

LIGO The Idea

- Really long interferometers have two problems:
 - The required optics size becomes challengingly large
 - Straight beam tubes imply a lot of earth moving (\$~L^3)
 (h=30m at 40km)

- Lenses / Wedges can
 - Keep the beam size reasonable
 - Steer the beam
- Can we get away with them in arm cavities? (esp. long ones?)

Beam deflection and vertical coupling

Beam deflection:

$$\delta$$
=(n-1) α

Vertical motion coupling:

$$dx = \delta^* dz$$

- Same as test mass!
- Vertical motion can be distributed over
 N lenses + 2 mirrors (√(N+2) improvement)

Noise Zoo

- Not much literature for thermal noise of "transmissive" optics:
 - -GEO BS noise (Phys. Rev. D 80, 062004, T0900209)
 - Radiative TO noise (Phys. Rev. D 90, 0430130 (2014))
 - -...?

• A (incomplete?) list of relevant noises:

Transmissive Brownian Noise

- Dominant noise source for thin lens
- Down by ~(n-1) in amplitude compared to mirror (includes double-pass)
- For thin disks:
 - Substrate scaling changes from 1/w to a/w²
 Same scaling as coating loss)
 - Reduced coupling to floppy mech. modes

$$S_x(f) = \frac{2k_B T (1-\eta^2)(n-1)^2}{\sqrt{\pi^3} f_{\text{W}Y}} \left(\phi_{\text{s}} + \frac{2}{\sqrt{\pi}} \frac{1-2\eta}{1-\eta} \frac{d_{\text{c}}}{\mathbf{w}} \phi_{\text{c}} \right)$$

LIGO Thermo-Optic Noise

Dissipative (radial & standing wave)

$$S_x(f) = \frac{16k_B \kappa T^2 \beta_{eff}^2 a}{\pi C^2 \rho^2 w^4 \omega^2} \left(1 + \frac{k^2 w^2}{1 + \frac{16k^4 \kappa^2}{C^2 \rho^2 \omega^2}} \right)$$

 Radiative (surface)

 Coating (surface structure)

$$S_x(f) = \frac{16k_B \epsilon \sigma T^5 \beta_{eff}^2}{\pi C^2 \rho^2 w^2 \omega^2} N$$

$$S_x(f) = \frac{2\sqrt{2}k_B T^2 (\beta_{eff}^c d)^2}{\pi w^2 \sqrt{\kappa C \rho \omega}} N$$

Another message

For very large beam spots:

Substrate Brownian comparable to Coating

Brownian

$$Sx \propto d_c \phi_c + (1.1w)\phi_s \ d_s > w$$

$$Sx \propto d_c \phi_c + d_s \phi_s \ d_s < w$$

$$\frac{\phi_c}{\phi_s} \approx 10^5 \ , \ d_c \frac{\phi_c}{\phi_s} \approx O(10 \ cm)$$

LIGO

"CE1" (T=300K) with lenses, an example

LIGO

"CE1" (T=300K) with lenses, an example

Assessment

- Used sparsely, lenses/wedges could be a good tool
 - Good option once you go really long:
 - Brownian noise less important to start with, more limited by quantum noise
 - \$\$\$ savings from small arm direction changes
- Suspend lenses like test masses

Possible Issues

- How good can AR coatings be?
 - Optical losses in arms acceptable for squeezing?
 - Low reflection requires thicker coatings
- What is the residual coupling to floppy mechanical modes to GW strain?

Is thermal lensing an issue?

Possible Issues

Is bulk scatter a problem?

- Is AR coating scatter an issue?
- Thermal beam jitter noise?

Control issues?

Conclusion: Is this a good idea?

- Significant cost benefits once you go long
- Noise sources exist, but seem manageable

- A number of things still to be checked
 - What am I missing?