Phenomenology of TMDs

Mariaelena Boglione

Torino $\left\{\begin{array}{l}\text { Mauro Anselmino } \\ \text { Stefano Melis } \\ \text { Osvaldo Gonzalez }\end{array} \quad\right.$ Cagliari $\left\{\begin{array}{l}\text { Francesco Murgia } \\ \text { Umberto D'Alesio }\end{array} \quad\right.$ Jlab (USA) $\left\{\begin{array}{l}\text { Alexei Prokudin }\end{array}\right.$

3D Structure of the Nucleon

The exploration of the 3-dimensional structure of the nucleon, both in momentum and in configuration space, is one of the major issues in high energy hadron physics.

Information on the 3-dimensional structure of the nucleon is embedded in the Transverse Momentum Dependent distribution and fragmentation functions
 (TMDs).

In a very simple phenomenological approach, hadronic cross sections and spin asymmetries are generated, within a QCD factorization framework, as convolutions of distribution and (or) fragmentation functions with elementary cross sections.

> This simple approach can successfully describe a wide range of experimental data.

Intrinsic Transverse Momentum

We cannot learn about the spin structure of the nucleon without taking into account the transverse motion of the partons inside it

Transverse motion is usually integrated over, but there are important spin- k_{\perp} correlations which should not be neglected

Where can we learn about the 3D structure of matter?

Where can we learn about the 3D structure of matter?

Experimental data for TMS studies

Experimental data for TMS studies

From the theory point of view ...

TMD factorization holds at large Q^{2} and $P_{T} \approx k_{\perp} \approx \lambda_{Q C D}$
Two scales: $P_{T} \ll Q^{2}$
(Collins, Soper, Ji, Ma, Yuan, Qiu, Vogelsang,Collins, Metz)

Phenomenology

```
    THEORY
* Perturbative QCD
* Factorization theorem
* ..
```

> PHENOMENOLOGY Mission: devise simple flexible and efficient models to link THEORY with EXPERIMENTS

EXPERIMENTS

- Drell-Yan scattering
- Di-hadron production from e+e- scattering
- DIS and SIDIS processes
- Inclusive single particle production from hadronic scattering

Phenomenology

The blind men and the elephant from H. Avakian

Experiments \rightarrow Blind Men

Several different experiments
Measuring the same observable, with limited coverage

[^0]
How can we learn about the 3D structure of matter?

How can we learn about the 3D structure of matter?

As Barbara Pasquini nicely explained yesterday ...

Lorcé, BP, Vanderhaeghen, JHEPO5 (2011) 041

How can we learn about the 3D structure of matter?

As Barbara Pasquini nicely explained
yesterday ...

$\rightarrow \quad \int d x$
Lorcé, BP, Vanderhaeghen, JHEPO5 (2011) 041

Wigner function

5D

Transverse Momentum Dependent distributions

TMDs

$W\left(x, k_{\perp}, r_{\perp}\right)$

3D

PDFs versus TMDs

Collinear parton distribution functions

Collinear parton distribution functions

Transversity

- The transversity distribution function contains basic information on the spin structure of the nucleons.
- Being related to the expectation value of a chiral odd operator, it appears in physical processes which require a quark helicity flip; therefore it cannot be measured in usual DIS.
- Drell-Yan \rightarrow planned experiments in polarized pp at PAX.
- At present, the only chance of gathering information on transversity is SIDIS, where it appears associated to the Collins fragmentation function.
- DOUBLE PUZZLE: we cannot determine transversity if we do not know the Collins fragmentation function.

Transversity

- There is no gluon transversity distribution function
- Transversity cannot be studied in deep inelastic scattering because it is chirally odd
- Transversity can only appear in a cross-section convoluted to another chirally odd function

SIDIS

Drell -Yan

TMD distribution and fragmentation functions

> Correlations between spin and transverse momentum

Fragmentation

$$
D_{1}{ }^{9}\left(z, p_{T}^{2}\right)
$$

$$
\mathrm{H}_{1}^{\mathrm{a}^{\perp}}\left(\mathrm{z}, \mathbf{p}_{\mathrm{T}}^{2}\right)
$$

The Sivers function

$$
f_{q / p, S}\left(x, \boldsymbol{k}_{\perp}\right)=f_{q / p}\left(x, k_{\perp}\right)+\frac{1}{2} \Delta^{N} f_{q / p^{\uparrow}}\left(x, k_{\perp}\right) S \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right)
$$

The Sivers function is related to the probability of finding an unpolarized quark inside a transversely polarized proton

$$
=f_{q / p}\left(x, k_{\perp}\right)-\frac{k_{\perp}}{M} f_{1 T}^{\perp q}\left(x, k_{\perp}\right) \boldsymbol{S} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right)
$$

The Sivers function, is particularly interesting, as it provides information on the partonic orbital

The Sivers function embeds
the correlation between
the proton spin and the quark transverse momentum angular momentum

The Boer-Mulders function

$$
f_{q, s_{q} / p}\left(x, \boldsymbol{k}_{\perp}\right)=\frac{1}{2} f_{q / p}\left(x, k_{\perp}\right)+\frac{1}{2} \Delta f_{q^{\uparrow} / p}\left(x, k_{\perp}\right) \boldsymbol{s}_{q} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right)
$$

The Boer-Mulders function is related to the probability of finding a polarized quark

$$
=\frac{1}{2} f_{q / p}\left(x, k_{\perp}\right)-\frac{1}{2} \frac{k_{\perp}}{M} h_{1}^{\perp q}\left(x, k_{\perp}\right) \boldsymbol{s}_{q} \cdot\left(\hat{\boldsymbol{p}} \times \hat{\boldsymbol{k}}_{\perp}\right)
$$ inside an unpolarized proton

```
The Boer Mulders function is chirally odd
```


The Boer-Mulders function embeds the correlation between the quark spin and its transverse momentum

The Collins function

$$
D_{h / q, s_{q}}\left(z, \boldsymbol{p}_{\perp}\right)=D_{h / q}\left(z, p_{\perp}\right)+\frac{1}{2} \Delta^{N} D_{h / q^{\uparrow}}\left(z, p_{\perp}\right) \boldsymbol{s}_{q} \cdot\left(\hat{\boldsymbol{p}}_{q} \times \hat{\boldsymbol{p}}_{\perp}\right)
$$

The Collins function is related to the probability that a transversely polarized struck quark will fragment into a spinless hadron

$$
=D_{h / q}\left(z, p_{\perp}\right)+\frac{p_{\perp}}{z M_{h}} H_{1}^{\perp q}\left(z, p_{\perp}\right) \boldsymbol{s}_{q} \cdot\left(\hat{\boldsymbol{p}}_{q} \times \hat{\boldsymbol{p}}_{\perp}\right)
$$

The Collins function is chirally odd

The Collins function embeds the correlation between the fragmenting quark spin and the transverse momentum of the produced hadron

An example: unpolarized TMD

From B. Pasquini talk ...

An example: the Sivers function

From B. Pasquini talk ...
distribution of unpolarized q in \perp polarized p^{\dagger}

$$
f_{q / p^{\uparrow}}\left(x, \mathbf{k}_{\perp}\right)=f_{1}^{q}\left(x, \mathbf{k}_{\perp}^{2}\right)-f_{1 T}^{\perp q}\left(x, \mathbf{k}_{\perp}^{2}\right) \frac{\left(\hat{\mathbf{P}} \times \mathbf{k}_{\perp}\right) \cdot \mathbf{S}}{M}
$$

deformation induced by Sivers function

Spin and angular momentum

Proton and quarks are spin-1⁄2 particles
Quarks are confined inside an extended proton and move - the motion creates Orbital Angular Momentum

Can this motion be correlated with the spin of the proton?

Sivers function and angular momentum

quark and gluon contribution to the nucleon spin
$J^{q, g}=\frac{1}{2} \int_{-1}^{1} \mathrm{~d} x x(\underbrace{H^{q, g}}_{\text {unele }}(x, 0,0)+E^{q, g}(x, 0,0))$
A. Bacchetta, M. Radici, Phys. Rev. Lett. 107 (2011) 212001

Assume

$$
\begin{aligned}
f_{1 T}^{\perp(0) a}\left(x ; Q_{L}^{2}\right) & =-L(x) E^{a}\left(x, 0,0 ; Q_{L}^{2}\right) \\
f_{1 T}^{\perp(0) a}(x, Q) & =\int d^{2} \boldsymbol{k}_{\perp} \widehat{f}_{1 T}^{\perp a}\left(x, k_{\perp} ; Q\right)
\end{aligned}
$$Parameterize the Sivers and Lensing function (can be extracted from models or by fitting data)Obtain $E^{q}(x)$

\square Estimate J: $\mathrm{J}^{\mathrm{u}} \sim 0.23, \mathrm{~J}^{\mathrm{q} \neq \mathrm{u}} \sim 0$ at $\mathrm{Q}^{2}=2.4 \mathrm{GeV}^{2}$

Is the \boldsymbol{k}_{\perp} TMD distribution Gaussian ?

Drell-Yan phenomenology

Stefano Melis preliminary studies

The fit on E288 and E605 Drell-Yan data is performed by assuming a gaussian k_{\perp} dependence with a DGLAP evolution of the factorized

$$
\widehat{f}_{q / p}\left(x, k_{\perp} ; Q\right)=f_{q / p}(x ; Q) \frac{e^{-k_{\perp}^{2} /\left(\left\langle k_{\perp}^{2}\right\rangle\right)}}{\pi\left\langle k_{\perp}^{2}\right\rangle}
$$

The gaussian width is fitted independently for each different energy data set.
Notice that $\left\langle{k_{\perp}}^{2}\right\rangle$ grows as energy grows

Schweitzer, Teckentrup, Metz, Phys.Rev. D81 (2010) 094019
D'Alesio, Murgia, Phys. Rev. D70 (2004) 074009

Extracting the unpolarized TMD Gaussian widths from SIDIS data

Let's see whether the Gaussian approximation works in the most simple case ...

Extracting the unpolarized TMD Gaussian widths from SIDIS multiplicities

M. Anselmino, M. Boglione, O. Gonzalez, S. Melis, A. Prokudin, JHEP 1404 (2014) 005, ArXiv:1312.6261

- Data: Hermes (p and d targets, $\pi^{+}, \pi^{-}, \mathrm{K}^{+}, \mathrm{K}^{-}$production)

2660 data points in ($\mathrm{x}, \mathrm{z}, \mathrm{P}_{\mathrm{T},} \mathrm{Q}^{2}$ bins)
Compass (d target, h^{+}, h - production)
18627 data points in ($\mathrm{x}, \mathrm{z}, \mathrm{P}_{\mathrm{T},} \mathrm{Q}^{2}$ bins)
A. Airapetian et al., Phys. Rev. D87 (2013) 074029
C. Adolph et al., Eur. Phys. J. C73, 2531 (2013)

- Parameterizations:
 (no evolution)

Extracting the unpolarized TMD Gaussian widths from SIDIS multiplicities

In the simplest form of this model:

Flavor-independent average transverse momenta

No x-dependence
No z-dependence
Two parameters in total

Gaussian model:

$$
\left\langle P_{T}^{2}\right\rangle=\left\langle p_{\perp}^{2}\right\rangle+z_{h}^{2}\left\langle k_{\perp}^{2}\right\rangle
$$

$$
\sigma \propto \frac{1}{\pi\left\langle P_{T}^{2}\right\rangle} e^{-P_{T}^{2} /\left\langle P_{T}^{2}\right\rangle}
$$

Gaussian width
Normalization

Extracting the unpolarized TMD Gaussian widths from SIDIS multiplicities

M. Anselmino, M. Boglione, O. Gonzalez, S. Melis, A. Prokudin, JHEP 1404 (2014) 005, ArXiv:1312.6261

Extracting the unpolarized TMD Gaussian widths from SIDIS multiplicities

M. Anselmino, M. Boglione, O. Gonzalez, S. Melis, A. Prokudin, JHEP 1404 (2014) 005, ArXiv:1312.6261

Comparison with Jlab data HALL C

M. Anselmino, M. Boglione, O. Gonzalez, S. Melis, A. Prokudin, JHEP 1404 (2014) 005, ArXiv:1312.6261

R. Asaturyan et al., Phys. Rev. C85, 015202 (2012)

Comparison with Jlab data CLAS 6

M. Anselmino, M. Boglione, O. Gonzalez, S. Melis, A. Prokudin, JHEP 1404 (2014) 005, ArXiv:1312.6261

M. Osipenko et al., Phys. Rev. D80, 032004 (2009)
proton target global $\mathrm{X}^{2} /$ d.o.f. $=1.63 \pm 0.12$

$$
\text { no flavor dep. } \quad 1.72 \pm 0.11
$$

A. Signori, A. Bacchetta, M. Radici, G. Schnell, JHEP 1311 (2013) 194

5/7 parameters Much more complex parametrization of x and z dependence
π^{+}
2.64 ± 0.21
0.46 ± 0.07 0.43 ± 0.07

What about k_{\perp} Gaussians then?

\square Gaussian k_{\perp} distributions seem to describe the data pretty well.

- However, one could legitimately wonder whether other distributions could do better.
Drop the $\mathrm{x}-\mathrm{k}_{\perp}$ factorization hypothesis and use a quark-diquark like model for the unpolarized TMDsPerform the same fits again and compare with the results obtained with Gaussian distributions

We find that the description of data significantly worsen!

What about k_{\perp} Gaussians then?

V. Barone, M. Boglione, O. Gonzalez, S. Melis, PRELIMINARY

Vaguely inspired to A. Bacchetta, F. Conti, M. Radici,
Phys.Rev. D78 (2008) 074010

$$
D\left(z, p_{\perp}\right)=D(z) \frac{6 \tilde{L}^{6}}{\pi\left(2 \nu^{2}+\tilde{L}^{2}\right)} \frac{p_{\perp}^{2}+\nu^{2}}{\left(p_{\perp}^{2}+\tilde{L}^{2}\right)^{4}}
$$

$$
\tilde{L}^{2}=(1-z) M_{h}^{2}+z\left(\tilde{M}_{s}^{2}-\tilde{\Lambda}^{2}\right)+z^{2} \tilde{\Lambda}^{2}
$$

$$
\nu^{2}=\left(\tilde{M}_{s}-(1-z) \tilde{m}\right)^{2}
$$

$$
\begin{array}{ll}
M_{s}^{2}=0.43 & \Lambda^{2}=0.25^{\dagger} \\
\tilde{M}_{s}^{2}=1.11 & \tilde{\Lambda}^{2}=0.00
\end{array}
$$

$$
\begin{aligned}
f\left(x, k_{\perp}\right) & =f(x) \frac{6 L^{6}}{\pi\left(2 \mu^{2}+L^{2}\right)} \frac{k_{\perp}^{2}+\mu^{2}}{\left(k_{\perp}^{2}+L^{2}\right)^{4}} \\
L^{2} & =x M_{s}^{2}+(1-x) \Lambda^{2}-x(1-x) M_{p}^{2} \\
\mu^{2} & =\left(m+x M_{p}\right)^{2}
\end{aligned}
$$

Simultaneous extraction of transversity and the Collins function

Simultaneous extraction of transversity and the Collins function

Anselmino, Boglione, D'Alesio, Melis, Murgia, Prokudin, Phys.Rev. D87 (2013) 094019
Anselmino, Boglione, D'Alesio, Gonzalez, Melis, Murgia, Prokudin, in preparation

$A_{U T}^{\sin \left(\phi+\phi_{S}\right)} \equiv 2 \frac{\int \mathrm{~d} \phi \mathrm{~d} \phi_{S}\left[\mathrm{~d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}\right] \sin \left(\phi+\phi_{S}\right)}{\int \mathrm{d} \phi \mathrm{d} \phi_{S}\left[\mathrm{~d} \sigma^{\uparrow}+\mathrm{d} \sigma^{\downarrow}\right]}$
$\left.\mathrm{d} \sigma^{\uparrow}-\mathrm{d} \sigma^{\downarrow}=\sum_{q} h_{1 q}\left(x, k_{\perp}\right) \otimes \mathrm{d} \Delta \hat{\sigma}\left(y, \boldsymbol{k}_{\perp}\right) \otimes \Delta^{N} D_{h / q^{\uparrow}}\left(z, \boldsymbol{p}_{\perp}\right)\right)$
Transversity
Collins
A_{12} - thrust axis method

Cty-hill

$$
\frac{\sum_{q} e_{q}^{2} \Delta^{N} D_{h_{1} / q^{\uparrow}}\left(z_{1}\right) \Delta^{N} D_{h_{2} / q^{\uparrow}}\left(z_{2}\right)}{\sum_{q} e_{q}^{2} D_{h_{1} / q}\left(z_{1}\right) D_{h_{2} / \bar{q}}\left(z_{2}\right)}
$$

Simultaneous extraction of transversity and the Collins function

Anselmino, Boglione, D'Alesio, Melis, Murgia, Prokudin, Phys.Rev. D87 (2013) 094019

SIDIS data are fitted with excellent χ^{2}

Tension between BELLE A A_{0} and A_{12}

Anselmino, Boglione, D'Alesio, Melis, Murgia, Prokudin, Phys.Rev. D87 (2013) 094019

Standard parameterization
of the Collins function

$\mathcal{N}_{q}^{C}(z)=N_{q}^{C} z^{\gamma}(1-z)^{\delta} \frac{(\gamma+\delta)^{(\gamma+\delta)}}{\gamma^{\gamma} \delta^{\delta}}$

Polynomial parameterization of the Collins function

$$
\mathcal{N}_{q}^{C}(z)=N_{q}^{C} z\left[(1-a-b)+a z+b z^{2}\right]
$$

Fit of A_{12} with standard param.

Fit of A_{0} with polynomial param.

Simultaneous extraction of transversity and the Collins function

Anselmino, Boglione, D'Alesio, Melis, Murgia, Prokudin, Phys.Rev. D87 (2013) 094019

Standard. param. of the Collins function
(20.2

Polynom. param. of the Collins function

New BaBar data

BaBar measurements of A_{0} and A_{12} as a function of z_{1} and z_{2}

BaBar multidimensional data on A_{12} in bins of $\left(z_{1}, z_{2}, p_{t 1}, p_{t 2}\right)$

BaBar measurements of A_{0} and A_{12} as a function of $p_{t 0}, p_{t 1}$ and $p_{t 2}$

Our predictions compared to BaBar data

Predictions obtained by using the parameters extracted by best-fitting BELLE A_{12} experimental data with the standard parametrization of the Collins function are compared to BaBar measurements of A_{0} and A_{12} as a function of z_{1} and z_{2}

Our predictions compared to BaBar data

Anselmino, Boglione, D'Alesio, Gonzalez, Melis, Murgia, Prokudin, in preparation

New (preliminary) fits

Anselmino, Boglione, D'Alesio, Gonzalez, Melis, Murgia, Prokudin, in preparation

- Preliminary fits of the new data look very promising (new flexible polynomial parameterization)

Morover, we are studying different approaches to scale evolution for the Collins functions

What about Q^{2} evolution?

What about Q^{2} evolution?

```
e+e
BELLE - BaBar
Q 2 ~ 100 GeV 
```

Simultaneous fits of SIDIS and $\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{h}_{1} \mathrm{~h}_{2} \mathrm{X}$ Involve data sets at very different Q^{2} scales

In our computation the Collins TMD function evolves according to DGLAP evolution equations, through its $\mathrm{D}_{\mathrm{h} / \mathrm{q}}\left(\mathrm{z}, \mathrm{p}_{\mathrm{t}}, \mathrm{Q}^{2}\right)$ component

Could TMD evolution be an issue ? Could TMD evolution affect our results?

TMD evolution phenomenology

Does most recent SIDIS data suggest TMD evolution?

Sivers asymmetry on proton ($x>0.032$)

Charged pions (and kaons), 2010 data
Comparison with HERMES results

$\pi+$ comptss $<\mathrm{Q}^{2}>=3.2 \mathrm{GeV}^{2}$
O $<Q^{2}>=2.4 \mathrm{GeV}^{2}$

For $\mathrm{h}+$, smaller values measured by COMPASS;
same indication for K+
$\pi=$

Anna Martin

DIS 2013!

Does most recent SIDIS data suggest TMD evolution?

Collins asymmetry on proton ($\mathrm{x} \boldsymbol{>} \mathbf{0 . 0 3 2 \text {) }}$

Charged pions (and kaons), 2010 data

Comparison with HERMES results

Anna Martin
DIS 2013!

Sivers TMD evolution: phenomenological results

Aybat, Prokudin, Rogers, Phys. Rev. Lett. 108, (2011) 242003

Sivers function from HERMES and COMPASS SIDIS data

Anselmino, Boglione, Melis, Phys. Rev. D86 (2012) 014028

- Q^{2} and x dependence rigorously taken into account -2 different fits:
-TMD-fit (computing TMD evolution equations numerically) -DGLAP evolution equation for the collinear part of the TMD)

A. Airapetian et al., Phys. Rev. Lett. 103, (2009) 152002
C. Adolph et al., Phys. Lett. B717 (2012) 383

Scale Evolution of unpolarized multiplicities

HERMES and COMPASS multiplicities cover the same range in Q^{2}

$$
\begin{aligned}
& \left\langle k_{\perp}^{2}\right\rangle=g_{1}+g_{2} \ln \left(Q^{2} / Q_{0}^{2}\right)+g_{3} \ln (10 e x) \\
& \left\langle p_{\perp}^{2}\right\rangle=g_{1}^{\prime}+z^{2} g_{2}^{\prime} \ln \left(Q^{2} / Q_{0}^{2}\right)
\end{aligned}
$$

$$
\left\langle P_{T}^{2}\right\rangle=g_{1}^{\prime}+z^{2}\left[g_{1}+g_{2} \ln \left(Q^{2} / Q_{0}^{2}\right)+g_{3} \ln (10 e x)\right]
$$

- HERMES multiplicities show no sensitivity to these parameters
- COMPASS fitting is much more involved.

After correcting for normalization,
we find that the total χ^{2} decreases from 3.42 to 2.69.

Conclusions

- k_{\perp} - Gaussian distributions work reasonably well. However the Gaussian widths appear to depend on the energy (s) of each experiment
- Non perturbative aspects (TMDs) are crucial also for highenergy observable (for instance, Z-production spectrum)
- We have come a long way, but ...

What Next?

- Find theories/models/prescriptions which simultaneously explain all available experimental data from different experiments (DrellYan, SIDIS and e+e- scattering) with TMD evolution

More, new, high-quality data are very much needed to be able to perform solid and realistic phenomenological analyses of TMDs. EIC ...

[^0]: Phenomenology \rightarrow "where everything comes together nicely" Combine different sources of information to get the whole picture

