Context and objectives	Gas target	Interferometric measurements	Fluid simulations	Conclusion & perspectives
			000000	

Gas cell characterization for laser wakefield acceleration

T.L. Audet¹, C. Lefebvre¹, P. Lee¹, G. Maynard¹, S. Dobosz Dufrénoy², A. Maitrallain², M. Bougeard², P. Monot², B. Cros¹

¹LPGP, CNRS, Univ Paris Sud, Université Paris-Saclay, 91405, Orsay, France ²LIDyL, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

3rd EAAC, Elba, 25-29 September, 2017.

Context and objectives

Gas target

Interferometric measurements

Fluid simulations

Conclusion & perspectives

Gas cell for laser wakefield injector

Injector gas target

- The target must provide gas confinement
- Plasma density is a crucial parameter
- Plasma density fluctuations are suspected to have major influence in electron pointing fluctuations

Context and objectives

Gas target

Interferometric measurements

Fluid simulations

Conclusion & perspectives

Gas cell for laser wakefield injector

Injector gas target

- The target must provide gas confinement
- Plasma density is a crucial parameter
- Plasma density fluctuations are suspected to have major influence in electron pointing fluctuations

Use of a gas cell to confine the gas.

★ B > < B >

ELectron Injector for compact Staged high energy Accelerator (ELISA)

Variable parameter gas cell

- $P_{reservoir} = 50 \rightarrow 500 \text{ mbar} (\sim 2 \times 10^{18} \rightarrow 2 \times 10^{19} \text{ cm}^{-3})$
- $L_{cell} = 0 \rightarrow 10 \text{ mm}$
- Gas : H₂ or H₂+variable proportions of N₂ (H₂ for characterization)
- Entry and exit holes : $\phi_{aperture} = 200 600 \ \mu m$, $d_{plate} = 0.5 2 \ mm$

ELectron Injector for compact Staged high energy Accelerator (ELISA)

Variable parameter gas cell

- $P_{reservoir} = 50 \rightarrow 500 \text{ mbar} (\sim 2 \times 10^{18} \rightarrow 2 \times 10^{19} \text{ cm}^{-3})$
- $L_{cell} = 0 \rightarrow 10 \text{ mm}$
- Gas : H₂ or H₂+variable proportions of N₂ (H₂ for characterization)
- Entry and exit holes : $\phi_{aperture} = 200 600 \ \mu m$, $d_{plate} = 0.5 2 \ mm$

Density at the center of the cell measured by interferometry

• Mach-Zehnder interferometer used to measure the mean density of the plateau

Determination of the density at the center of the cell from photodiode signal

- Photodiode signal :
 - $S(t) = A + Bcos[\theta_0 + \Delta \varphi_d(t)]$
- Normalization :

•
$$S_N(t) = \frac{S(t) - S_{min}}{S_{max} - S_{min}} = \frac{1 + \cos[\theta_0 + \Delta \varphi_d(t)]}{2}$$

- Inversion :
 - $\Delta \varphi_d(t) = \arccos\left[2S_N(t) 1\right] \arccos\left[2S_N(0) 1\right] + 2k(t)\pi$
- Reconstruction :

•
$$n_{H_2}(t) = \frac{n_e(t)}{2} = \Delta \varphi_d(t) \times \frac{\lambda_L}{3\pi A m_H}$$

with A the molar refractivity, m_H the mass of the hydrogen atom and l the probed length

Conclusion & perspectives

Density in the cell depends almost linearly with reservoir pressure in the range of n_e studied

 $\phi_{aperture} = 0.2 \text{ mm}, d_{plate} = 0.5 \text{ mm}$

Conclusion & perspectives

Density in the cell depends almost linearly with reservoir pressure in the range of n_e studied

the density profile along the laser axis has to be characterized.

Context and objectives

Conclusion & perspectives

Geometry in OpenFOAM

- Construction of the full 3D geometry
- Spatial scales :
 - Cell diameter $\sim 20 \text{ mm}$
 - $\phi_{aperture} = 0.2 \text{ mm}$

< ロ > < 同 > < 回 > < 回 > < 回 >

Density profile obtained by numerical simulation of the gas flow

- Fluid simulations using OpenFOAM and SonicFoam (transient, turbulent solver with sonic flow capabilities)
- Plateau inside the cell, sharp gradients at transitions and smooth gradients in the plates

T.L. Audet et al.

8/17

Conclusion & perspectives

Modifications of entry and exit plates

Conclusion & perspectives

Modifications of entry and exit plates

• Apertures are enlarged by the laser during laser wakefield experiments

Conclusion & perspectives

Modeling of bigger aperture diameter

Aperture diameter modifications

- Smoother gradient with larger diameter
- Plateau length is reduced

Conclusion & perspectives

Modifications of exit plate thickness

- Electron bunch properties at the exit of the injector is critical for injection in a second stage
- Exit plasma profile can have a large impact on electron properties

T.L. Audet et al.

- - E > - E >

Context and objectives

Gas target

Interferometric measurements

Fluid simulations

Conclusion & perspectives

Modifications of exit plate thickness

- Electron bunch properties at the exit of the injector is critical for injection in a second stage
- Exit plasma profile can have a large impact on electron properties

11/17

Context and objectives

Gas target

Interferometric measurements

Fluid simulations

Conclusion & perspectives

Summary of density control

This target was used experimentally and optimized in simulations \rightarrow See P. Lee talk in WG6, 18h40 on Tuesday.

T.L. Audet et al.

Gas cell characterization

12/17

Context and objectives	Gas target	Interferometric measurements	Fluid simulations	Conclusion & perspectives
Conclusion				

• The ELISA variable length gas cell was built and the gas flow was characterized both experimentally by fluid simulation.

<ロト < 回 > < 回 > < 回 > < 回 > <</p>

Context and objectives	Gas target	Interferometric measurements	Fluid simulations	Conclusion & perspectives
Conclusion				

- The ELISA variable length gas cell was built and the gas flow was characterized both experimentally by fluid simulation.
- The density profile has a major influence on laser propagation and electron injection → It can be taylored to optimize electron properties

A B > A B >

Context and objectives	Gas target	Interferometric measurements	Fluid simulations	Conclusion & perspectives
Conclusion				

- The ELISA variable length gas cell was built and the gas flow was characterized both experimentally by fluid simulation.
- The density profile has a major influence on laser propagation and electron injection → It can be taylored to optimize electron properties
- Laser ablation has to be taken into account.

• • = • • = •

Context and objectives	Gas target	Interferometric measurements	Fluid simulations	Conclusion & perspectives
Perspectives				

• Characterize the density fluctuations.

5 990

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

Context and objectives	Gas target	Interferometric measurements	Fluid simulations	Conclusion & perspectives
Perspectives				

- Characterize the density fluctuations.
- Studies of the target lifetime.

<ロト < 四ト < 三ト < 三ト

Context and objectives	Gas target	Interferometric measurements	Fluid simulations	Conclusion & perspectives
Perspectives				

- Characterize the density fluctuations.
- Studies of the target lifetime.
- This transverse diagnostic could be used to control density at each shot and adjust the backing pressure.

イロト イロト イヨト イヨト

Context and objectives	Gas target	Interferometric measurements	Fluid simulations	Conclusion & perspectives
Thank you !				

Thank you for your attention

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ つへで

Context and objectives	Gas target	Interferometric measurements	Fluid simulations	Conclusion & perspectives
Backup slid	es			

Backup slides

Interferometric measurements

Fluid simulations

Conclusion & perspectives

Reduced geometry to reduce computational time

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Conclusion & perspectives

Reduced geometry to reduce computational time

- Computational time reduced by reducing the simulation volume
- Agreement when the gas inlet is the same surface as the full 3D simulation

★ ∃ > < ∃ >