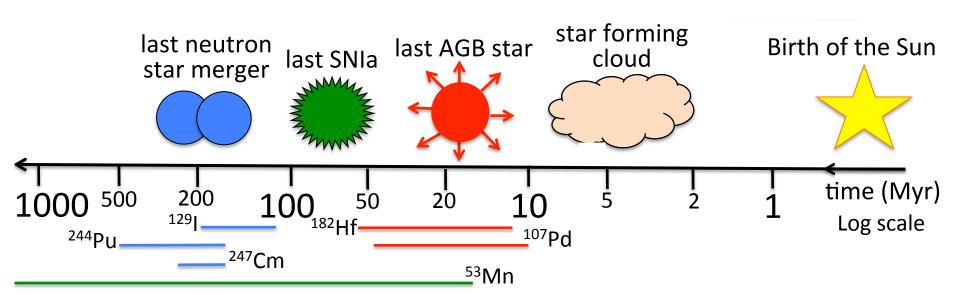
⁹²Nb

¹⁴⁶Sm

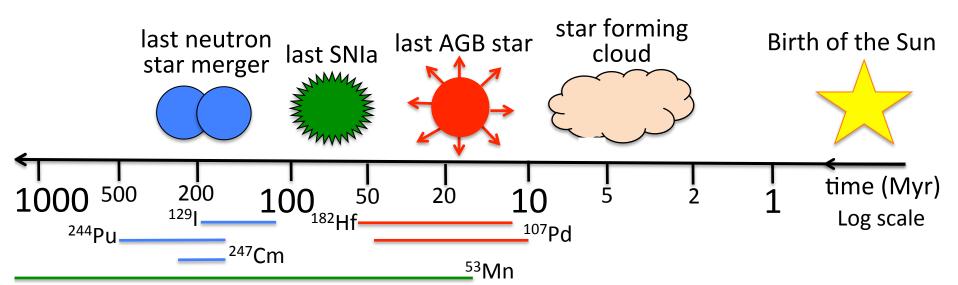
⁵³Mn

17.3

34.7


68 or 103?

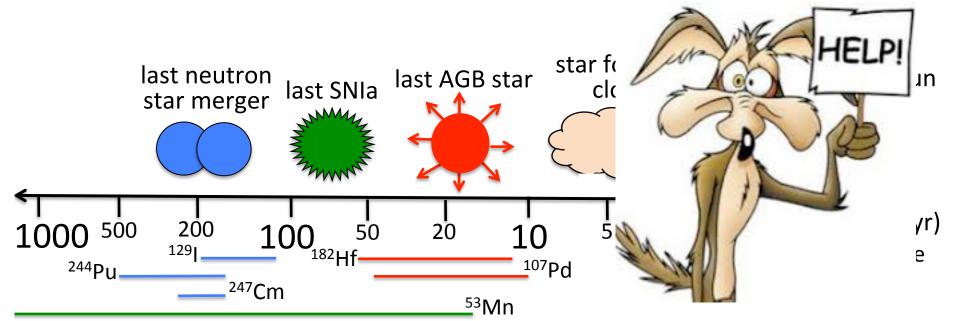
3.74


The times of last events

Ranges obtained by varying the parameters K and δ , we are working on them (*Côté et al.* in prep, *Wehmeyer et al.* in prep)

The times of last events

Ranges obtained by varying the parameters K and δ , we are working on them (*Côté et al.* in prep, *Wehmeyer et al.* in prep)


But we are still using one given choice of the stellar production ratios!

 $p_{
m rad} \over p_{
m stable}$

We need to also start analysing these ratios and their uncertainties

The times of last events

Ranges obtained by varying the parameters K and δ , we are working on them (*Côté et al.* in prep, *Wehmeyer et al.* in prep)

But we are still using one given choice of the stellar production ratios!

 $p_{
m rad}$ $p_{
m stable}$

We need to also start analysing these ratios and their uncertainties

Radio	half life	Stable
isotope	(Myr)	isotope
129	15.7	127
²⁴⁷ Cm	15.6	²³⁵ U
²⁴⁴ Pu	80.0	²³⁸ U
¹⁰⁷ Pd	6.5	¹⁰⁸ Pd
¹⁸² Hf	8.90	¹⁸⁰ Hf
(²⁰⁵ Pb	17.3	²⁰⁴ Pb)
⁹² Nb	34.7	⁹² Mo
¹⁴⁶ Sm	68 or 103	? ¹⁴⁴ Sm

3.74

Radio	half life	Stable
isotope	(Myr)	isotope
129	(15.7)	ا ¹²⁷ ا
²⁴⁷ Cm	15.6	²³⁵ U
²⁴⁴ Pu	80.0	²³⁸ U
¹⁰⁷ Pd	6.5	¹⁰⁸ Pd

Actinides *r*-process production ratios, site dependency? "actinide boost" site?

¹⁸⁰Hf ¹⁸²Hf 8.90 (²⁰⁵Pb ²⁰⁴Pb) 17.3

¹⁴⁶Sm ¹⁴⁴Sm 68 or 103?

3.74

34.7

⁹²Nb

⁵³Mn

⁵⁵Mn

⁹²Mo

Radio	half life	Stable
isotope	(Myr)	isotope
¹²⁹	15.7	¹²⁷
²⁴⁷ Cm	15.6	²³⁵ U
²⁴⁴ Pu	80.0	²³⁸ U
¹⁰⁷ Pd	6.5	¹⁰⁸ Pd
¹⁸² Hf	8.90	¹⁸⁰ Hf
(²⁰⁵ Pb	17.3	²⁰⁴ Pb)
⁹² Nb	34.7	⁹² Mo
¹⁴⁶ Sm	68 or 103?	¹⁴⁴ Sm
⁵³ Mn	3.74	⁵⁵ Mn

Actinides *r*-process production ratios, site dependency? "actinide boost" site?

- 1. (n,γ) incl. excited states:

 107,108Pd, 180,181,182Hf,
 204,205Pb
- 2. Decay rate incl. T/ρ dependence: ¹⁸¹Hf, ²⁰⁵Pb
- 3. Neutron source reactions: $^{13}\text{C}(\alpha,\text{n}),\,^{22}\text{Ne}(\alpha,\text{n})$

Radio	half life	Stable
isotope	(Myr)	isotope
¹²⁹	15.7	¹²⁷
²⁴⁷ Cm	15.6	²³⁵ U
²⁴⁴ Pu	80.0	²³⁸ U
¹⁰⁷ Pd	6.5	¹⁰⁸ Pd
¹⁸² Hf	8.90	¹⁸⁰ Hf
(²⁰⁵ Pb	17.3	²⁰⁴ Pb)
⁹² Nb	34.7	⁹² Mo
¹⁴⁶ Sm(68 or 103	?) ¹⁴⁴ Sm
⁵³ Mn	3.74	⁵⁵ Mn

Actinides *r*-process production ratios, site dependency?

- "actinide boost" site?
- 1. (n,γ) incl. excited states:

 107,108Pd, 180,181,182Hf,
 204,205Pb
- 2. Decay rate incl. T/ρ dependence: ¹⁸¹Hf, ²⁰⁵Pb
 - 3. Neutron source reactions: 13 C(α ,n), 22 Ne(α ,n)

p process site???

Radio	half life	Stable
isotope	(Myr)	isotope
¹²⁹	(15.7)	¹²⁷
²⁴⁷ Cm	15.6	²³⁵ U
²⁴⁴ Pu	80.0	²³⁸ U
¹⁰⁷ Pd	6.5	¹⁰⁸ Pd
¹⁸² Hf	8.90	¹⁸⁰ Hf
(²⁰⁵ Pb	17.3	²⁰⁴ Pb)
⁹² Nb	34.7	⁹² Mo
¹⁴⁶ Sm(68 or 103	?) ¹⁴⁴ Sm
⁵³ Mn	(3.74)	⁵⁵ Mn

Actinides *r*-process production ratios, site dependency? "actinide boost" site?

- 1. (n,γ) incl. excited states:

 107,108Pd, 180,181,182Hf,
 204,205Pb
- 2. Decay rate incl. T/ρ dependence: ¹⁸¹Hf, ²⁰⁵Pb
 - 3. Neutron source reactions: $^{13}\text{C}(\alpha,\text{n}),\,^{22}\text{Ne}(\alpha,\text{n})$

p process site???

⁵³Mn/⁵⁵Mn production ratios in different types of SNIa

ARTICLE IN PRESS

Progress in Particle and Nuclear Physics ■ (■■■) ■■■-■■■

Contents lists available at ScienceDirect

Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review

Radioactive nuclei from cosmochronology to habitability

M. Lugaro a,b,*, U. Ott c,d, Á. Kereszturi a

- ^a Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Budapest, Hungary
- ^b Monash Centre for Astrophysics, Monash University, VIC3800, Australia
- ^c Atomki Institute for Nuclear Research, Hungarian Academy of Sciences, H-4026, Debrecen, Hungary
- ^d Max-Planck Institute for Chemistry, D-55128 Mainz, Germany

ARTICLE INFO

Article history:
Available online xxxx

This paper is dedicated to the memory of Gerald J. Wasserburg, who pioneered, built up, and inspired the science presented here.

ABSTRACT

In addition to long-lived radioactive nuclei like U and Th isotopes, which have been used to measure the age of the Galaxy, also radioactive nuclei with half-lives between 0.1 and 100 million years (short-lived radionuclides, SLRs) were present in the early Solar System (ESS), as indicated by high-precision meteoritic analysis. We review the most recent meteoritic data and describe the nuclear interaction processes responsible for the creation of SLRs in different types of stars and supernovae. We show how the evolution of radionuclide

ARTICLE IN PRESS

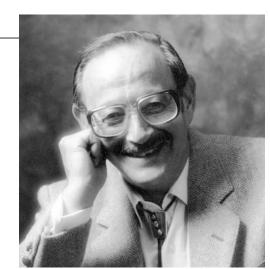
Progress in Particle and Nuclear Physics ■ (■■■) ■■■-■■■

Contents lists available at ScienceDirect

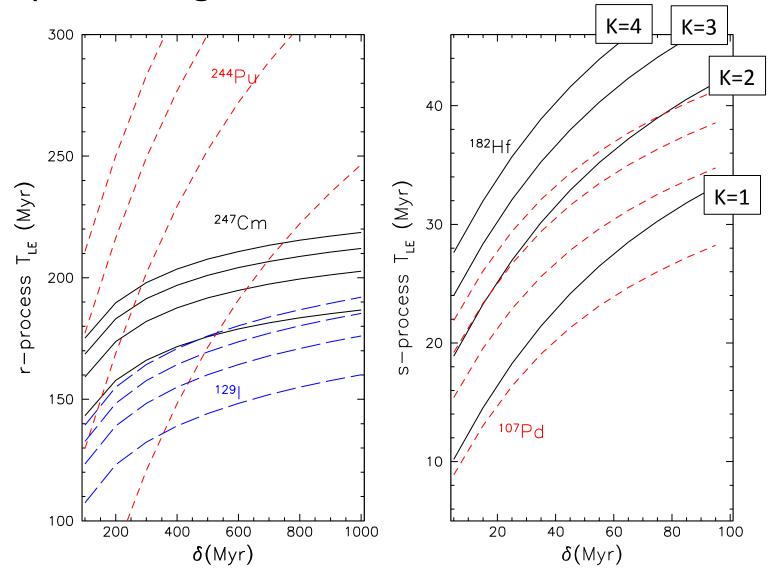
Progress in Particle and Nuclear Physics

journal homepage: www.elsevier.com/locate/ppnp

Review


Radioactive nuclei from cosmochronology to habitability

M. Lugaro a,b,*, U. Ott c,d, Á. Kereszturi a


- ^a Konkoly Observatory, Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences, H-1121 Budapest, Hungary
- ^b Monash Centre for Astrophysics, Monash University, VIC3800, Australia
- ^c Atomki Institute for Nuclear Research, Hungarian Academy of Sciences, H-4026, Debrecen, Hungary
- ^d Max-Planck Institute for Chemistry, D-55128 Mainz, Germany

This paper is dedicated to the memory of Gerald J. Wasserburg (1927-2016), who pioneered, built up, and inspired the science presented here.

Spare slides

Times before Sun formation from the last s and r process events that contributed to the galactic parcel of gas from which the Sun formed

