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Entanglement entropies: definition     

Quantum system (H) in the ground state |Ψ�

Density matrix ρ = |Ψ��Ψ| =⇒ Trρn = 1

H = HA ⊗HBHilbert space

SA = lim
n→1

log(TrρnA)

1− n
= − lim

n→1

∂

∂n
Tr ρnAReplica trick

SA = −TrA(ρA log ρA)

Entanglement entropy ≡ Von Neumann entropy of ρA

Rényi entropies S(n)
A

ρA = TrBρreduced density matrixA’s

if ρ describes a pure state then ρA describes a mixed state

(TrAρA = 1)

e.g.: spatial bipartition

BA



Entanglement entropy: some properties     

Subadditivity SA1 + SA2 � SA1∪A2A1 ∩A2 = ∅

Bipartition ρ = |Ψ��Ψ| pure stateH = HA ⊗HB

Araki-Lieb inequality

ρ mixed state δSA ≡ SA − SB |δSA| � SA∪B = Sρ

Strong Subadditivity
SA1 + SA2 � SA1∪A2 + SA1∩A2

SA1 + SA2 � SA1\A2
+ SA2\A1

B
A1

A2

ck � 0
�

k

c2k = 1

|Ψ� =
�

k

ck |Ψk�A|Ψk�B

Schmidt decomposition

=⇒ SA is not extensive

SA = −
�

k

c2k log c
2
k = SB



Geometric entropy: area law
Assume that A and B correspond to a spatial bipartition of the system

AB B
A

B
A

B

SA ∝ Area(∂A)

ad−1
+ . . .

In d spatial dimensions when ρ = |Ψ��Ψ| (SA = SAc)Area law:

[Bombelli, Koul, Lee, Sorkin, (1986)]

[Srednicki, (1993)]

SA =
c

3
log

�

a
+ const

In 1 + 1 CFTs at T = 0
[Holzhey, Larsen, Wilczek, (1994)]

[Calabrese, Cardy, (2004)]

In 2 + 1 CFTs for a circle
SA = γ

2πR

a
− f[Myers, Sinha, (2011)]

[Klebanov, Pufu, Safdi, (2011)]

[Casini, Huerta, (2012)]

Area law violated in presence of Fermi surfaces: SA ∼ Ld−1 logL
[Gioev, Klich, (2005)][Wolf, (2005)]



Replica trick for the entanglement entropy

Example: density matrix ρ in a thermal state at temperature T = 1/β

τ = 0

τ = β
φx

φ�
x�

Z = Tr e−βH The trace sews together the edges at τ = 0 and τ = β
providing a cylinder with circumference of length β.

u1 uN vNv1 . . . . . .

β

The trace TrB sews together
only the points /∈ A.
Open cuts are left along the

disjoint intervals (uj , vj).

ρA = TrBρ A = (u1, v1) ∪ · · · ∪ (uN , vN )

SA = −Tr(ρA log ρA) = lim
n→1

log(TrρnA)

1− n
= − lim

n→1

∂

∂n
Tr ρnA H = HA ⊗HB

Rényi entropies [Holzhey, Larsen, Wilczek, (1994)]

[Calabrese, Cardy, (2004)]

[Callan, Wilczek, (1994)]



”ρij
A ρjk

A ρkl
A ρli

A ” =

Entanglement entropies & Riemann surfaces     

Replica trick

SA = −TrρA log ρA = − lim
n→1

∂

∂n
Trρn

A

Trρn
A (for integer n) is the partition function on n of the above

cylinders attached to form an n−sheeted Riemann surface

=“ρij
Aρjk

A ρkl
A ρli

A”

Trρn
A has a unique analytic continuation to Re n > 1 and that its

first derivative at n = 1 gives the required entropy:

SA = − lim
n→1

∂

∂n

Zn(A)

Zn

Pasquale Calabrese Entanglement entropy and QFT

n copies sewed together cyclically along the cuts

TrρnA =
ZN,n

Zn

g = (N − 1)(n− 1)

N cuts
n sheets

Partition function on the n sheeted Riemann surface RN,n

On Rényi entropies of disjoint intervals in CFT 6

Figure 2. The path integral representation of TrρnA involves a Riemann surface RN,n,
which is shown here for N = 3 and n = 3.

entropies (1.2). If the analytic continuation of (2.1) to Ren > 1 exists and it is unique,

the entanglement entropy is obtained as the replica limit

SA = lim
n→ 1

S(n)
A = − lim

n→ 1

∂

∂n
TrρnA . (2.2)

In order to find the genus of RN,n [8], let us consider a single sheet and triangulate it

through V vertices, E edges and F faces, such that 2N vertices are located at the branch

points ui and vi. Considering RN,n constructed as explained above, the replication of

the same triangulation on the other sheets generates a triangulation of the Riemann

surface RN,n made by V � vertices, E � edges and F � faces. Notice that, since the branch

points belong to all the n sheets, they are not replicated. This observation tells us that

V � = n(V − 2N) + 2N , while E � = nE and F � = nF because all the edges and the faces

are replicated. Then, the genus g of RN,n is found by plugging these expressions into

the relation V �−E �+F � = 2− 2g and employing the fact that, since each sheet has the

topology of the sphere, V − E + F = 2. The result is

g = (N − 1)(n− 1) . (2.3)

We remark that we are not considering the most general genus g Riemann surface,

which is characterized by 3g− 3 complex parameters, but only the subclass of Riemann

surfaces obtained through the replication procedure.

Let us consider a conformal field theory with central charge c. As widely argued in

[3, 4], in the case of one interval A = [u, v] in an infinite line, TrρnA can be written as the

two point function of twist fields on the complex plane plus the point at infinity, i.e.

TrρnA = �Tn(u)T̄n(v)� =
cn

|u− v|2∆n
, ∆n =

c

12

�
n− 1

n

�
. (2.4)

Both the twist field Tn and T̄n, also called branch point twist fields [53], have the same

scaling dimension ∆n. The constant cn is non universal and such that c1 = 1 because

of the normalization condition.

R3,3

ϕi(x, 0+) = ϕi+1(x, 0−) i = 1, . . . , nCA : x ∈ A = ∪N
j=1Aj

ZN,n =

�

CA

[dϕ1 · · · dϕn]C exp

�
−
�

C
dzdz̄ (L[ϕ1](z, z̄) + . . .+ L[ϕn](z, z̄))

�

Global symmetry i �→ i+ 1 modn from replication



2D CFT: Entanglement entropies as correlation functions    

[Dixon, Friedan, Martinec, Shenker, (1987)][Zamolodchikov, (1987)]

[Knizhnik, (1987)] [Bershadsky, Radul, (1987)]

Twist fields have been studied long ago in string theory

=⇒ SA =
c

3
log

�

�
+ c�1

R1,n

[Calabrese, Cardy, (2004)]
[Cardy, Castro-Alvaredo, Doyon, (2008)][Ryu, Takayanagi, (2006)][Casini, Fosco, Huerta, (2005)]

a two point function of twist fields Tn, T̄n on the sphere

For one interval (N = 1) the Renyi entropies can be written as

u v

TrρnA =
Z1,n

Zn
= �Tn(u)T̄n(v)� =

cn
|u− v|2∆n

∆n =
c

12

�
n− 1

n

�



N=2: higher genus Riemann surfaces from replication 

Entanglement entropy of two disjoint intervals in CFT II 26

Figure A1. The cut plane represented on the left can be mapped through a
conformal transformation to a cylinder of length L and circumference W (right)
and so modular parameter q = e−2πL/W . The upper and lower edges of the cuts
are mapped into semicircular arcs (S1L, S1R) and (S2L, S2R) at each end of the
open cylinder.

end of the open cylinder. This is illustrated in Fig. A1. We do this for each plane,

labelled by j ∈ [1, n]. These are then connected cyclically by their edges so that S(j)
1R

is connected to S(j+1)
1L and S(j)

2R is connected to S(j+1)
2L . The case n = 4 is shown in

Fig. A2.

Note, however, that this in general introduces new conical singularities at the

points where the semicircles meet. The total angle subtended by a curve which

encloses a singularity is now πn, rather than 2πn as in the original geometry. This

changes the value of the trace anomaly at each singularity from (c/12)
�
n− (1/n)

�
to

(c/12)
�
(n/2)− (2/n)

�
. The partition function in the coupled cylinder geometry thus

has the form

Zcylinder
n ∝ W−(c/3)

�
(n/2)−(2/n)

�
Fcyl

(q) . (A.1)

However, the non-trivial dependence on q should be conformally invariant, that is

Fcyl
n

�
q(x)

�
= Fn(x) , (A.2)

where Fn(x) is the same function as in (3). We assume they are both normalized so

that Fcyl
n (0) = Fn(0) = 1.

Note in particular that for n = 2 there is no trace anomaly. This because in this

case, one of the cylinders can be reflected L ↔ R so that S(1)
1L is now sewn onto S(2)

1L

and S(1)
2L is sewn onto S(2)

2L . For n = 2 we can also reflect the second cylinder in the

plane of one of its ends. This gives a cylinder of length 2L with its opposite ends

identified, that is a torus, with modular parameter e−4πL/W
= q2. As is well-known

[32] the torus partition function encodes all the scaling dimensions of the theory, that

is

Fcyl
2 (q) = 1 +

�

k �=0

(q2)∆k+∆k . (A.3)

This is consistent with our result above that, for n = 2, only terms involving the

2-point functions of primary operators can arise in the small � expansion of F2, which

has the form

F2 ∝
�

primaries

dk(�1�2/r
2
)
2(∆k+∆k) + · · · , (A.4)

6 L. Alvarez-Gaum6, G. Moore, and C. VaN 

equal to zero, and it implies that the cosmological constant vanishes, at one-loop 
order. 

This concludes our discussion of fermions on a torus. We will see that many of 
these concepts are easily generalized to higher loops. 

3. Mathematical Background 

In this section we summarize some aspects of the theory of Riemann surfaces which 
are useful in the computation of higher loop string amplitudes. Since we only 
consider closed strings we will be concerned with compact Riemann surfaces. We 
will consider the topology, differential geometry, line bundles, and theta functions 
associated with a surface. 

a) The Mapping Class Group 
Topologically, orientable two-dimensional surfaces S are completely classified by 
the Euler number X(Z) = 2 - 2g, where g, the genus of S, is the number of handles 
(see Fig. 1). We describe first the homology of S. 

When S is compact the homology groups are free groups with dimensions 

dim H0(Z ) = 1, dimHl(Z) = 2g, dimH2(Z) = 1. 

We can identify a canonical homology basis ai, hi, 1 < i <  g for HI(Z)  as in Fig. 1. 
Then any closed curve on Z generates a homology class which can be uniquely 
decomposed in terms of the classes generated by a~, b~. The reason for calling a~, bi a 
canonical basis is the following. If we define the intersection number J(7, 7') 
between two curves ~ and 7', as the number of points at which they intersect 
counting orientation, then, since the number J(~,7') only depends on the 
homology classes generated by 7 and ),', J defines a quadratic form on Hi(S) .  In 
terms of the as, bl cycles, J takes the canonical form 

J(a i, a j) = J(b,, b j) = O, J(a i, bj) = - J(bi, aj) = 61j, (3.1) 

or, as a matrix, 
J - - ( - 1  " 

Once we have chosen a canonical homology basis, we can represent Z by a 
4g-sided polygon with appropriate identifications on the boundary. To do this, 
choose a point on S, and cut the surface along 2g curves homologous to the 
canonical basis (this is depicted in Fig. 2 for the case of g = 2). If in Fig. 2 we glue 
together the sides aiai-1 and bibi 1 we get back the original surface. Thus each 
handle is represented by the symbol aib,a[ lbF 1. 

We will often use the basis dual to the canonical homology basis. In terms of 
differential forms, we may use the Hodge-De Rham theory to set up a one to one 

Fig. 1 

b 2 b 3 bg 

al a 2 a 3 a~l 

Renyi filled II

R2,3
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where dk =
�

j �=j� d
2
k;jj� and the neglected terms are the contributions of descendant

fields. Presumably the full identity of the above two expressions involves a complicated

connection between these neglected terms and the higher order terms of the expansion

of q(x) in powers of x.

It is interesting to consider computing Z
cylinder
n for general n as a similar expansion

in powers of q. This can done by considering the infinitesimal generator Ĥ of

translations along each cylinder. As is well known [32], the eigenstates |k� of Ĥ

are in 1-1 correspondence with the scaling fields of the CFT, with corresponding

eigenvalue (2π/W )(∆k + ∆k) − (πc/6W ). The last term drops out if we normalize

so that Fcyl
n (q = 0) = 1. Now divide the Hilbert space into two subspaces HL and

HR corresponding to the L and R halves of the cylinder. Then each state admits a

Figure A2. The equivalent of the n-sheeted Riemann surface (with n = 4) for
the cylinder geometry. Oj represents the operator “propagating” in the cylinder
j.

R2,4

Entanglement entropy of two disjoint intervals in CFT II 26

Figure A1. The cut plane represented on the left can be mapped through a
conformal transformation to a cylinder of length L and circumference W (right)
and so modular parameter q = e−2πL/W . The upper and lower edges of the cuts
are mapped into semicircular arcs (S1L, S1R) and (S2L, S2R) at each end of the
open cylinder.

end of the open cylinder. This is illustrated in Fig. A1. We do this for each plane,

labelled by j ∈ [1, n]. These are then connected cyclically by their edges so that S(j)
1R

is connected to S(j+1)
1L and S(j)

2R is connected to S(j+1)
2L . The case n = 4 is shown in

Fig. A2.

Note, however, that this in general introduces new conical singularities at the

points where the semicircles meet. The total angle subtended by a curve which

encloses a singularity is now πn, rather than 2πn as in the original geometry. This

changes the value of the trace anomaly at each singularity from (c/12)
�
n− (1/n)

�
to

(c/12)
�
(n/2)− (2/n)

�
. The partition function in the coupled cylinder geometry thus

has the form

Zcylinder
n ∝ W−(c/3)

�
(n/2)−(2/n)

�
Fcyl

(q) . (A.1)

However, the non-trivial dependence on q should be conformally invariant, that is

Fcyl
n

�
q(x)

�
= Fn(x) , (A.2)

where Fn(x) is the same function as in (3). We assume they are both normalized so

that Fcyl
n (0) = Fn(0) = 1.

Note in particular that for n = 2 there is no trace anomaly. This because in this

case, one of the cylinders can be reflected L ↔ R so that S(1)
1L is now sewn onto S(2)

1L

and S(1)
2L is sewn onto S(2)

2L . For n = 2 we can also reflect the second cylinder in the

plane of one of its ends. This gives a cylinder of length 2L with its opposite ends

identified, that is a torus, with modular parameter e−4πL/W
= q2. As is well-known

[32] the torus partition function encodes all the scaling dimensions of the theory, that

is

Fcyl
2 (q) = 1 +

�

k �=0

(q2)∆k+∆k . (A.3)

This is consistent with our result above that, for n = 2, only terms involving the

2-point functions of primary operators can arise in the small � expansion of F2, which

has the form

F2 ∝
�

primaries

dk(�1�2/r
2
)
2(∆k+∆k) + · · · , (A.4)

3g − 3 complex moduli for g � 2

n = 4

We are dealing with a subclass of Riemann surfaces

of genus g = (N − 1)(n− 1) obtained from replication

Indeed τ = τ(x)

For many disjoint intervals higher genus Riemann surfaces occur



0 x1 x2 x3 x2N−3 1 ∞x2N−4· · ·

2D CFT: Renyi entropies for many disjoint intervals    
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Figure 5. The Riemann surface R3,4 with the canonical homology basis {aα,j , bα,j},
represented also in Fig. 4.

Integrating the one forms (3.4) along the auxiliary cycles as shown in (3.5) for the basis

{aα,j, bα,j}, one defines the matrices Aaux and Baux. The advantage of the auxiliary cycles

is that the integrals (Aaux)β,αk,j and (Baux)β,αk,j on the j-th sheet are obtained multiplying

the corresponding ones on the first sheet by a phase [8]

(Aaux)β,αk,j = ρk(j−1)
n (Aaux)β,αk,1 , (Baux)β,αk,j = ρk(j−1)

n (Baux)β,αk,1 , ρn ≡ e2πi/n . (3.9)

Because of the relation (3.8) among the cycles of the canonical homology basis and

the auxiliary ones, the matrices A and B in (3.5) are related to Aaux and Baux as

Aβ,α
k,j =

α�

γ=1

(Aaux)β,γk,j = ρk(j−1)
n

α�

γ=1

(Aaux)β,γk,1 , (3.10)

Bβ,α
k,j =

n−1�

l= j

(Baux)β,αk,l =
n−1�

l= j

ρk(l−1)
n (Baux)β,αk,1 =

ρkjn − 1

ρkn(1− ρkn)
(Baux)β,αk,1 , (3.11)

where the relations (3.9) have been used. Thus, from (3.10) and (3.11) we learn that

we just need (Aaux)β,αk,1 and (Baux)β,αk,1 to construct the matrices A and B.

Tn Tn Tn TnT̄n T̄n T̄n T̄n· · ·

A1 A2 ANAN−1· · ·u1 u2 uN−1 uN vNvN−1v1 v2

N disjoint intervals =⇒ 2N point function of twist fields

TrρnA =
ZN,n

Zn
= �

N�

i=1

Tn(ui)T̄n(vi)� = cNn

�����

�
i<j(uj − ui)(vj − vi)�

i,j(vj − ui)

�����

2∆n

FN,n(x)

ZN,n is the partition function of RN,n of genus g = (N − 1)(n− 1)On Rényi entropies of disjoint intervals in CFT 12

Figure 4. The canonical homology basis {aα,j , bα,j} for N = 3 intervals of equal
length and n = 4 sheets. The sheets are ordered starting from the top. For each cut,
the upper part (red) is identified with the lower part (blue) of the corresponding cut
on the next sheet in a cyclic way, according to (3.2).

From the one forms (3.4) and the matrix A in (3.5), one constructs the normalized

basis of one forms νr =
�g

s=1 A−1
rs ωs, which provides the period matrix τ as follows

�

ar

νs = δrs ,

�

br

νs = τrs , r, s = 1, . . . , g . (3.6)

The period matrix τ is a g × g complex and symmetric matrix with positive definite

imaginary part, i.e. it belongs to the Siegel upper half space. Substituting the expression

of νs into the definition of τ in (3.6) and employing the definition of the matrix B in

(3.5), it is straightforward to observe that

τ = A−1 · B ≡ R+ i I , (3.7)

where R and I are respectively the real and the imaginary part of the period matrix.

In order to compute the period matrix (3.7), let us introduce the set of auxiliary

cycles {aaux
α,j, b

aux
α,j}, which is represented in Figs. 27 and 28. It is clear that this set is

not a canonical homology basis. Indeed, some cycles intersect more than one cycle.

Nevertheless, we can use them to decompose the cycles of the basis {aα,j, bα,j} as

aα,j =
α�

γ=1

aaux
γ,j , bα,j =

n−1�

l= j

bauxα,l . (3.8)

R3,4



Free compactified boson & Ising model  

Θ[e](0|Ω) =
�

m∈Zp

exp
�
iπ(m+ ε)t · Ω · (m+ ε) + 2πi(m+ ε)t · δ

�
with characteristic
Riemann theta function

F Ising

N,n (x) =

�
e |Θ[e](0|τ)|
2g |Θ(0|τ)|

Ising model
Nasty n dependence

[Dijkgraaf, Verlinde, Verlinde, (1988)][Alvarez-Gaume, Moore, Vafa, (1986)][Zamolodchikov, (1987)]
Partition function for a generic Riemann surface studied long ago in string theory

g = (N − 1)(n− 1)
yn =

N�

γ =1

(z − x2γ−2)

� N−1�

γ =1

(z − x2γ−1)

�n−1

RN,n is
[Enolski, Grava, (2003)]

[Calabrese, Cardy, E.T., (2009), (2011)]

[Caraglio, Gliozzi, (2008)] [Furukawa, Pasquier, Shiraishi, (2009)]Two intervals case:

[Fagotti, Calabrese, (2010)] [Alba, Tagliacozzo, Calabrese, (2010), (2011)]

Free compactified boson (η ∝ R2) [Coser, Tagliacozzo, E.T., (2013)]

FN,n(x) =
Θ(0|Tη)

|Θ(0|τ)|2
Tη =

�
i η I R
R i I/η

�
τ = R+ i I
period matrix
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what happens for N=2? same shape? Does it go to zero close to zero?

n = 3

n = 2

n = 4CFT
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Figure 13. The quantity Fnorm
N,n computed for the periodic harmonic chain with

ωL = 10−3 in the configuration of intervals (5.11), normalized through (5.12). The
lattice data are obtained by using (2.16), (2.17), (5.6) and (5.7). The continuos curves
are given by (3.34). The maximum value on the horizontal axis is 1/N . We show the
cases of N = 3 (top) and N = 4 (bottom) with n = 2, 3, 4.

obtained from the harmonic chain in the continuum limit, we have to generalize the

CFT formulas to the case of a finite system of total length L with periodic boundary

conditions. This can be done by employing the conformal map from the cylinder to

the plane, whose net effect is to replace each length y (e.g. �, d, 2� + d, etc.) with the

The periodic harmonic chain   
On Rényi entropies of disjoint intervals in CFT 24

Figure 10. A bipartition of the periodic chain where A is made by the union of three
disjoint blocks of lattice sites.

The Hamiltonian of the harmonic chain made by L lattice sites and with nearest

neighbor interaction reads

H =

L−1�

n=0

�
1

2M
p
2
n +

Mω2

2
q
2
n +

K

2
(qn+1 − qn)

2

�
, (5.1)

where periodic boundary conditions q0 = qL and p0 = pL are imposed and the variables

qn and pm satisfy the commutation relations [qn, qm] = [pn, pm] = 0 and [qn, pm] = iδn,m.

The Hamiltonian (5.1) contains three parameters ω, M , K but, through a canonical

rescaling of the variables, it can be written in a form where these parameters occur only

in a global factor and in the coupling
2K
Mω2/(1 +

2K
Mω2 ) [34, 58]. The Hamiltonian (5.1) is

the lattice discretization of a free massive boson. When ω = 0 the theory is conformal

with central charge c = 1. Since the bosonic field is not compactified, we must compare

the continuum limit of (5.1) for ω = 0 with the regime η → ∞ of the CFT expressions

computed in §3, which has been considered in §3.3.
To diagonalize (5.1), first one exploits the translational invariance of the system by

Fourier transforming qn and pn. Then the annihilation and creation operators ak and a
†
k

are introduced, whose algebra is [ak, ak� ] = [a
†
k, a

†
k� ] = 0 and [ak, a

†
k� ] = iδk,k� . The ground

state of the system |0� is annihilated by all the ak’s and it is a pure Gaussian state. In

terms of the annihilation and creation operators, the Hamiltonian (5.1) is diagonal

H =

L−1�

k=0

ωk

�
a
†
kak +

1

2

�
, (5.2)

Periodic chain of harmonic oscillators

H =
L−1�

n=0

�
1

2M
p
2
n +

Mω2

2
q
2
n +

K

2
(qn+1 − qn)

2

�

The massless case in the continuum limit
is the c = 1 free boson on the line
[Peschel, Chung, (1999)] [Botero, Reznik, (2004)]
[Audenaert, Eisert, Plenio, Werner,(2002)]

Numerical checks for the Ising model through Matrix Product States (MPS)

Decompactification
regime (large η)
[Coser, Tagliacozzo, E.T., (2013)]

Fdec
N,n(x) =

ηg/2�
det(I) |Θ(0|τ)|2



Short intervals expansion

TrρnA when the lengths �p of the intervals are small

w.r.t. to other characteristc lengths of the system

(conformal dimensions and OPE coefficients)

TrρnA for disjoint intervals contains all the data of the CFT
The vacuum

is not
empty

[Calabrese, Cardy, E.T., (2011)]

[Headrick, (2010)]

TrρnA = c2n(�1�2)
−c/6(n−1/n)

�

{kj}

�
�1�2
n2r2

��
j(∆j+∆̄j)

�
n�

j=1

φkj

�
e2πij/n

�
�2C

�1 �2

r
E.g.: two intervals



B

A1 A2

Tripartite system H = HA1 ⊗HA2 ⊗HB

SA1∪A2 : entanglement between A1 ∪A2 and B

ρA1∪A2 is mixed=⇒

Negativity & partial transpose: motivations & definitions

Trace
norm

||ρT2 || ≡ Tr|ρT2 | =
�

i

|λi| = 1− 2
�

λi<0

λi

(Tr ρT2 = 1)

Bipartite system H = HA ⊗HB in a generic state ρ EA = EB

EA2 ≡ ln ||ρT2 ||
Logarithmic negativity

A computable measure of the entanglement
is the logarithmic negativity

Entanglement between A1 and A2?

ρT2 is the partial transpose of ρ

�e(1)i e(2)j | ρT2 |e(1)k e(2)l � = �e(1)i e(2)l | ρ |e(1)k e(2)j �

[Peres, (1996)]
[Vidal, Werner, (2002)] [Eisert, (2001)]

[Zyczkowski, Horodecki, Sanpera, Lewenstein, (1998)]

(|e(k)i � base of HAk)



Replica approach to Negativity

A parity effect for Tr(ρT2)n

Tr(ρT2)no =
�

i

λno
i =

�

λi>0

|λi|no −
�

λi<0

|λi|no

Tr(ρT2)ne =
�

i

λne
i =

�

λi>0

|λi|ne +
�

λi<0

|λi|ne

lim
no→1

Tr(ρT2)no = Tr ρT2 = 1

Analytic continuation on the even sequence Tr(ρT2)ne (make 1 an even number)

EA = log ||ρT2 || = lim
ne→1

log
�
Tr(ρT2)ne

�
Replica limit

[Calabrese, Cardy, E.T., (2012)]



Partial Transposition for bipartite systems: pure states

lim
B→∅

� �
A2A1B B B

u1 v1 v2u2

Tn T̄nT̄n Tn

Tr(ρT2
A )n = �T 2

n (u2)T̄ 2
n (v2)�

Tr(ρT2
A )no = �Tno(u2)T̄no(v2)� = Tr ρno

A2

Tr(ρT2
A )ne =

�
�Tne/2(u2)T̄ne/2(v2)�

�2
=

�
Tr ρne/2

A2

�2

H = HA1 ⊗HA2

Even n = ne =⇒ decoupling

n = 4 n = 5

parity effect version 2

n = 4n = 4 n = 5

parity effect version 2

n = 5

T 2
n connects the j-th sheet with the (j + 2)-th one

Transposition
Partial exchange

two twist fields
=

For ne → 1 we find E = 2 logTrρ1/22 (Renyi entropy 1/2)

E =
c

2
log(�/a) + const2D CFT: these identities give ∆T 2

n
=⇒

and the whole system in the ground state



partial transpose filled II

2D CFT: two adjacent & disjoint intervals

E =
c

4
ln

�
�1�2

�1 + �2

�
+ const

Analytic continuation ne → 1

ρT2
A1∪A2

Tr(ρT2
A )n = �Tn(−�1)T̄ 2

n (0)Tn(�2)�

Tn(−�1) Tn(�2)T̄ 2
n (0)

A2A1B B

Adjacent intervals

Tn A2A1B

u1 v1 v2u2

T̄n B BTnT̄n

Tr(ρT2
A )n = �Tn(u1)T̄n(v1)T̄n(u2)Tn(v2)�

Disjoint intervals



Renyi entropies vs traces of the Partial Transpose

Tr ρnA Tr(ρT2
A )n



Two disjoint intervals
Previous numerical results for E :
Ising (DMRG) and harmonic chains

[Wichterich, Molina-Vilaplana, Bose, (2009)]

[Marcovitch, Retzker, Plenio, Reznik, (2009)]

Entanglement negativity in extended systems 39

Figure 12. The negativity E(y) is a universal scale invariant function
with an essential singularity at y = 0. We report the data for L =
50, 100, 150, 200, 250, 300 but, since they are hardly distinguishable, we do not
give a legend box. The solid line is the expansion close to y ∼ 1 in Eq. (202)
which very surprisingly describes well the data down to y ∼ 0.3. The inset shows
the same plot in logarithmic scale showing that for small y the two possibilities
E ∼ e−a/y and E ∼ e−b/

√
y are too close to be distinguished.

corrections (in 1 − y) and it is expected to describe the data better. Indeed in Fig.
12, this prediction is almost indistinguishable from the data all the way from y ∼ 1
(where it is an exact result) down to y ∼ 0.3. We should mention that the subleading
logarithmic correction may be responsible for the exponent 1/3 found in Ref. [12] as
compared with our analytic result 1/4.

Finally we would like to mention that, in a long enough chain, when each interval
contains a finite number of lattice points, the negativity must vanish exactly for
sufficiently large separations. This is because the reduced density matrix ρA has all
strictly positive eigenvalues. Thus, when we take the partial transpose, the change in
the density matrix, and therefore in the eigenvalues, can be made arbitrarily small since
�pipj� (which is the correlator that changes sign, cf. Eq. (190)) decreases like |i−j|−2.
Indeed this is consistent with the well-known result [1, 9] that the entanglement of
two far away sites is exactly zero.

7.7. Tripartite chains with Dirichlet boundary in the origin

Now we consider the non-trivial case of a tripartite chain on a system with boundaries
discussed in Sec. 6, which is the semi-infinite line, with A1 = [0, �], A2 = [�, 2�] and B
the remainder. In this case, the results for Tr(ρT2

A )n are given in Eq. (166) which we
report also here:

Tr(ρT2
A )n =






�−c/6(n−1/n) n odd,

�−c/12(n−1/n)+c/6(n/2−2/n) n even.
(203)

Entanglement negativity in extended systems 38

Figure 10. For a periodic chain of length L, we report the ratio Rn(y) defined
in Eq. (69) as function of y for several L and for n = 3, 4. The continuous lines
are the parameter free CFT predictions to which the data converges for L → ∞.

Figure 11. Finite size scaling analysis for dn(y) in Eq. (200) for n = 3 (left)
and n = 4 (right). We report from Fig. 10 several values of y (increasing in the
direction of the arrow, but we do not give the actual value to simplify the reading
of the plot). The data are compatible with a leading correction to the scaling of
the form L−2/n .

in Fig. 11 for n = 3, 4 showing that the difference

dn(y) ≡ Rn(y)−Rη=∞
n (y), (200)

for several values of y is of the expected form L−2/n
. As well known (even analytically)

for other simpler cases [64, 66] for larger n, the subleading corrections to the scaling,

of the form L−2p/n
with p integer, cannot be neglected and a proper analysis requires

the introduction of some fitting parameters.

Finally we turn to the study of the negativity E reported in Fig. 12 showing that

all data collapse on a single curve, without sizable corrections. Unfortunately we do

not have the analytic continuation of Rη=∞
ne

(y) to ne → 1 as a function of y. However

we can study the two interesting regimes of far and close intervals corresponding to

Rn =
Tr(ρT2

A )n

Tr ρnA

[Calabrese, Cardy, E.T., (2012)]

Periodic harmonic chain:

[Calabrese, Tagliacozzo, E.T., (2013)]
Entanglement negativity in the critical Ising chain 26
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Figure 14. Logarithmic negativity for two intervals of equal length � at distance r as function

of the four point ratio y.

the two and the analogous lattice quantity

Rlat
n (y) ≡ Glat

n (y)

F lat
n (y)

, (81)

which in the limit � → ∞ converges to the CFT prediction in Eq. (54). The numerical data

for Rlat
n (y) are reported in Fig. 13 for n = 3, 4, 5 as function of y for different values of �.

Once again, large scaling corrections are present and there are no accidental cancellations in

the ratio, so that they are again expected to be of the same form as for F lat
n (x), i.e. described

by the ansatz

Rlat
n (y) = Rn(y) +

r(1)n (y)

�1/n
+

r(2)n (y)

�2/n
+

r(3)n (y)

�3/n
. . . . (82)

We repeat again the same analysis as for F lat
n (x) to extrapolate the data to � → ∞ and the

results (with error bars) are reported in Fig. 13. Unlike f (j)
n (x)’s and g(j)n (y)’s, in this case the

signs of r(j)n (y)’s are not defined (indeed r(j)n ’s can be written as complicated combinations of

f (j)
n ’s and g(j)n ’s). For this reason, the error bars in Fig. 13 are larger than the ones in Fig. 11

and in Fig. 12. It is evident that the extrapolated points in Fig. 13 agree very well with the

CFT prediction for the three considered values of n. It is very remarkable that the numerical

calculations are accurate enough to detect the small differences of these ratios from 1 (at least

for n = 3 and n = 4, while for n = 5 the estimated error is too large to distinguish the

extrapolation from one).

Finally we turn to the study of the logarithmic negativity E . The numerical data as a

function of y are reported in Fig. 14 for several values of �. In the figure all data collapse on

a single curve, with some tiny corrections to the scaling for the smaller values of �, which

Ising model: (Tree Tensor Network)



AdSd+2/CFTd+1 correspondence

Holographic entanglement entropy     

SA =
Area(γ̃A)

4G(d+2)
N

A

Prescription: in regularized AdSd+2

Constant time slice

J
H
E
P
0
8
(
2
0
0
6
)
0
4
5

t

θ

2πl/L

B

A
γA ρ

(a)

B

A

γA

(b)

Figure 4: (a) AdS3 space and CFT2 living on its boundary and (b) a geodesics γA as a holographic
screen.

The infinitesimal ε is the UV cutoff and leads to the cutoff zUV as zUV = lε
2 . Since eρ ∼ xi/z

near the boundary, we find z ∼ a. The length of γA can be found as

Length(γA) = 2R

∫ π/2

ε

ds

sin s
= −2R log(ε/2) = 2R log

l

a
. (6.10)

Finally the entropy can be obtained as follows

SA =
Length(γA)

4G(3)
N

=
c

3
log

l

a
. (6.11)

This again agrees with the well-known result (3.13) as expected.

6.4 Entropy on multiple disjoint intervals

Next we proceed to more complicated examples. Assume that the system A consists of

multiple disjoint intervals. The entanglement entropy can be computed as in (3.20). In the

dual AdS3 description, the region A corresponds to θ ∈ ∪N
i=1[

2πri
L , 2πsi

L ] at the boundary. In

this case it is not straightforward to speculate the holographic screen (or minimal surface)

γA . However, the result in the 1 + 1 dimensional conformal field theory (3.20) can be

rewritten into the following simple form

SA =
1

4G(3)
N





∑

i,j

Length(rj , si) −
∑

i<j

Length(rj , ri) −
∑

i<j

Length(sj, si)



 , (6.12)

where Length(A,B) denotes the length of the geodesic line between two boundary points

A and B. This shows how we choose γA. It is a linear combination of geodesic lines.

Their coefficients are either 1 or −1. Thus some of the coefficients turn out to be negative
18. One may also think that the surface which is just the union of the N geodesic line

18One may think the presence of minus signs is confusing from the viewpoint of holographic screen.

Instead we would like to regard this as a singular (or just complicated) behavior which is typical only in

the lowest dimension. In higher dimensional cases, we do not seem to have such a problem when ∂A is

compact. Notice also that the total sum (6.12) is always positive. If we replace the surface γA with D-branes

or fundamental strings (remember the similarity to Wilson loops) , the minus sign is analogous to ghost

branes introduced recently in [60].

– 26 –

γ̃A
B

Find the surface γ̃A with minimal area

Figure 3: The holographic calculation of entanglement entropy via AdS/CFT.

the deficit angle δ localized on a codimension two surface γA. This is clearly true in the

three-dimensional pure gravity as the solution to the Einstein equation should be locally
the same as AdS3. However, this is not trivially obvious in higher dimensions. Under this
assumption, the Ricci scalar behaves like a delta function

R = 4π(1 − n)δ(γA) + R(0) , (3.4)

where δ(γA) is the delta function localized on γA, δ(γA) = ∞ for x ∈ γA whereas δ(γA) = 0

otherwise, and R(0) is that of the pure AdSd+2. Then we plug this in the supergravity
action

SAdS = − 1

16πG(d+2)
N

∫

M

dxd+2√g(R + Λ) + · · · , (3.5)

where we only make explicit the bulk Einstein-Hilbert action. This is because the other

parts omitted in the above such as kinetic terms of scalars, lead to extensive terms which
are proportional to n and are canceled in the ratio (2.20). Now the bulk to boundary
relation (3.2) equates the partition function of CFT with the one of AdS gravity. Thus

we can holographically calculate the entanglement entropy SA as follows

SA = − ∂

∂n
log Trρn

A|n=1 = − ∂

∂n

[

(1 − n)Area(γA)

4Gd+2
N

]

n=1

=
Area(γA)

4Gd+2
N

. (3.6)

The action principle in the gravity theory requires that γA is the minimal area surface. In

this way, we reproduced our holographic formula (3.3) [27]. Notice that the presence of
non-trivial minimal surfaces is an well-established property of asymptotically AdS spaces.
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d = 1 formula SA =
c

3
log

�

a
+ c0 (with Brown-Hennaux central charge c = 3R/(2GN ) � 1)

Area law for d > 1 recovered SA ∝ Area(∂A)/ad−1

[Ryu, Takayanagi, (2006)]

[Fursaev, (2006)]

Consider the surfaces γA s.t. ∂γA = ∂A
which are homologous to A

(it exists a bulk region R s.t. ∂R = A ∪ γA)
[Headrick, Takayanagi, (2007)]

[Azeyanagi, Nishioka, Takayanagi,(2008)]
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Figure 3: Two overlapping regions A and B of the boundary, with (left) their respective minimal
bulk hypersurfaces mA, mB and bulk regions rA, rB , and (right) their minimal hypersurfaces mA and
mB cut up and rearranged into two new hypersurfaces mA∪B (the bulk part of the surface of rA ∪ rB)
and mA∩B (the bulk part of the surface of rA ∩ rB). mA∪B and mA∩B end on ∂(A∪B) and ∂(A∩B)
respectively (although they are not necessarily the minimal such hypersurfaces).

(See Figure 3, right side.) Clearly mA∪B ends on ∂(A ∪ B). While nothing says that it is

the minimal hypersurface ending on ∂(A ∪B), its area is an upper bound on the area of the

minimal one, and therefore on 4GN S(A ∪ B); similarly for A ∩ B. Now the hypersurfaces

mA∪B and mA∩B are simply rearrangements of mA and mB (meaning that mA∪B ∪mA∩B =

mA ∪ mB), so they have the same total areas,3

a(mA∪B) + a(mA∩B) = a(mA) + a(mB) , (3.4)

which completes the proof.

Note that equation (3.4) holds not just if a is the area, but if it is any extensive functional

of the hypersurface. This means that if m and m′ are two disjoint hypersurfaces with a

common boundary, ∂m∩ ∂m′ #= ∅, then we have a(m∪m′) = a(m) + a(m′). This is true, for

example, for the Einstein-Hilbert term (with boundary term) added in (2.2).

4. Discussion

In this letter we gave a simple geometric proof of strong subadditivity of entanglement entropy

based on the holographic formula (2.1). The extra dimension in the holographic dual obviously

plays an essential role in this proof. Since the strong subadditivity of entanglement entropy

should be true in any quantum mechanical many-body system, our result shows that the idea

of holography is consistent with any quantum system from this basic viewpoint.

3In this sentence we’ve assumed the generic situation that mA and mB intersect along (spatially) codi-

mension 2 submanifolds. More generally we have mA∪B ∪ mA∩B ⊂ mA ∪ mB and a(mA∪B) + a(mA∩B) ≤

a(mA) + a(mB).
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SA1 + SA2 � SA1∪A2 + SA1∩A2

SA1 + SA2 � SA1\A2
+ SA1\A2

Holographic proof of

strong subadditivity

[Headrick, Takayanagi, (2007)]

[Azeyanagi, Nishioka, Takayanagi, (2008)] [Hubeny, Maxfield, Rangamani, Tonni, (2013)]

Thermal state (SA �= SB)

Figure 5: (a) Minimal surfaces γA in the BTZ black hole for various sizes of A. (b) γA

and γB wrap the different parts of the horizon. (c) When ∂A gets larger, γA is separated
into two parts: one is wrapped on the horizon and the other localized near the boundary.

a typical property of the entanglement entropy at finite temperature as we mentioned in
Sec. 2. We also expect that when A becomes very large before it coincides with the total

system, γA becomes separated into the horizon circle and a small half circle localized on
the boundary (see Fig. 5(c)). We can indeed confirm that this indeed happens in the dual

CFT result (2.13) as shown in [44].

3.4.3 Massive Deformation

Massive quantum field theories can be obtained by perturbing two-dimensional confor-

mal field theories by relevant perturbations. In the dual gravity side, this corresponds to
an IR deformation of AdS3 space. As in the well-known examples [122–125] of confining

gauge theories, we expect the massive deformation caps off the IR region z > zIR.
Consider an (1 + 1)-dimensional infinite system divided into two semi-infinite pieces

and define the subsystem A to be one of them. The important quantity in the massive

theory is the correlation length ξ, which is identified with ξ ∼ zIR in AdS/CFT. Since
we assumed that the subsystem A is infinite, we should take a geodesic (3.9) with a

large value of l(" ξ). Then the geodesic starts from the UV cutoff z = a and ends at
the IR cutoff z = ξ. Thus we can estimate the length of this geodesic and finally the
entanglement entropy as follows

SA =
Length(γA)

4G(3)
N

=
R

4G(3)
N

∫ 2ξ/l

ε=2a/l

ds

sin s
=

c

6
log

ξ

a
. (3.15)

This agrees with the known result [20,21] in the (1+1)-dimensional quantum field theory.
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[Faulkner, Lewkowycz, Maldacena, (2013)]
Quantum correction to Ryu-Takayanagi formula

Holographic Renyi entropies [Casini, Huerta, Myers, (2011)]

[Hung, Myers, Smolkin, Yale, (2011)]



Causal holographic information    

(♦A)

causal wedge �A associated to A

Natural construction starting from the
domain of dependence of A

Fig. 1: A sketch of the causal wedge �A and associated quantities in planar AdS (left) and global AdS

(right) in 3 dimensions: in each panel, the region A is represented by the red curve on right, and

the corresponding surface ΞA by blue curve on left; the causal wedge �A lies between the AdS

boundary and the null surfaces ∂+(�A) (red surface) and ∂−(�A) (blue surface).

succinct description is as follows: Take the boundary domain of dependence ♦A of A; this is the

boundary-spacetime region where the physics is fully determined by the initial conditions at A.

The bulk causal wedge is the intersection of the causal past and future of ♦A. Hence any causal

curve through the bulk which starts and ends on ♦A must be contained inside the causal wedge

�A, and conversely we may think of �A as consisting of the set of all such curves.
1

The causal wedge is a (co-dimension zero) spacetime region; but we can immediately identify

associated lower-dimensional quantities constructed from it, namely bulk co-dimension one null

surfaces, forming the ‘future part’ ∂+(�A) and ‘past part’ ∂−(�A) of the boundary of the causal

wedge, as well as a bulk co-dimension two spacelike surface ΞA lying at their intersection. For

orientation, these constructs are illustrated in Fig. 1, for planar AdS (left) and global AdS (right).

Hence, ΞA, dubbed the causal information surface in [3], is a spacelike surface lying within the

boundary of the causal wedge which penetrates deepest into the bulk and is anchored on ∂A.

In [3, 7] we demonstrated that while ΞA must in fact be a minimal surface within ∂(�A) that is

anchored on ∂A, it is in general not an extremal surface in the full spacetime. There however are

certain situations where the causal information surface ΞA actually coincides with the extremal

surface EA as noted in [3]. It was conjectured there that the corresponding density matrix ρA
was maximally entangled with the rest of the field theory degrees of freedom. Below, we will

consider these special situations further and provide additional evidence for this suggestion.

So far we have utilized solely the causal structure of the bulk to construct our natural bulk

1Note that [1] shows that the causal wedge �A is equivalently defined in terms of the intersection of future and

past going light-sheets emanating from ♦A. They further argue using the covariant holographic entropy bounds

[14] that this implies that the causal wedge �A must be the maximal region of the bulk that can be described by

observables restricted to ♦A. Since the extremal surfaces computing entanglement entropy necessarily lie outside

the causal wedge [3, 12] it however seems more natural that the boundary theory restricted to ♦A is cognizant of

a larger part of the bulk as argued in [2].
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♦A

χA =
Area(ΞA)

4G(d+2)
N

Ac A

ΞAΞAc

EA

Fig. 3: Sketch to illustrate the fact the causal information surfaces ΞA and ΞAc for a region A and its

complement Ac have to lie closer to the respective boundary regions than the common extremal

surface EA = EAc .

the complement of the region Ac
= ΣB\A, whose reduced density matrix could be computed by

integrating out the degrees of freedom in A. Since the total state is pure, it follows from the

definition of the entanglement entropy that SA = SAc . This is easily shown to be true for the

extremal surface construction, since there is a single extremal surface EA = Ec
A in the bulk that

lies anchored on the boundary ∂A which is the common boundary of both A and Ac
.
16

However, for the causal construction there is an asymmetry generically between the causal

wedges of the regions A and Ac
.
17

The basic point is quite simple and the main idea is sketched in

Fig. 3, set in the more natural context of global AdS. Consider e.g. a static asymptotically global

AdS geometry with a gravitational potential well. By the Gao-Wald theorem [25], within a fixed

time set by the size of ♦A, the null geodesics which define the causal wedge cannot reach as far

from the AdS boundary as they could in the pure AdS spacetime. But in pure global AdS, the

causal information surfaces for a circular region A and its complement would coincide.
18

Hence

for any physical deformation of AdS, the causal information surfaces would shift, ΞA towards the

boundary where A is located, and Ξc
A towards the boundary where Ac

is located, as indicated in

Fig. 3. Moreover, due to caustics in ♦A for any other shaped region in d > 2, the corresponding

16 In making this argument, we use the fact that pure states in the field theory correspond to horizon-free

geometries in the bulk; thus the homology constraint described in [24] plays no role in our discussion.
17 This argument was developed together with Mark van Raamsdonk.
18 The reason is apparent from Fig. 4(a), where the null boundaries of the causal wedge for A corresponding

to half the circle are shown. These are Rindler horizons, and due to the large symmetry Rindler horizons from

any other point would look the same. In particular, to construct causal wedge for any other circular region (i.e.

shorter interval in Fig. 4(a)), we can simply time-translate one of the null planes with respect to the other. But

in pure AdS, the same null plane acts both as the past boundary of A’s causal wedge and as the future boundary

of Ac’s causal wedge, since null geodesics through AdS all reconverge at the same antipodal null-translated point.

Since the two null planes (future and past boundaries of either region’s causal wedge) always intersect on a single

surface; this surface is simultaneously ΞA and Ξc
A.
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χA = SA for AdS3, BTZ and rotating BTZ black hole

χA does not satisfy strong subadditivity

for the complementar region: χAc �= χA

χA = SA for spherical A in the boundary CFTd+1

Does holography suggest new quantities?

[Hubeny, Takayanagi, Rangamani, (2007)]

[Hubeny, Rangamani, (2012)]

[Kelly, Wall, (2013)]

A proposal for the CFT dual of the causal holographic information:
One-point entropy



Causal wedge can have “holes”

AΞA
AΞA

Xt=0

Fig. 2: A plot of the intersection points of the future and past congruence, Xt=0, plotted on the Poincaré

disk. In each panel, the outer circle represents the AdS boundary (with the region A highlighted

in red; ϕA = 2.5 in both panels). The black hole size is rh = 0.5 (left) and rh = 0.2 (right),

denoted by red dashed curve (but obscured in the latter case). Xt=0 is composed of the individual

intersection points, color-coded by � (from red at � = 0 to purple at � = 1). For large enough

black hole (left), ϕt=0(�) < π for all �, and therefore Xt=0 = ΞA. For small black hole (right) Xt=0

self-intersects and therefore ΞA has two components as indicated.

on Xt=0 is therefore not on ∂−(�A) and correspondingly is not relevant for ΞA. Said differently,

ΞA closes off at ϕ = π.

To summarize, the condition for ΞA to have two disconnected components is

max
�∈(0,1)

ϕt=0(�) > π . (2.10)

If (2.10) holds, then there are two12 solutions of ϕt=0(�) = π; let us label them by 0 < �1 < �2 < 1.

In such a case, ΞA has one component given by Xt=0 for � ∈ (0, �1) and another given by Xt=0 for

� ∈ (�2, 1). The latter is connected to the AdS boundary and is anchored at ∂A for � = 1. The

former is disconnected from the boundary and wraps the black hole. This situation is illustrated

in Fig. 2, where we plot Xt=0 on the Poincaré disk for connected (left) and disconnected (right)

case.

To understand better what happens in the disconnected case, it is instructive to consider

the full causal wedge. This is illustrated in Fig. 3 where we plot the causal wedge for the same

set of parameters as in the right panel of Fig. 2, but now on a 3-d spacetime diagram in ingoing

12 A-priori, there could have been an even number larger than 2, but explicit checks indicate that this doesn’t

happen; essentially there isn’t enough structure in the geodesic equations for Schwarzschild-AdS to allow multiple

extrema. Said differently, there are two competing effects which influence how much a geodesic ‘orbits’ in a given

time span: the light bending gets stronger nearer to the black hole, but so does the time-delay. To maximize the

former while minimizing the latter, we need to tune � to attain the optimal penetration depth (approximately

given by the null circular orbit radius); our assertion follows since ϕt=0(�) increases for smaller � and decreases

for larger �.
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disk. In each panel, the outer circle represents the AdS boundary (with the region A highlighted

in red; ϕA = 2.5 in both panels). The black hole size is rh = 0.5 (left) and rh = 0.2 (right),

denoted by red dashed curve (but obscured in the latter case). Xt=0 is composed of the individual

intersection points, color-coded by � (from red at � = 0 to purple at � = 1). For large enough

black hole (left), ϕt=0(�) < π for all �, and therefore Xt=0 = ΞA. For small black hole (right) Xt=0

self-intersects and therefore ΞA has two components as indicated.

on Xt=0 is therefore not on ∂−(�A) and correspondingly is not relevant for ΞA. Said differently,

ΞA closes off at ϕ = π.

To summarize, the condition for ΞA to have two disconnected components is

max
�∈(0,1)

ϕt=0(�) > π . (2.10)

If (2.10) holds, then there are two12 solutions of ϕt=0(�) = π; let us label them by 0 < �1 < �2 < 1.

In such a case, ΞA has one component given by Xt=0 for � ∈ (0, �1) and another given by Xt=0 for

� ∈ (�2, 1). The latter is connected to the AdS boundary and is anchored at ∂A for � = 1. The
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the full causal wedge. This is illustrated in Fig. 3 where we plot the causal wedge for the same

set of parameters as in the right panel of Fig. 2, but now on a 3-d spacetime diagram in ingoing

12 A-priori, there could have been an even number larger than 2, but explicit checks indicate that this doesn’t

happen; essentially there isn’t enough structure in the geodesic equations for Schwarzschild-AdS to allow multiple

extrema. Said differently, there are two competing effects which influence how much a geodesic ‘orbits’ in a given

time span: the light bending gets stronger nearer to the black hole, but so does the time-delay. To maximize the
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r+ = 0.2

A
ΞA

ΞA

�A
C+

C−

Fig. 3: Causal wedge for the case rh = 0.2 and ϕA = 2.5, as in right panel of Fig. 2. Same color-coding

(by �) is applied to the null geodesic generators of ∂±�A. In addition to the AdS boundary and

horizon, the plot exhibits the region A (indicated by the thick red curve), the two components of

ΞA (indicated by the thick blue curves), and the curves of caustics C± (indicated by thick brown

curves) which connect up the two components of ΞA. The causal wedge �A bounded by the null

generators clearly exhibits a hole.

Eddington coordinates.
13

There are several features of note: as expected, the causal wedge

clearly has a hole, causing ΞA to have two disconnected components, one anchored on ∂A and

one wrapping the black hole. This was already necessitated by the observation that the causal

wedge cannot penetrate the black hole, while approximating the pure AdS causal wedge far away

from the black hole. However, unlike the pure AdS case, the boundary of the causal wedge has

13 Following previous convention [20], we plot ρ radially and choose the vertical coordinate such that ingoing

radial null geodesics lie at 45◦. This fixes the vertical coordinate to be given by v − ρ+ π
2 , where

v = t+
1

2r2h + 1

��
r2h + 1

�
tan−1 tan ρ�

r2h + 1
− π

2

�
− rh tanh−1 rh

tan ρ

�
.

For this reason, the plot is asymmetric under vertical flip.
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[Hubeny, Rangamani, E.T., (2013)]
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