
Maria	Lugaro		
Konkoly	Observatory,		Budapest,	Hungarian	Academy	of	Sciences		

Monash	Centre	for	Astrophysics,	Australia	

Ulrich	O/	
Atomki,	Debrecen,	Hungarian	Academy	of	Sciences		

Max-Planck	InsEtute	for	Chemistry,	Germany		

Kai	Zuber	
InsEtut	für	Kern-	und	Teilchenphysik,	Technische	Universitat	Dresden,	Germany		

Benoit	Côté	
Konkoly	Observatory,		Budapest,	Hungarian	Academy	of	Sciences	

	Michigan	State	University	USA;	JINA;	NuGRID	

Benjamin	Wehmeyer	
Department	of	Physics,	North	Carolina	State	University,	Raleigh,	North	Carolina	

	

	

	

Short-lived	radionuclei	as	clocks	for	
the	prehistory	of	the	Solar	System		



0"
Solar&System&
forma-on&

star/forming&
cloud&

star&birth&
self/pollu-on&by&
stars&with&short&

life-mes&

4.57"Gyr""
today&meteori-c&

analysis&reveals&the&
presence&of&radioac-ve&
nuclei&when&the&Solar&
System&was&born&&&

a& a&

Isola-on&-me:&1&/&50&Myr?&Galaxy&age&~&10&Gyr&

last&stellar&
addi-ons&

galac-c&evolu-on&
enrichment&by&stellar&
winds,&supernovae,&
stellar&mergers,&…&

What	is	the	“prehistory”	of	the	
material	that	makes	up	the	Solar	

System?	

a	compact	binary	mergers,	…	



0"
Solar&System&
forma-on&

star/forming&
cloud&

star&birth&
self/pollu-on&by&
stars&with&short&

life-mes&

4.57"Gyr""
today&meteori-c&

analysis&reveals&the&
presence&of&radioac-ve&
nuclei&when&the&Solar&
System&was&born&&&

a& a&

Isola-on&-me:&1&/&50&Myr?&Galaxy&age&~&10&Gyr&

last&stellar&
addi-ons&

galac-c&evolu-on&
enrichment&by&stellar&
winds,&supernovae,&
stellar&mergers,&…&

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

How	can	we	use	radioac=ve	nuclei	
understand	this	prehistory?	

compact	binary	mergers,	…	



0"
Solar&System&
forma-on&

star/forming&
cloud&

star&birth&
self/pollu-on&by&
stars&with&short&

life-mes&

4.57"Gyr""
today&meteori-c&

analysis&reveals&the&
presence&of&radioac-ve&
nuclei&when&the&Solar&
System&was&born&&&

a& a&

Isola-on&-me:&1&/&50&Myr?&Galaxy&age&~&10&Gyr&

last&stellar&
addi-ons&

galac-c&evolu-on&
enrichment&by&stellar&
winds,&supernovae,&
stellar&mergers,&…&

N1	

Exponen5al	
radioac5ve	decay	
exp[-(t0-t1)/τ]

t1	
t0	

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

N0	

How	can	we	use	radioac=ve	nuclei	
understand	this	prehistory?	

compact	binary	mergers,	…	



0"
Solar&System&
forma-on&

star/forming&
cloud&

star&birth&
self/pollu-on&by&
stars&with&short&

life-mes&

4.57"Gyr""
today&meteori-c&

analysis&reveals&the&
presence&of&radioac-ve&
nuclei&when&the&Solar&
System&was&born&&&

a& a&

Isola-on&-me:&1&/&50&Myr?&Galaxy&age&~&10&Gyr&

last&stellar&
addi-ons&

galac-c&evolu-on&
enrichment&by&stellar&
winds,&supernovae,&
stellar&mergers,&…&

N1	

Exponen5al	
radioac5ve	decay	
exp[-(t0-t1)/τ]

t1	
t0	

N0	

From	
meteori5c	
analysis,		
see	e.g.	
talk	by	
Reto	

Trappitsch	

How	can	we	use	radioac=ve	nuclei	
understand	this	prehistory?	

compact	binary	mergers,	…	



0"
Solar&System&
forma-on&

star/forming&
cloud&

star&birth&
self/pollu-on&by&
stars&with&short&

life-mes&

4.57"Gyr""
today&meteori-c&

analysis&reveals&the&
presence&of&radioac-ve&
nuclei&when&the&Solar&
System&was&born&&&

a& a&

Isola-on&-me:&1&/&50&Myr?&Galaxy&age&~&10&Gyr&

last&stellar&
addi-ons&

galac-c&evolu-on&
enrichment&by&stellar&
winds,&supernovae,&
stellar&mergers,&…&

N1	

Exponen5al	
radioac5ve	decay	
exp[-(t0-t1)/τ]

From	stellar	
nucleosynthesis	
and	galac5c	
chemical	
evolu5on	

t1	
t0	

N0	

From	
meteori5c	
analysis,		
see	e.g.	
talk	by	
Reto	

Trappitsch	

How	can	we	use	radioac=ve	nuclei	
understand	this	prehistory?	

compact	binary	mergers,	…	



0"
Solar&System&
forma-on&

star/forming&
cloud&

star&birth&
self/pollu-on&by&
stars&with&short&

life-mes&

4.57"Gyr""
today&meteori-c&

analysis&reveals&the&
presence&of&radioac-ve&
nuclei&when&the&Solar&
System&was&born&&&

a& a&

Isola-on&-me:&1&/&50&Myr?&Galaxy&age&~&10&Gyr&

last&stellar&
addi-ons&

galac-c&evolu-on&
enrichment&by&stellar&
winds,&supernovae,&
stellar&mergers,&…&

N1	

Exponen5al	
radioac5ve	decay	
exp[-(t0-t1)/τ]

From	stellar	
nucleosynthesis	
and	galac5c	
chemical	
evolu5on	

t1	
t0	

N0	

From	
meteori5c	
analysis,		
see	e.g.	
talk	by	
Reto	

Trappitsch	

How	can	we	use	radioac=ve	nuclei	
understand	this	prehistory?	

compact	binary	mergers,	…	

How	do	we	
calculate	this?	



Please cite this article in press as: M. Lugaro, et al., Radioactive nuclei from cosmochronology to habitability, Progress in Particle and Nuclear Physics
(2018), https://doi.org/10.1016/j.ppnp.2018.05.002.

26 M. Lugaro et al. / Progress in Particle and Nuclear Physics ( ) –

where the term e�(t�N�)/⌧ describes the decay of the abundance from the last event (the first term in the sum equal to
unity).

The behaviour of Eq. (12) as function of time for different ⌧/� values is illustrated in Fig. 9. When ⌧/� is less than 0.1 the
evolution is dominated by peaks representing the discrete stellar additions and the exponential decay in between the peaks.
The memory of all the previous events in this case counts for less than 10% of the total abundance at the peak points. For
⌧/� = 0.5 the memory adds 40% to the peak abundance. Increasing ⌧/� the memory becomes more andmore predominant,
and the granularity effect can be accounted for as an uncertainty around the steady-state value. The higher the steady-state
factor (⌧/�), the smaller (relatively) becomes the fluctuation around it due to granularity. E.g., for ⌧/� = 5 the steady-state
factor is 5 ± 1, i.e., the relative error bar due to granularity is 20%, for ⌧/� = 10, the value is 10 ± 1 and the relative error is
only 10%. In other words, when ⌧/� is greater than 10, the abundance can be approximated by the steady-state value within
10%.

While the values of ⌧ are relatively well known, with the exceptions discussed in Section 3, the values of � corresponding
to each type of nucleosynthetic event that produced the SLRs are poorly known. They can be estimated based on first
principle, for example considering how much galactic mass, or volume, is swept by each event, relative to the active star
formation area of the galactic disk, and considering the rate in time of the given event in the whole Galaxy. Using this
‘‘snowplow’’ approach, Meyer & Clayton [102] (see their Section 7) estimated, for example the value of � for CCSNe to be
5–10 Myr. Following the same reasoning as Meyer & Clayton, for the typical s-process events contributing to the cosmic
abundances of the s-process elements, i.e., from AGB stars of initial mass between roughly 2 and 4 M�, one can derive
� ⇡ 50 Myr. The rate of these AGB events in the Galaxy is higher than that of CCSNe, due to the initial stellar mass function,
which favours lower over higher masses, however, � is higher for AGB stars than for CCSNe because the slower AGB wind
and smaller ejected mass result in the sweeping of a smaller volume of the galactic disk. For NSMs, the potential r-process
nucleosynthetic events, the velocity is higher but the total mass of the ejecta is lower compared to CCSNe. These effects may
balance each other resulting in the same kinetic energy. The event rate is very uncertain, 100–10,000 times lower than the
1 � 2 ⇥ 104 Myr�1 rate for CCSNe, i.e., approximately 1 to 200 Myr�1 for NSMs (see discussion in [210]), which covers the
rate derived from observation of pulsars in the Milky Way of ⇠20 Myr�1 with large uncertainties [211], Consequently, the
value of � is also very uncertain, likely > 500 Myr.

Hotokezaka et al. [62] used an approach based on diffusion instead of snowplowing (see their Eq. (2)) and derived average
� values of roughly 100 Myr for hypothetical r-process events with a galactic rate of 300 Myr�1, and of roughly 500 Myr for
r-process events with a galactic rate of 5 Myr�1. From analysis of 244Pu in the ESS and in terrestrial samples they concluded
that events with the lower rate are favoured. In this framework, a galactic rate for CCSNe of 20,000 Myr�1 would translate
into a � of roughly 30 Myr, assuming the same mixing length parameter as for the diffusion into the ISM of material from a
NSM event.

Clearly, better determinations of the values of � are required from detailed models of GCE, stellar populations and of the
dispersion of stellar ejecta in the Galaxy, and individual assessments need to be performed for each SLR. Nevertheless, it
is clear that for many of the SLR cases considered here ⌧/� is likely to be less than unity and the effect resulting from the
granularity of the stellar events will need to be considered carefully.

Following from the discussion above, the actual abundance of a given SLR in the ISMmaterial fromwhich the Sun formed
can be better described by the following equation, which represents the SLR abundance just after the last stellar addition:

NSLR / pSLR
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where pSLR is the abundance produced by each single event, 1 represents the last event, and the exponential term represent
the memory of all the previous additions. This formula is more general than the steady-state equation, and includes it in
the limit ⌧/� � 1, where the steady-state equation can be recovered by expanding e�/⌧ into a polynomial series. For the
opposite limit, ⌧/� ⌧ 1, the memory term goes to zero, and the abundance is simply proportional to howmuch is produced
by the single last event. Note that there is not an equal sign but a proportionality sign in the equation above because it does
not include the dilution factor representing the distance from the stellar source to the presolar matter. This dilution can be
easily factorised by normalising the formula to the abundance of the stable isotope of reference, if it is produced by the same
stellar site:
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where pstable is the abundance produced by each single event (the same type of event that produces the SLRs), and TGal/� the
total number of events over the age of the Galaxy before the formation of the Solar System. Combining Eqs. (13) and (14),
we obtain:
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Here we have added a parameter K � 1 representing the potential effects of infall of primordial gas described above in
relation to the calculation of the steady-state abundance ratio.
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where the term e�(t�N�)/⌧ describes the decay of the abundance from the last event (the first term in the sum equal to
unity).
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Here we have added a parameter K � 1 representing the potential effects of infall of primordial gas described above in
relation to the calculation of the steady-state abundance ratio.
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formation area of the galactic disk, and considering the rate in time of the given event in the whole Galaxy. Using this
‘‘snowplow’’ approach, Meyer & Clayton [102] (see their Section 7) estimated, for example the value of � for CCSNe to be
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� ⇡ 50 Myr. The rate of these AGB events in the Galaxy is higher than that of CCSNe, due to the initial stellar mass function,
which favours lower over higher masses, however, � is higher for AGB stars than for CCSNe because the slower AGB wind
and smaller ejected mass result in the sweeping of a smaller volume of the galactic disk. For NSMs, the potential r-process
nucleosynthetic events, the velocity is higher but the total mass of the ejecta is lower compared to CCSNe. These effects may
balance each other resulting in the same kinetic energy. The event rate is very uncertain, 100–10,000 times lower than the
1 � 2 ⇥ 104 Myr�1 rate for CCSNe, i.e., approximately 1 to 200 Myr�1 for NSMs (see discussion in [210]), which covers the
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that events with the lower rate are favoured. In this framework, a galactic rate for CCSNe of 20,000 Myr�1 would translate
into a � of roughly 30 Myr, assuming the same mixing length parameter as for the diffusion into the ISM of material from a
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Here we have added a parameter K � 1 representing the potential effects of infall of primordial gas described above in
relation to the calculation of the steady-state abundance ratio.
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� values of roughly 100 Myr for hypothetical r-process events with a galactic rate of 300 Myr�1, and of roughly 500 Myr for
r-process events with a galactic rate of 5 Myr�1. From analysis of 244Pu in the ESS and in terrestrial samples they concluded
that events with the lower rate are favoured. In this framework, a galactic rate for CCSNe of 20,000 Myr�1 would translate
into a � of roughly 30 Myr, assuming the same mixing length parameter as for the diffusion into the ISM of material from a
NSM event.

Clearly, better determinations of the values of � are required from detailed models of GCE, stellar populations and of the
dispersion of stellar ejecta in the Galaxy, and individual assessments need to be performed for each SLR. Nevertheless, it
is clear that for many of the SLR cases considered here ⌧/� is likely to be less than unity and the effect resulting from the
granularity of the stellar events will need to be considered carefully.

Following from the discussion above, the actual abundance of a given SLR in the ISMmaterial fromwhich the Sun formed
can be better described by the following equation, which represents the SLR abundance just after the last stellar addition:
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where pSLR is the abundance produced by each single event, 1 represents the last event, and the exponential term represent
the memory of all the previous additions. This formula is more general than the steady-state equation, and includes it in
the limit ⌧/� � 1, where the steady-state equation can be recovered by expanding e�/⌧ into a polynomial series. For the
opposite limit, ⌧/� ⌧ 1, the memory term goes to zero, and the abundance is simply proportional to howmuch is produced
by the single last event. Note that there is not an equal sign but a proportionality sign in the equation above because it does
not include the dilution factor representing the distance from the stellar source to the presolar matter. This dilution can be
easily factorised by normalising the formula to the abundance of the stable isotope of reference, if it is produced by the same
stellar site:
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where pstable is the abundance produced by each single event (the same type of event that produces the SLRs), and TGal/� the
total number of events over the age of the Galaxy before the formation of the Solar System. Combining Eqs. (13) and (14),
we obtain:
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Here we have added a parameter K � 1 representing the potential effects of infall of primordial gas described above in
relation to the calculation of the steady-state abundance ratio.
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where the term e�(t�N�)/⌧ describes the decay of the abundance from the last event (the first term in the sum equal to
unity).

The behaviour of Eq. (12) as function of time for different ⌧/� values is illustrated in Fig. 9. When ⌧/� is less than 0.1 the
evolution is dominated by peaks representing the discrete stellar additions and the exponential decay in between the peaks.
The memory of all the previous events in this case counts for less than 10% of the total abundance at the peak points. For
⌧/� = 0.5 the memory adds 40% to the peak abundance. Increasing ⌧/� the memory becomes more andmore predominant,
and the granularity effect can be accounted for as an uncertainty around the steady-state value. The higher the steady-state
factor (⌧/�), the smaller (relatively) becomes the fluctuation around it due to granularity. E.g., for ⌧/� = 5 the steady-state
factor is 5 ± 1, i.e., the relative error bar due to granularity is 20%, for ⌧/� = 10, the value is 10 ± 1 and the relative error is
only 10%. In other words, when ⌧/� is greater than 10, the abundance can be approximated by the steady-state value within
10%.

While the values of ⌧ are relatively well known, with the exceptions discussed in Section 3, the values of � corresponding
to each type of nucleosynthetic event that produced the SLRs are poorly known. They can be estimated based on first
principle, for example considering how much galactic mass, or volume, is swept by each event, relative to the active star
formation area of the galactic disk, and considering the rate in time of the given event in the whole Galaxy. Using this
‘‘snowplow’’ approach, Meyer & Clayton [102] (see their Section 7) estimated, for example the value of � for CCSNe to be
5–10 Myr. Following the same reasoning as Meyer & Clayton, for the typical s-process events contributing to the cosmic
abundances of the s-process elements, i.e., from AGB stars of initial mass between roughly 2 and 4 M�, one can derive
� ⇡ 50 Myr. The rate of these AGB events in the Galaxy is higher than that of CCSNe, due to the initial stellar mass function,
which favours lower over higher masses, however, � is higher for AGB stars than for CCSNe because the slower AGB wind
and smaller ejected mass result in the sweeping of a smaller volume of the galactic disk. For NSMs, the potential r-process
nucleosynthetic events, the velocity is higher but the total mass of the ejecta is lower compared to CCSNe. These effects may
balance each other resulting in the same kinetic energy. The event rate is very uncertain, 100–10,000 times lower than the
1 � 2 ⇥ 104 Myr�1 rate for CCSNe, i.e., approximately 1 to 200 Myr�1 for NSMs (see discussion in [210]), which covers the
rate derived from observation of pulsars in the Milky Way of ⇠20 Myr�1 with large uncertainties [211], Consequently, the
value of � is also very uncertain, likely > 500 Myr.

Hotokezaka et al. [62] used an approach based on diffusion instead of snowplowing (see their Eq. (2)) and derived average
� values of roughly 100 Myr for hypothetical r-process events with a galactic rate of 300 Myr�1, and of roughly 500 Myr for
r-process events with a galactic rate of 5 Myr�1. From analysis of 244Pu in the ESS and in terrestrial samples they concluded
that events with the lower rate are favoured. In this framework, a galactic rate for CCSNe of 20,000 Myr�1 would translate
into a � of roughly 30 Myr, assuming the same mixing length parameter as for the diffusion into the ISM of material from a
NSM event.

Clearly, better determinations of the values of � are required from detailed models of GCE, stellar populations and of the
dispersion of stellar ejecta in the Galaxy, and individual assessments need to be performed for each SLR. Nevertheless, it
is clear that for many of the SLR cases considered here ⌧/� is likely to be less than unity and the effect resulting from the
granularity of the stellar events will need to be considered carefully.

Following from the discussion above, the actual abundance of a given SLR in the ISMmaterial fromwhich the Sun formed
can be better described by the following equation, which represents the SLR abundance just after the last stellar addition:
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where pSLR is the abundance produced by each single event, 1 represents the last event, and the exponential term represent
the memory of all the previous additions. This formula is more general than the steady-state equation, and includes it in
the limit ⌧/� � 1, where the steady-state equation can be recovered by expanding e�/⌧ into a polynomial series. For the
opposite limit, ⌧/� ⌧ 1, the memory term goes to zero, and the abundance is simply proportional to howmuch is produced
by the single last event. Note that there is not an equal sign but a proportionality sign in the equation above because it does
not include the dilution factor representing the distance from the stellar source to the presolar matter. This dilution can be
easily factorised by normalising the formula to the abundance of the stable isotope of reference, if it is produced by the same
stellar site:
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Tgal
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where pstable is the abundance produced by each single event (the same type of event that produces the SLRs), and TGal/� the
total number of events over the age of the Galaxy before the formation of the Solar System. Combining Eqs. (13) and (14),
we obtain:
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Here we have added a parameter K � 1 representing the potential effects of infall of primordial gas described above in
relation to the calculation of the steady-state abundance ratio.
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where the term e�(t�N�)/⌧ describes the decay of the abundance from the last event (the first term in the sum equal to
unity).

The behaviour of Eq. (12) as function of time for different ⌧/� values is illustrated in Fig. 9. When ⌧/� is less than 0.1 the
evolution is dominated by peaks representing the discrete stellar additions and the exponential decay in between the peaks.
The memory of all the previous events in this case counts for less than 10% of the total abundance at the peak points. For
⌧/� = 0.5 the memory adds 40% to the peak abundance. Increasing ⌧/� the memory becomes more andmore predominant,
and the granularity effect can be accounted for as an uncertainty around the steady-state value. The higher the steady-state
factor (⌧/�), the smaller (relatively) becomes the fluctuation around it due to granularity. E.g., for ⌧/� = 5 the steady-state
factor is 5 ± 1, i.e., the relative error bar due to granularity is 20%, for ⌧/� = 10, the value is 10 ± 1 and the relative error is
only 10%. In other words, when ⌧/� is greater than 10, the abundance can be approximated by the steady-state value within
10%.

While the values of ⌧ are relatively well known, with the exceptions discussed in Section 3, the values of � corresponding
to each type of nucleosynthetic event that produced the SLRs are poorly known. They can be estimated based on first
principle, for example considering how much galactic mass, or volume, is swept by each event, relative to the active star
formation area of the galactic disk, and considering the rate in time of the given event in the whole Galaxy. Using this
‘‘snowplow’’ approach, Meyer & Clayton [102] (see their Section 7) estimated, for example the value of � for CCSNe to be
5–10 Myr. Following the same reasoning as Meyer & Clayton, for the typical s-process events contributing to the cosmic
abundances of the s-process elements, i.e., from AGB stars of initial mass between roughly 2 and 4 M�, one can derive
� ⇡ 50 Myr. The rate of these AGB events in the Galaxy is higher than that of CCSNe, due to the initial stellar mass function,
which favours lower over higher masses, however, � is higher for AGB stars than for CCSNe because the slower AGB wind
and smaller ejected mass result in the sweeping of a smaller volume of the galactic disk. For NSMs, the potential r-process
nucleosynthetic events, the velocity is higher but the total mass of the ejecta is lower compared to CCSNe. These effects may
balance each other resulting in the same kinetic energy. The event rate is very uncertain, 100–10,000 times lower than the
1 � 2 ⇥ 104 Myr�1 rate for CCSNe, i.e., approximately 1 to 200 Myr�1 for NSMs (see discussion in [210]), which covers the
rate derived from observation of pulsars in the Milky Way of ⇠20 Myr�1 with large uncertainties [211], Consequently, the
value of � is also very uncertain, likely > 500 Myr.

Hotokezaka et al. [62] used an approach based on diffusion instead of snowplowing (see their Eq. (2)) and derived average
� values of roughly 100 Myr for hypothetical r-process events with a galactic rate of 300 Myr�1, and of roughly 500 Myr for
r-process events with a galactic rate of 5 Myr�1. From analysis of 244Pu in the ESS and in terrestrial samples they concluded
that events with the lower rate are favoured. In this framework, a galactic rate for CCSNe of 20,000 Myr�1 would translate
into a � of roughly 30 Myr, assuming the same mixing length parameter as for the diffusion into the ISM of material from a
NSM event.

Clearly, better determinations of the values of � are required from detailed models of GCE, stellar populations and of the
dispersion of stellar ejecta in the Galaxy, and individual assessments need to be performed for each SLR. Nevertheless, it
is clear that for many of the SLR cases considered here ⌧/� is likely to be less than unity and the effect resulting from the
granularity of the stellar events will need to be considered carefully.

Following from the discussion above, the actual abundance of a given SLR in the ISMmaterial fromwhich the Sun formed
can be better described by the following equation, which represents the SLR abundance just after the last stellar addition:
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where pSLR is the abundance produced by each single event, 1 represents the last event, and the exponential term represent
the memory of all the previous additions. This formula is more general than the steady-state equation, and includes it in
the limit ⌧/� � 1, where the steady-state equation can be recovered by expanding e�/⌧ into a polynomial series. For the
opposite limit, ⌧/� ⌧ 1, the memory term goes to zero, and the abundance is simply proportional to howmuch is produced
by the single last event. Note that there is not an equal sign but a proportionality sign in the equation above because it does
not include the dilution factor representing the distance from the stellar source to the presolar matter. This dilution can be
easily factorised by normalising the formula to the abundance of the stable isotope of reference, if it is produced by the same
stellar site:

Nstable / pstable
Tgal
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where pstable is the abundance produced by each single event (the same type of event that produces the SLRs), and TGal/� the
total number of events over the age of the Galaxy before the formation of the Solar System. Combining Eqs. (13) and (14),
we obtain:
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Here we have added a parameter K � 1 representing the potential effects of infall of primordial gas described above in
relation to the calculation of the steady-state abundance ratio.
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where the term e�(t�N�)/⌧ describes the decay of the abundance from the last event (the first term in the sum equal to
unity).

The behaviour of Eq. (12) as function of time for different ⌧/� values is illustrated in Fig. 9. When ⌧/� is less than 0.1 the
evolution is dominated by peaks representing the discrete stellar additions and the exponential decay in between the peaks.
The memory of all the previous events in this case counts for less than 10% of the total abundance at the peak points. For
⌧/� = 0.5 the memory adds 40% to the peak abundance. Increasing ⌧/� the memory becomes more andmore predominant,
and the granularity effect can be accounted for as an uncertainty around the steady-state value. The higher the steady-state
factor (⌧/�), the smaller (relatively) becomes the fluctuation around it due to granularity. E.g., for ⌧/� = 5 the steady-state
factor is 5 ± 1, i.e., the relative error bar due to granularity is 20%, for ⌧/� = 10, the value is 10 ± 1 and the relative error is
only 10%. In other words, when ⌧/� is greater than 10, the abundance can be approximated by the steady-state value within
10%.

While the values of ⌧ are relatively well known, with the exceptions discussed in Section 3, the values of � corresponding
to each type of nucleosynthetic event that produced the SLRs are poorly known. They can be estimated based on first
principle, for example considering how much galactic mass, or volume, is swept by each event, relative to the active star
formation area of the galactic disk, and considering the rate in time of the given event in the whole Galaxy. Using this
‘‘snowplow’’ approach, Meyer & Clayton [102] (see their Section 7) estimated, for example the value of � for CCSNe to be
5–10 Myr. Following the same reasoning as Meyer & Clayton, for the typical s-process events contributing to the cosmic
abundances of the s-process elements, i.e., from AGB stars of initial mass between roughly 2 and 4 M�, one can derive
� ⇡ 50 Myr. The rate of these AGB events in the Galaxy is higher than that of CCSNe, due to the initial stellar mass function,
which favours lower over higher masses, however, � is higher for AGB stars than for CCSNe because the slower AGB wind
and smaller ejected mass result in the sweeping of a smaller volume of the galactic disk. For NSMs, the potential r-process
nucleosynthetic events, the velocity is higher but the total mass of the ejecta is lower compared to CCSNe. These effects may
balance each other resulting in the same kinetic energy. The event rate is very uncertain, 100–10,000 times lower than the
1 � 2 ⇥ 104 Myr�1 rate for CCSNe, i.e., approximately 1 to 200 Myr�1 for NSMs (see discussion in [210]), which covers the
rate derived from observation of pulsars in the Milky Way of ⇠20 Myr�1 with large uncertainties [211], Consequently, the
value of � is also very uncertain, likely > 500 Myr.

Hotokezaka et al. [62] used an approach based on diffusion instead of snowplowing (see their Eq. (2)) and derived average
� values of roughly 100 Myr for hypothetical r-process events with a galactic rate of 300 Myr�1, and of roughly 500 Myr for
r-process events with a galactic rate of 5 Myr�1. From analysis of 244Pu in the ESS and in terrestrial samples they concluded
that events with the lower rate are favoured. In this framework, a galactic rate for CCSNe of 20,000 Myr�1 would translate
into a � of roughly 30 Myr, assuming the same mixing length parameter as for the diffusion into the ISM of material from a
NSM event.

Clearly, better determinations of the values of � are required from detailed models of GCE, stellar populations and of the
dispersion of stellar ejecta in the Galaxy, and individual assessments need to be performed for each SLR. Nevertheless, it
is clear that for many of the SLR cases considered here ⌧/� is likely to be less than unity and the effect resulting from the
granularity of the stellar events will need to be considered carefully.

Following from the discussion above, the actual abundance of a given SLR in the ISMmaterial fromwhich the Sun formed
can be better described by the following equation, which represents the SLR abundance just after the last stellar addition:
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where pSLR is the abundance produced by each single event, 1 represents the last event, and the exponential term represent
the memory of all the previous additions. This formula is more general than the steady-state equation, and includes it in
the limit ⌧/� � 1, where the steady-state equation can be recovered by expanding e�/⌧ into a polynomial series. For the
opposite limit, ⌧/� ⌧ 1, the memory term goes to zero, and the abundance is simply proportional to howmuch is produced
by the single last event. Note that there is not an equal sign but a proportionality sign in the equation above because it does
not include the dilution factor representing the distance from the stellar source to the presolar matter. This dilution can be
easily factorised by normalising the formula to the abundance of the stable isotope of reference, if it is produced by the same
stellar site:

Nstable / pstable
Tgal
�

, (14)

where pstable is the abundance produced by each single event (the same type of event that produces the SLRs), and TGal/� the
total number of events over the age of the Galaxy before the formation of the Solar System. Combining Eqs. (13) and (14),
we obtain:

NSLR

Nstable
= K ⇥ pSLR

pstable
⇥ �

TGal
⇥
✓
1 + 1

e�/⌧ � 1

◆
. (15)

Here we have added a parameter K � 1 representing the potential effects of infall of primordial gas described above in
relation to the calculation of the steady-state abundance ratio.
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