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<International Partner Universities/Institutions> 
ATOMKI: Institute of Nuclear Research of the Hungarian    
                Academy of Sciences (Hungary) 
BNL: Brookhaven National Laboratory (USA) 
CARN: Carn University (France) 
CERN: European Organization for Nuclear Research (Swiss) 
CNPS: council for China (China) 
CU: Columbia University (USA) 
ENEA: National Institute for New Technologies, Energy and  
            Environment (Italy) 
ECT*: European Centre for Theoretical Studies in Nuclear 　　 
　　　  Physics and Related Areas (Italy)	

GANIL: Grand Accelerateur National D’Ions Lourds (France) 
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IMP, CAS: Institute of Modern Physics, Chinese Academy of  
    Science (China) 

IN2P3: National Institute of Nuclear Physics and Particle   
      Physics (France) 
INFN: Natinal Institute of Nuclear Physics (Italy) 
INRNE: Institute for Nuclear Research and Nuclear       
             Energy (Bulgar)	

ITB: Institut Teknologi Bandung (Indonesia) 
ITS: Institut Teknologi Sepuluh Nopember (Indonesia)  
JINR: Joint Institute for Nuclear Research (Russia) 
KI: Kurchatov Institute (Russia) 
LNZ:  Lanzhou University(China) 
MSU: Michigan State University (USA) 
MPG: Max Planck Institute (Germany) 
NAJ:  Nanjing University (China) 
PKU: Peking University (China)   

PSI: Paul Scherrer Institute (Swiss)　 
RAL: Rutherford Appleton Laboratory, SFTC 
(UK) 
SJTU: Shanghai Jiao Tong University (China) 
SNU: Seoul National University (Korea) 
TRIUMF: TRIUMF (Canada) 
TUM: Technische Universitat Munchen (Germany) 
UGM: Universitas Gadjah Mada (Indonesia) 
USM: Universiti Sains Malaysia (Malaysia) 
UJ: University of Jyvaskyla (Finland) 
UNPAD: Universitas Padjadjaran (Indonesia) 
VAEC: Vietnam Academy of Science and 	

             Technology (Vietnam) 
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RCNP, Osaka Univ.　– high-precision experiments with light beams
RI beams by fragmentation, direct reactions 
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“EN” beam line 
(fragment separator)	

	


e.g. 
5.5 MeV/nucleon 17N beam by 9Be(18O,17N) at 9.3 MeV/nucleon  ß bypass of AVF beams

high-spin (23/2+) isomer in 135La ß 17N+124Sn fusion 
A. Odahara, reported in ARIS2014	
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RIKEN RIBF – new-generation facility in operation; nrecent highlights 



(construction)	


(construction)	


(R&D)	


RIBF – a new generation RIB facility in operation
with world highest capability of providing RI beams in coming years!

experimental  
equipment 

345 MeV/nucleon 
      up to U (2006-) 

135 MeV/nucleon 
     for light nuclei (1986-) 

RIKEN RIBF (RI Beam Factory)  --  fragmentation-based RI bems (1990- / 2007-)	
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BigRIPS (2007-) 
  ~200 MeV/nucleon	
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Motobayashi T , and Sakurai H Prog. Theor. Exp. Phys. 
2012;2012:03C001 

© The Author(s) 2012. Published by Oxford University Press on behalf of the Physical Society of 
Japan. 

Nuclear chart potentially covered by RIBF	


��fission + fragmentation of 238U beams 
�  fragmentation of other beams
          --- 1 particle/day by 1pμA primary beam

�  Stable nuclei
�  Known nuclei
�  Nuclei with T1/2 > 1ns (KTUY theory)

r-process
responsible for ~1/2 of the elements
 heavier than Fe	


~300 (288?)
~3,000

~10,000	
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data presented here show no evidence of nuclear structure
changes capable of modifying the gross properties of the
nuclei we have studied. The sudden drop of half-lives
observed of the Koura-Tachibana-Uno-Yamada ðKTUYÞ þ
GT2 calculations [41,42] when crossing of the N ¼ 82
shell is not observed in the data. Since the Qβ values
predicted by the KTUY and DF3 mass models are very
similar, our data indicate a failure of the second generation
of gross theory (GT2) employed to calculate half-lives
rather than to the KTUY mass model.
The half-lives of the N ¼ 82 nuclei are of particular

interest for probing shell model calculations. The tendency
to overestimate the half-life of 129Ag reported in
Refs. [43,44], persists in the more exotic nuclei 128Pd
and 127Rh (see Table II). However, in these calculations, the
quenching factor of the GToperator (q ¼ 0.66) was chosen
to reproduce the half-life of 130Cd (162% 7 ms) reported
in Ref. [46], which is longer than the one reported
here (127% 2 ms). The new N ¼ 82 half-lives reveal that
the calculated values are systematically longer by a nearly
constant factor, with the only exception of 131In. Assuming
that the decay of N ¼ 82 nuclei was dominated by GT
transitions [44], such a constant factor could be approx-
imately accounted by a different choice of theGT quenching
factor. The value q ¼ 0.75 extracted in this way agrees with
the systematics ofpf-shell nuclei [48] and neutron-deficient
nuclei [49]. However, the new half-lives clearly indicate that

the proton-hole nucleus 131In is not following the trend
expected from the shell-model calculations, an observation
that calls for further investigation.
Nucleosynthesis calculations.—The implications of the

new half-lives for the r process were investigated by
conducting a fully dynamic reaction-network calculation
[50,51] study that simulated a spherically symmetric out-
flow from a neutron-rich stellar environment. The time
evolution of matter density followed an early rapid expo-
nential expansion with timescale τ and a later free expan-
sion with a longer timescale approaching a constant
velocity [52]. The initial proton-to-neutron ratio was set
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FIG. 2 (color online). β-decay half-lives determined in this work (solid circles) for a number of isotopic chains as a function
of neutron number, compared with previous results [35] (open triangles) and the predictions of the models FRDMþ QRPA (blue),
KTUYþ GT2 (green), and DF3þ CQRPA (magenta) when available.

TABLE II. Comparison of the present N ¼ 82 half-lives with
previous measurements and the shell model calculations in
Ref. [44].

Half-Life (ms)

Nucleus This work Previous Shell Model
131In 261(3)a 280(30) [45] 247.53
130Cd 127(2)b 162(7) [46] 164.29
129Ag 52(4) 46þ5

−9 [47] 69.81
128Pd 35(3) 47.25
127Rh 20þ20

−7 27.98
aT1=2 gated on γ-ray energy 2434 keV.
bT1=2 gated on γ-ray energies 451, 1669, and 1171 keV.
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r process universality. It is anticipated that universality may not extend to the elements Sn, Sb, I, and Cs,
making the detection of these elements in metal-poor stars of the utmost importance to determine the exact
conditions of individual r-process events.

DOI: 10.1103/PhysRevLett.114.192501 PACS numbers: 23.40.-s, 26.30.Hj, 27.60.+j

Introduction.—The origin of the heavy elements from
iron to uranium is one of the main open questions in
science. The slow neutron-capture (s) process of nucleo-
synthesis [1,2], occurring primarily in helium-burning
zones of stars, produces about half of the heavy element
abundance in the universe. The remaining half requires a
more violent process known as the rapid neutron-capture
(r) process [3–6]. During the r process, in environments of
extreme temperatures and neutron densities, a reaction
network of neutron captures and β decays synthesizes very
neutron-rich isotopes in a fraction of a second. These
isotopes, upon exhaustion of the supply of free neutrons,
decay into the stable or semistable isotopes observed in
the solar system. However, none of the proposed stellar
models, including explosion of supernovae [7–12] and
merging neutron stars [13–16], can fully explain abundance
observations. The mechanism of the r process is also
uncertain. At temperatures of one billion degrees or more,
photons can excite unstable nuclei which then emit
neutrons, thus, counteracting neutron captures in an
ðn; γÞ ⇄ ðγ; nÞ equilibrium that determines the r process.
These conditions may be found in the neutrino-driven wind
following the collapse of a supernova core and the accreting
torus formed around the black hole remnant of merging
neutron stars. Alternatively, recent r-process models have
shown that the r process is also possible at lower temper-
atures or higher neutron densities where the contribution
from ðγ; nÞ reactions is minor. These conditions are
expected in supersonically expanding neutrino-driven out-
flow in low-mass supernovae progenitors (e.g., 8 − 12M⊙)
or prompt ejecta from neutron star mergers [17]. The final
abundance distribution may also be dominated by post-
processing effects such as fission of heavy nuclei (A≳ 280)
possibly produced in merging neutron stars [18].
New clues about the r process have come from the

discovery of detailed elemental distributions in some
metal-poor stars in the halo of our galaxy [19,20]. A main
conclusion of these observations is that the abundance
pattern of the elements between barium (Ba, proton number
Z ¼ 56) and hafnium (Hf, Z ¼ 78) is universal. Recent
observations by the Space Telescope Imaging Spectrograph
on board of the Hubble Space Telescope [21,22] indicate
that tellurium (Te, Z ¼ 52) is also robustly produced along
with the rare earth elements.
Nuclear physics properties such as β-decay half-lives

and masses are key for predicting abundance patterns and
extract signatures of the r process from a detailed com-
parison to astronomical observations [23]. This is espe-
cially true when ðn; γÞ ⇄ ðγ; nÞ equilibrium is established.

Otherwise, ðn; γÞ cross sections or fission properties may
very well be responsible for main features of the abundance
observations. In this Letter, we report on the half-life
measurement of 110 unstable nuclei with proton number
Z ≤ 50 and neutron number N ≈ 82. These nuclei are key
in any r-process mechanism [23] because their enhanced
binding bends the r-process path closer to stability slowing
down the reaction flow—the flow has to wait at the slowly
decaying species. The half-lives of thesewaiting-point nuclei
determine the time scale of the r process and shape the
prominent r-process abundance peak of isotopes with
A ≈ 130. The precise theoretical prediction of these half-
lives is challenging because the structure evolution ofN ≈ 82
nuclei is still unknown despite the recent experimental efforts
[24–30]. The data we present in this Letter also serve as
important constraints to probe and improve nuclearmodels in
this region.
Experimental procedure.—The nuclei of interest were

produced by fission of a 238U beam induced through
collisions with a beryllium target. The U beam had an
energy of 345A MeV and an average intensity of about
6 × 1010 ions=s. After selection and identification, exotic
nuclei were implanted at a rate of 50 ions=s in the stack of
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FIG. 1 (color online). Particle identification spectrum [33]. Ions
are identified with respect to proton number Z and the mass-to-
charge ratio A=Q. Charge state contamination is significant but
well separated in A=Q for the nuclei of interest. Nuclei with
newly measured half-lives are on the right side of the red solid
line. The heaviest masses for which half-lives can be measured
are tagged for reference by red circles. The half-lives reported in
this Letter are for the elements from Rb to Sn.
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・For doctoral candidates  
International Program Associate (IPA) (Non-Japanese PhD students) 

 Long term IPA (Duration: 1 to 3 years, in principle) 

 Short term IPA (Duration: 3 to 6 months, in principle) 

Junior Research Associate (JRA) (PhD students in Japanese graduate school*) 

RIKEN’s Programs for Junior Scientists* 	


15 

Number of Junior Scientists in IPA/
FPR Programs	


・For postdoctoral researchers 
Foreign Postdoctoral Researcher (FPR) (Non-Japanese)  
Special Postdoctoral Researcher (SPDR)  

Copyright © RIKEN, Japan. All rights reserved. 
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* general for all research fields of RIKEN	


* (4 years for university), 2 years for master, 3 years for doctor 	




IPA details	


* The portion paid by RIKEN may differ depending on the stipulations in the agreement with the 
partnering university. If the candidate receives other financial support such as scholarships from 
universities/institutions other than RIKEN, the payment made by RIKEN will be reduced accordingly.	


Compensation:  
 
ü  A daily allowance of 5,200 yen  
ü  Free on-campus housing  
                OR 
 Housing allowance for off-campus apartment  
ü  Roundtrip transportation fee 
ü  Insurance premium covered by RIKEN or 

university  
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  motobaya@riken.jp 

 
Note: many support programs for doctor course students	
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