Aspects of Entanglement in Quantum Field Theory

Erik Tonni

Joint works with:
Pasquale Calabrese, John Cardy, Veronica Hubeny
Mukund Rangamani, Luca Tagliacozzo, Andrea Coser

New Frontiers in Theoretical Physics
Cortona, May 2014

Plan of the talk

Quantum Field Theory
CFT
Renormalization Group
AdS/CFT
Black Holes physics

Quantum Information Theory

JPA special issue vol. 42 (2009) eds.: P. Calabrese, J. Cardy and B. Doyon
\rightarrow Entanglement in 2D CFT:
\bigcirc Entanglement entropies for disjoint intervals
\bigcirc Entanglement for mixed states: Negativity
\rightarrow Entanglement in AdS/CFT:
O Holographic entanglement entropy
O Causal Holographic Information

Entanglement entropies: definition

\square Quantum system (\mathcal{H}) in the ground state $|\Psi\rangle$ Density matrix $\rho=|\Psi\rangle\langle\Psi| \quad \Longrightarrow \quad \operatorname{Tr} \rho^{n}=1$
\square Hilbert space $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$

e.g.: spatial bipartition
$\square A$'s reduced density matrix $\quad \rho_{A}=\operatorname{Tr}_{B} \rho \quad\left(\operatorname{Tr}_{A} \rho_{A}=1\right)$
if ρ describes a pure state then ρ_{A} describes a mixed state
\square Entanglement entropy \equiv Von Neumann entropy of ρ_{A}

$$
S_{A}=-\operatorname{Tr}_{A}\left(\rho_{A} \log \rho_{A}\right)
$$

\square Replica trick

Entanglement entropy: some properties

\square Bipartition $\quad \mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B} \quad \rho=|\Psi\rangle\langle\Psi| \quad$ pure state

$$
\begin{aligned}
& |\Psi\rangle=\sum_{k} c_{k}\left|\Psi_{k}\right\rangle_{A}\left|\Psi_{k}\right\rangle_{B} \\
& c_{k} \geqslant 0 \quad \sum_{k} c_{k}^{2}=1
\end{aligned}
$$

$$
S_{A}=-\sum_{k} c_{k}^{2} \log c_{k}^{2}=S_{B}
$$

$\Longrightarrow \quad S_{A}$ is not extensive

Schmidt decomposition
Araki-Lieb inequality
$\square \quad \rho$ mixed state

$$
\delta S_{A} \equiv S_{A}-S_{B}
$$

$$
\left|\delta S_{A}\right| \leqslant S_{A \cup B}=S_{\rho}
$$

$\square \quad$ Subadditivity
$A_{1} \cap A_{2}=\emptyset$
$S_{A_{1}}+S_{A_{2}} \geqslant S_{A_{1} \cup A_{2}}$
$\square \quad$ Strong Subadditivity

$$
\begin{aligned}
& S_{A_{1}}+S_{A_{2}} \geqslant S_{A_{1} \cup A_{2}}+S_{A_{1} \cap A_{2}} \\
& S_{A_{1}}+S_{A_{2}} \geqslant S_{A_{1} \backslash A_{2}}+S_{A_{2} \backslash A_{1}}
\end{aligned}
$$

Geometric entropy: area law

\square Assume that A and B correspond to a spatial bipartition of the system

$\square \quad$ Area law: In d spatial dimensions when $\rho=|\Psi\rangle\langle\Psi|\left(S_{A}=S_{A^{c}}\right)$

$$
S_{A} \propto \frac{\operatorname{Area}(\partial A)}{a^{d-1}}+\ldots
$$

[Bombelli, Koul, Lee, Sorkin, (1986)]
[Srednicki, (1993)]

$$
S_{A}=\frac{c}{3} \log \frac{\ell}{a}+\text { const }
$$

$$
S_{A}=\gamma \frac{2 \pi R}{a}-f
$$

[Klebanov, Pufu, Safdi, (2011)] [Casini, Huerta, (2012)]
\square Area law violated in presence of Fermi surfaces: $S_{A} \sim L^{d-1} \log L$ [Wolf, (2005)] [Gioev, Klich, (2005)]

Replica trick for the entanglement entropy

\square Example: density matrix ρ in a thermal state at temperature $T=1 / \beta$

$$
\underline{\phi_{x}} \tau=\beta
$$

$$
\mathcal{Z}=\operatorname{Tr} e^{-\beta H} \quad \text { The trace sews together the edges at } \tau=0 \text { and } \tau=\beta
$$ providing a cylinder with circumference of length β.

$\square \rho_{A}=\operatorname{Tr}_{B} \rho$

$$
A=\left(u_{1}, v_{1}\right) \cup \cdots \cup\left(u_{N}, v_{N}\right)
$$

The trace Tr_{B} sews together only the points $\notin A$. Open cuts are left along the disjoint intervals $\left(u_{j}, v_{j}\right)$.

Entanglement entropies \& Riemann surfaces

$\square \quad n$ copies sewed together cyclically along the cuts

$$
\operatorname{Tr} \rho_{A}^{n}=\frac{\mathcal{Z}_{N, n}}{\mathcal{Z}^{n}}
$$

$$
" \rho_{A}^{i j} \rho_{A}^{j k} \rho_{A}^{k l} \rho_{A}^{l i} "=
$$

\square Partition function on the n sheeted Riemann surface $\mathcal{R}_{N, n}$
$\mathcal{Z}_{N, n}=\int_{\mathcal{C}_{A}}\left[d \varphi_{1} \cdots d \varphi_{n}\right]_{\mathbf{C}} \exp \left[-\int_{\mathbf{C}} d z d \bar{z}\left(\mathcal{L}\left[\varphi_{1}\right](z, \bar{z})+\ldots+\mathcal{L}\left[\varphi_{n}\right](z, \bar{z})\right)\right]$ $\mathcal{C}_{A}: \varphi_{i}\left(x, 0^{+}\right)=\varphi_{i+1}\left(x, 0^{-}\right) \quad x \in A=\cup_{j=1}^{N} A_{j} \quad i=1, \ldots, n$
N cuts n sheets
$\mathcal{R}_{3,3}$

$$
g=(N-1)(n-1)
$$

\square Global symmetry $i \mapsto i+1 \bmod n$ from replication

2D CFT: Entanglement entropies as correlation functions

$\square \quad$ For one interval $(N=1)$ the Renyi entropies can be written as a two point function of twist fields $\mathcal{T}_{n}, \overline{\mathcal{T}}_{n}$ on the sphere
[Calabrese, Cardy, (2004)]
[Casini, Fosco, Huerta, (2005)] [Ryu, Takayanagi, (2006)] [Cardy, Castro-Alvaredo, Doyon, (2008)]

$$
\Delta_{n}=\frac{c}{12}\left(n-\frac{1}{n}\right)
$$

$\square \quad$ Twist fields have been studied long ago in string theory
[Zamolodchikov, (1987)] [Dixon, Friedan, Martinec, Shenker, (1987)]
[Knizhnik, (1987)] [Bershadsky, Radul, (1987)]

N=2: higher genus Riemann surfaces from replication

$\square \quad$ For many disjoint intervals higher genus Riemann surfaces occur

$3 g-3$ complex moduli for $g \geqslant 2$
\square

We are dealing with a subclass of Riemann surfaces of genus $g=(N-1)(n-1)$ obtained from replication Indeed $\tau=\tau(\boldsymbol{x})$

2D CFT: Renyi entropies for many disjoint intervals

N disjoint intervals $\Longrightarrow 2 N$ point function of twist fields

$$
\operatorname{Tr} \rho_{A}^{n}=\frac{\mathcal{Z}_{N, n}}{\mathcal{Z}^{n}}=\left\langle\prod_{i=1}^{N} \mathcal{T}_{n}\left(u_{i}\right) \overline{\mathcal{T}}_{n}\left(v_{i}\right)\right\rangle=c_{n}^{N}\left|\frac{\prod_{i<j}\left(u_{j}-u_{i}\right)\left(v_{j}-v_{i}\right)}{\prod_{i, j}\left(v_{j}-u_{i}\right)}\right|^{2 \Delta_{n}} \quad \mathcal{F}_{N, n}(\boldsymbol{x})
$$

$\mathcal{Z}_{N, n}$ is the partition function of $\mathcal{R}_{N, n}$ of genus $g=(N-1)(n-1)$

Free compactified boson \& Ising model

$\square \mathcal{R}_{N, n}$ is

$$
y^{n}=\prod_{\gamma=1}^{N}\left(z-x_{2 \gamma-2}\right)\left[\prod_{\gamma=1}^{N-1}\left(z-x_{2 \gamma-1}\right)\right]^{n-1} \quad g=(N-1)(n-1)
$$

\square Partition function for a generic Riemann surface studied long ago in string theory [Zamolodchikov, (1987)] [Alvarez-Gaume, Moore, Vafa, (1986)] [Dijkgraaf, Verlinde, Verlinde, (1988)]
\square Free compactified boson $\left(\eta \propto R^{2}\right)$
[Coser, Tagliacozzo, E.T., (2013)]

$$
\mathcal{F}_{N, n}(\boldsymbol{x})=\frac{\Theta\left(\mathbf{0} \mid T_{\eta}\right)}{|\Theta(\mathbf{0} \mid \tau)|^{2}} \quad T_{\eta}=\left(\begin{array}{cc}
\mathrm{i} \eta \mathcal{I} & \mathcal{R} \\
\mathcal{R} & \mathrm{i} \mathcal{I} / \eta
\end{array}\right) \quad \begin{aligned}
& \tau=\mathcal{R}+\mathrm{i} \mathcal{I} \\
& \text { period matrix }
\end{aligned}
$$

Riemann theta function with characteristic

$$
\Theta[\boldsymbol{e}](\mathbf{0} \mid \Omega)=\sum_{\boldsymbol{m} \in \mathbb{Z}^{p}} \exp \left[\mathrm{i} \pi(\boldsymbol{m}+\boldsymbol{\varepsilon})^{\mathrm{t}} \cdot \Omega \cdot(\boldsymbol{m}+\boldsymbol{\varepsilon})+2 \pi \mathrm{i}(\boldsymbol{m}+\boldsymbol{\varepsilon})^{\mathrm{t}} \cdot \boldsymbol{\delta}\right]
$$

$$
\mathcal{F}_{N, n}^{\mathrm{Ising}}(\boldsymbol{x})=\frac{\sum_{\boldsymbol{e}}|\Theta[\boldsymbol{e}](\mathbf{0} \mid \tau)|}{2^{g}|\Theta(\mathbf{0} \mid \tau)|}
$$

\square Two intervals case: [Caraglio, Gliozzi, (2008)] [Furukawa, Pasquier, Shiraishi, (2009)] [Calabrese, Cardy, E.T., (2009), (2011)] [Fagotti, Calabrese, (2010)] [Alba, Tagliacozzo, Calabrese, (2010), (2011)]

The periodic harmonic chain

\square Periodic chain of harmonic oscillators
$H=\sum_{n=0}^{L-1}\left(\frac{1}{2 M} p_{n}^{2}+\frac{M \omega^{2}}{2} q_{n}^{2}+\frac{K}{2}\left(q_{n+1}-q_{n}\right)^{2}\right)$
The massless case in the continuum limit is the $c=1$ free boson on the line [Peschel, Chung, (1999)] [Botero, Reznik, (2004)]
[Audenaert, Eisert, Plenio, Werner,(2002)]

Decompactification
regime (large η)
[Coser, Tagliacozzo, E.T., (2013)]

$$
\mathcal{F}_{N, n}^{\mathrm{dec}}(\boldsymbol{x})=\frac{\eta^{g / 2}}{\sqrt{\operatorname{det}(\mathcal{I})}|\Theta(\mathbf{0} \mid \tau)|^{2}}
$$

\square Numerical checks for the Ising model through Matrix Product States (MPS)

Short intervals expansion

$\square \operatorname{Tr} \rho_{A}^{n}$ when the lengths ℓ_{p} of the intervals are small w.r.t. to other characteristc lengths of the system
[Headrick, (2010)]
[Calabrese, Cardy, E.T., (2011)]
\square E.g.: two intervals

$$
\operatorname{Tr} \rho_{A}^{n}=c_{n}^{2}\left(\ell_{1} \ell_{2}\right)^{-c / 6(n-1 / n)} \sum_{\left\{k_{j}\right\}}\left(\frac{\ell_{1} \ell_{2}}{n^{2} r^{2}}\right)^{\sum_{j}\left(\Delta_{j}+\bar{\Delta}_{j}\right)}\left\langle\prod_{j=1}^{n} \phi_{k_{j}}\left(e^{2 \pi i j / n}\right)\right\rangle_{\mathbf{C}}^{2}
$$

$\operatorname{Tr} \rho_{A}^{n}$ for disjoint intervals contains all the data of the CFT (conformal dimensions and OPE coefficients)

The vacuum is not empty

Negativity \& partial transpose: motivations \& definitions

\square Tripartite system $\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}} \otimes \mathcal{H}_{B} \quad \Longrightarrow \quad \rho_{A_{1} \cup A_{2}}$ is mixed

$S_{A_{1} \cup A_{2}}$: entanglement between $A_{1} \cup A_{2}$ and B
Entanglement between A_{1} and A_{2} ?
A computable measure of the entanglement is the logarithmic negativity
$\square \quad \rho^{T_{2}}$ is the partial transpose of ρ

$$
\left\langle e_{i}^{(1)} e_{j}^{(2)}\right| \rho^{T_{2}}\left|e_{k}^{(1)} e_{l}^{(2)}\right\rangle=\left\langle e_{i}^{(1)} e_{l}^{(2)}\right| \rho\left|e_{k}^{(1)} e_{j}^{(2)}\right\rangle \quad\left(\left|e_{i}^{(k)}\right\rangle \text { base of } \mathcal{H}_{A_{k}}\right)
$$

[Peres, (1996)] [Zyczkowski, Horodecki, Sanpera, Lewenstein, (1998)]
[Vidal, Werner, (2002)] [Eisert, (2001)]

Trace norm

$$
\left|\left|\rho^{T_{2}} \| \equiv \operatorname{Tr}\right| \rho_{\left(\operatorname{Tr} \rho^{T_{2}}\right.}=1\right)=\sum_{i}\left|\lambda_{i}\right|=1-2 \sum_{\lambda_{i}<0} \lambda_{i}
$$

Logarithmic negativity

$$
\mathcal{E}_{A_{2}} \equiv \ln \left\|\rho^{T_{2}}\right\|
$$

$\square \quad$ Bipartite system $\mathcal{H}=\mathcal{H}_{A} \otimes \mathcal{H}_{B}$ in a generic state $\rho \longrightarrow \mathcal{E}_{A}=\mathcal{E}_{B}$

Replica approach to Negativity

\square A parity effect for $\begin{aligned} \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n}\end{aligned} \begin{aligned} \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}} & =\sum_{i} \lambda_{i}^{n_{e}}=\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|^{n_{e}}+\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|^{n_{e}} \\ \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{o}} & =\sum_{i} \lambda_{i}^{n_{o}}=\sum_{\lambda_{i}>0}\left|\lambda_{i}\right|^{n_{o}}-\sum_{\lambda_{i}<0}\left|\lambda_{i}\right|^{n_{o}}\end{aligned}$
\square Replica limit

$$
\begin{gathered}
\mathcal{E}_{A}=\log \left\|\rho^{T_{2}}\right\|=\lim _{n_{e} \rightarrow 1} \log [7 \\
\lim _{n_{o} \rightarrow 1} \operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{o}}=\operatorname{Tr} \rho^{T_{2}}=1
\end{gathered}
$$

Analytic continuation on the even sequence $\operatorname{Tr}\left(\rho^{T_{2}}\right)^{n_{e}}$ (make 1 an even number)

Partial Transposition for bipartite systems: pure states

$\mathcal{H}=\mathcal{H}_{A_{1}} \otimes \mathcal{H}_{A_{2}}$ and the whole system in the ground state

$$
\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}^{2}\left(u_{2}\right) \overline{\mathcal{T}}_{n}^{2}\left(v_{2}\right)\right\rangle
$$

Partial - exchange
Transposition - two twist fields
$\square \mathcal{T}_{n}^{2}$ connects the j-th sheet with the $(j+2)$-th one Even $n=n_{e} \Longrightarrow$ decoupling

$$
\begin{aligned}
& \operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{e}}=\left(\left\langle\mathcal{T}_{n_{e} / 2}\left(u_{2}\right) \overline{\mathcal{T}}_{n_{e} / 2}\left(v_{2}\right)\right\rangle\right)^{2}=\left(\operatorname{Tr} \rho_{A_{2}}^{n_{e} / 2}\right)^{2} \\
& \operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n_{o}}=\left\langle\mathcal{T}_{n_{o}}\left(u_{2}\right) \overline{\mathcal{T}}_{n_{o}}\left(v_{2}\right)\right\rangle=\operatorname{Tr} \rho_{A_{2}}^{n_{o}}
\end{aligned}
$$

$$
n=4
$$

$$
\mathcal{E}=\frac{c}{2} \log (\ell / a)+\mathrm{const}
$$

(Renyi entropy $1 / 2$)

2D CFT: two adjacent \& disjoint intervals

$\rho_{A_{1} \cup A_{2}}^{T_{2}}$
\bigcirc Adjacent intervals
$\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}\left(-\ell_{1}\right) \overline{\mathcal{T}}_{n}^{2}(0) \mathcal{T}_{n}\left(\ell_{2}\right)\right\rangle$
\square Analytic continuation $n_{e} \rightarrow 1$
B

$\mathcal{T}_{n}\left(-\ell_{1}\right)$
$\mathcal{E}=\frac{c}{4} \ln \left(\frac{\ell_{1} \ell_{2}}{\ell_{1}+\ell_{2}}\right)+\mathrm{const}$

\bigcirc Disjoint intervals

B	\mathcal{T}_{n}	A_{1}	$\overline{\mathcal{T}}_{n}$	B	$\overline{\mathcal{T}}_{n}$	A_{2}	\mathcal{T}_{n}	B
	u_{1}		v_{1}		u_{2}		v_{2}	

$$
\left.\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}=\left\langle\mathcal{T}_{n}\left(u_{1}\right) \overline{\mathcal{T}}_{n}\left(v_{1}\right) \overline{\mathcal{T}}_{n}\left(u_{2}\right) \mathcal{T}_{n}\left(v_{2}\right)\right\rangle\right)
$$

Renyi entropies us traces of the Partial Transpose

$\operatorname{Tr} \rho_{A}^{n}$

$\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}$

Two disjoint intervals

\square Previous numerical results for \mathcal{E} : Ising (DMRG) and harmonic chains

[Wichterich, Molina-Vilaplana, Bose, (2009)]
[Marcovitch, Retzker, Plenio, Reznik, (2009)]
\square Periodic harmonic chain:
[Calabrese, Cardy, E.T., (2012)]

$$
R_{n}=\frac{\operatorname{Tr}\left(\rho_{A}^{T_{2}}\right)^{n}}{\operatorname{Tr} \rho_{A}^{n}}
$$

\square Ising model: (Tree Tensor Network) [Calabrese, Tagliacozzo, E.T., (2013)]

Holographic entanglement entropy

$A d S_{d+2} / C F T_{d+1}$ correspondence
[Ryu, Takayanagi, (2006)]

[Headrick, Takayanagi, (2007)] [Fursaev, (2006)] [Azeyanagi, Nishioka, Takayanagi,(2008)]
\bigcirc Find the surface $\tilde{\gamma}_{A}$ with minimal area

$$
S_{A}=\frac{\operatorname{Area}\left(\tilde{\gamma}_{A}\right)}{4 G_{N}^{(d+2)}}
$$

$\square d=1$ formula $S_{A}=\frac{c}{3} \log \frac{\ell}{a}+c_{0} \quad$ (with Brown-Hennaux central charge $c=3 R /\left(2 G_{N}\right) \gg 1$)
\square Area law for $d>1$ recovered $S_{A} \propto \operatorname{Area}(\partial A) / a^{d-1}$

Holographic entanglement entropy

\square Holographic proof of strong subadditivity
$S_{A_{1}}+S_{A_{2}} \geqslant S_{A_{1} \cup A_{2}}+S_{A_{1} \cap A_{2}}$
$S_{A_{1}}+S_{A_{2}} \geqslant S_{A_{1} \backslash A_{2}}+S_{A_{1} \backslash A_{2}}$
[Headrick, Takayanagi, (2007)]

\square Thermal state $\left(S_{A} \neq S_{B}\right)$ [Headrick, Takayanagi, (2007)] [Azeyanagi, Nishioka, Takayanagi, (2008)] [Hubeny, Maxfield, Rangamani, Tonni, (2013)]

\square Holographic Renyi entropies
[Casini, Huerta, Myers, (2011)]
[Hung, Myers, Smolkin, Yale, (2011)]
\square Quantum correction to Ryu-Takayanagi formula [Faulkner, Lewkowycz, Maldacena, (2013)]

Causal holographic information

\square Does holography suggest new quantities?
\square Natural construction starting from the domain of dependence of $A\left(\diamond_{\mathcal{A}}\right)$ causal wedge $\mathcal{A}_{\mathcal{A}}$ associated to \mathcal{A}

$$
\chi_{A}=\frac{\operatorname{Area}\left(\Xi_{A}\right)}{4 G_{N}^{(d+2)}}
$$

\square A proposal for the CFT dual of the causal holographic information: One-point entropy [Kelly, Wall, (2013)]

CHI: Schwarzschild-AdS black hole

Schwarzschild-AdS5

$r_{+}=0.2$

Conclusions

\square Entanglement entropies for disjoint intervals contain all the CFT data
\square Entanglement for mixed states: negativity in QFT
\square Holography can suggest new ways to quantify entanglement (e.g. CHI)

Analytic continuations, Negativity for fermions, Higher dimensions, Interactions, Holographic interpretations, ...
\bigcirc Out of equilibrium dynamics (thermalization, quantum quenches) [Calabrese, Cardy, (2005), (2007)] [Hubeny, Rangamani, Takayanagi, (2007)] [...]
\bigcirc Entanglement \& RG [Casini, Huerta, (2004), (2012)] [Myers, Singh, (2012)] [...]
\bigcirc Quantum Hall Effect [Li, Haldane, (2008)] [...]
\bigcirc Excited states [Berganza, Alcaraz, Sierra, (2011)] [...]

