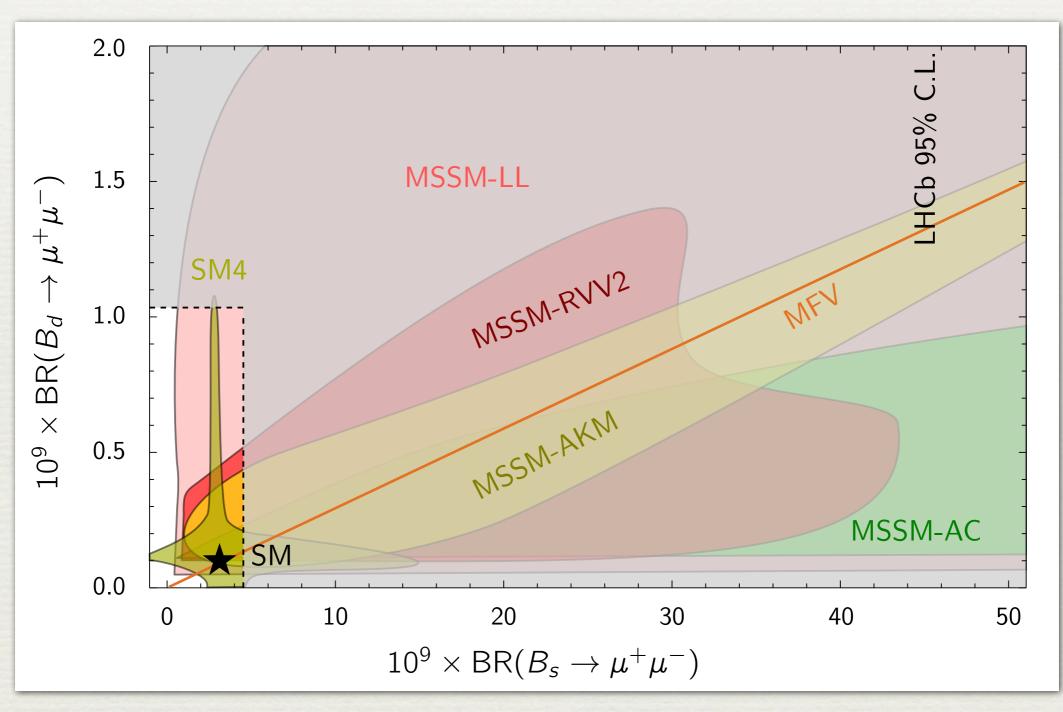
# Flavor Physics Beyond the Standard Model

### Ulrich Haisch University of Oxford

Les Rencontres de Physique de la Vallée d'Aoste, La Thuile, Aoste Valley, Italy 27 February 2013

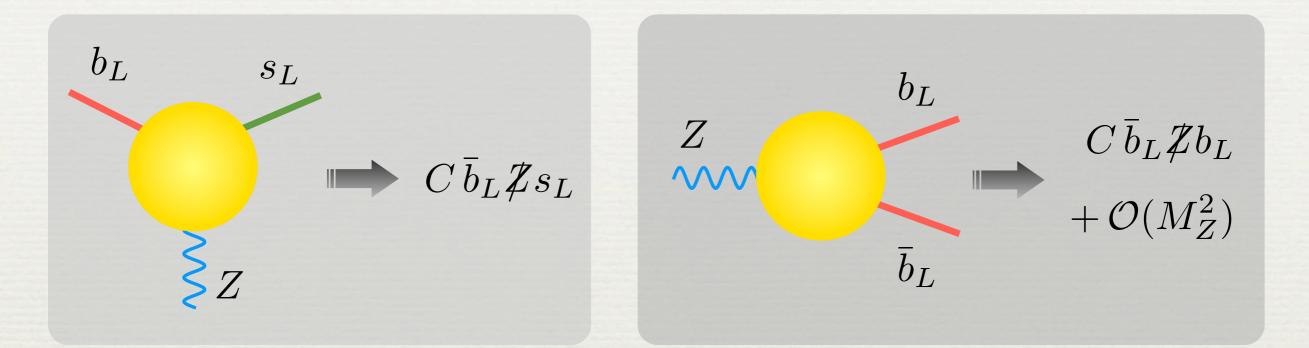
# R.I.P. Flavor at the LHC?



[Straub,1205.6094]

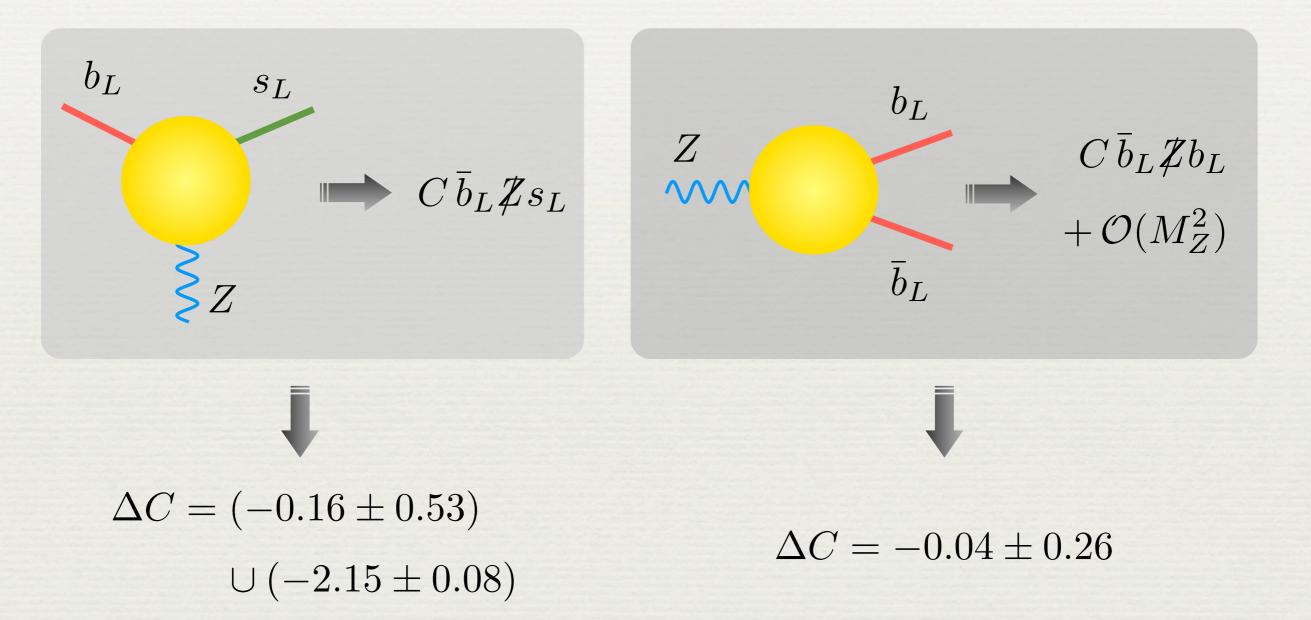
1

## Flavor Precision Measurements



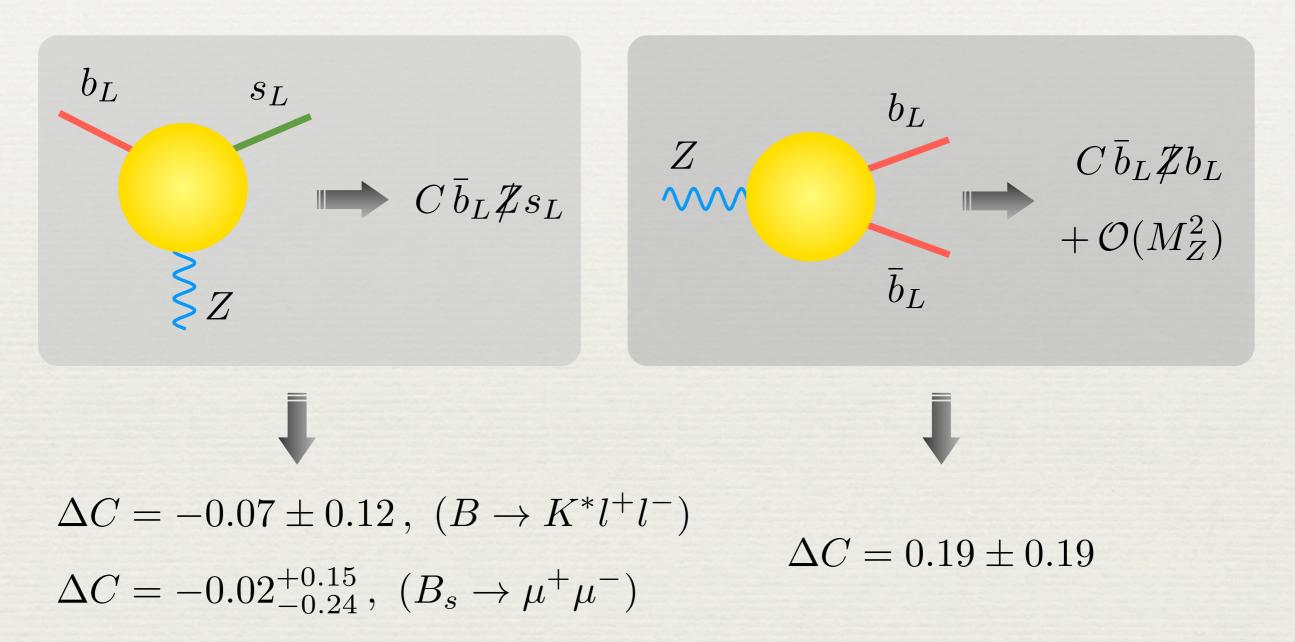
In many BSM models (minimal-flavor violation, compositeness, ...), flavor-changing & -conserving Z-boson penguins closely related [UH & Weiler, 0706.2054]

## Flavor Precision Measurements



Pre LHC, flavor could not compete with electroweak precision data [Bobeth et al., hep-ph/0505110; UH & Weiler, 0706.2054]

## Flavor Precision Measurements



Today situation reversed: B decays provide strongest constraint! [for case of rare purely leptonic B<sub>s</sub> decay see Guadagnoli & Isidori, 1302.3909]

# It's not the End, it's the Beginning!

■ Measurements of  $B \rightarrow K^*\mu^+\mu^- \&$  evidence for  $B_s \rightarrow \mu^+\mu^$ mark beginning of flavor precision era at LHC: only now deviations from SM of O(50%), i.e., BSM effects of "natural" size, are started to be probed

Since there is no direct sign of new physics at LHC & also Higgs boson looks pretty SM-like, indirect probes of BSM physics more important than ever

In this talk want to stress synergy & complementarity of low- & high-pT measurements in context of SUSY (similar cases can be made in other BSM models)

# MSSM Cornered & Correlated

based on UH & Mahmoudi, 1210.7806

### MSSM: Anatomy of Higgs Mass

Tree-level mass of lightest CP-even Higgs maximized in decoupling limit  $M_A >> M_Z$  with  $\tan\beta = t_\beta >> 1$ :

$$M_h^2 \approx M_Z^2 c_{2\beta}^2 \left( 1 - \frac{M_Z^2}{M_A^2} s_{2\beta}^2 \right) \le M_Z^2$$

Large one-loop contributions arise from incomplete cancellation of top-quark & -squark loop

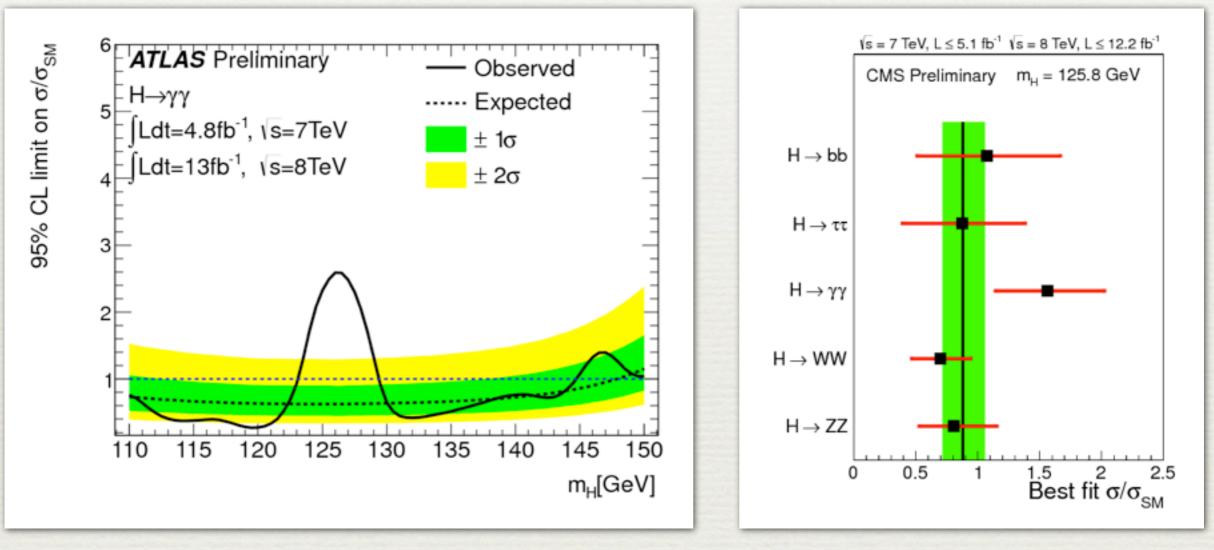
$$(\Delta M_h^2)_{\tilde{t}} \approx \frac{3G_F}{\sqrt{2}\pi^2} m_t^4 \left[ -\ln\left(\frac{m_t^2}{m_{\tilde{t}}^2}\right) + \frac{X_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{X_t^2}{12m_{\tilde{t}}^2}\right) \right]$$

that can make  $M_h$  sufficiently heavy if  $m_{\tilde{t}} = \sqrt{m_{\tilde{t}1} m_{\tilde{t}2}} >> m_t$  and/or  $X_t = A_t - \mu/t_\beta$  close to maximal  $|X_t| = \sqrt{6} m_{\tilde{t}}$ . Two-loop effects break symmetry  $X_t \leftrightarrow -X_t$  & allow larger value of  $M_h$  for sgn $(X_tM_3) = +1$ 

### MSSM: Anatomy of Higgs Mass

#### [ATLAS-CONF-2012-168]

[CMS-HIG-12-045]



In MSSM, M<sub>h</sub> ≈ 125 GeV not natural. Will be agnostic about issue & assume fine-tuned region of MSSM parameters with M<sub>A</sub> >> M<sub>Z</sub>
& t<sub>β</sub> & A<sub>t</sub> large. Are there other observable consequences?

### MSSM: Dissecting Higgs Production

Structure of MSSM corrections to  $gg \rightarrow h \& h \rightarrow \gamma\gamma$  can be easily understood by studying case of soft Higgs. In decoupling limit one finds for stop & sbottom contributions to hgg vertex:

$$\approx \begin{cases} \frac{m_t^2}{4} \left( \frac{1}{m_{\tilde{t}_1}^2} + \frac{1}{m_{\tilde{t}_2}^2} - \frac{X_t^2}{m_{\tilde{t}_1}^2 m_{\tilde{t}_2}^2} \right) , & \tilde{q} = \tilde{t} \\ -\frac{m_b^2 X_b^2}{4m_{\tilde{b}_1}^2 m_{\tilde{b}_2}^2} , & \tilde{q} = \tilde{b} \end{cases}$$

### MSSM: Dissecting Higgs Production

Assuming degenerate stops & neglecting sbottom-loop effects, shift in Higgs production cross section hence approximately given by:

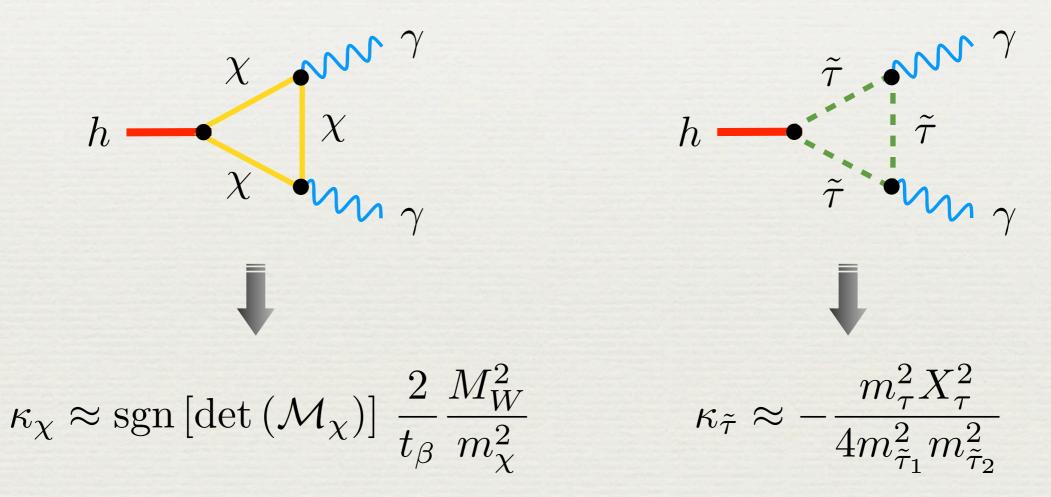
$$R_h \approx (1 + \kappa_{\tilde{t}})^2 \approx \begin{cases} 1 + \frac{m_t^2}{m_{\tilde{t}}^2}, & X_t = 0\\ 1 - 2\frac{m_t^2}{m_{\tilde{t}}^2}, & X_t = \sqrt{6} m_{\tilde{t}} \end{cases}$$

As Higgs-boson mass around 125 GeV calls for close to maximal mixing, natural to expect suppression of  $gg \rightarrow h$ . In fact, this is exactly what happens in wide ranges of MSSM parameter space

[see for example Dermisek & Low, hep-ph/0701235; Cacciapaglia et al., 0901.0927]

### MSSM: Dissecting Higgs Decay to Diphotons

For  $M_A >> M_Z$ , charged Higgs effects are strongly suppressed, but chargino & stau loops can have notable impact on diphoton rate:



[see for example Djouadi et al., hep-ph/9612362; Carena et al., 1112.3336; 1205.5842]

### MSSM: Dissecting Higgs Decay to Diphotons

For  $M_A >> M_Z$ , charged Higgs effects are strongly suppressed, but chargino & stau loops can have notable impact on diphoton rate:

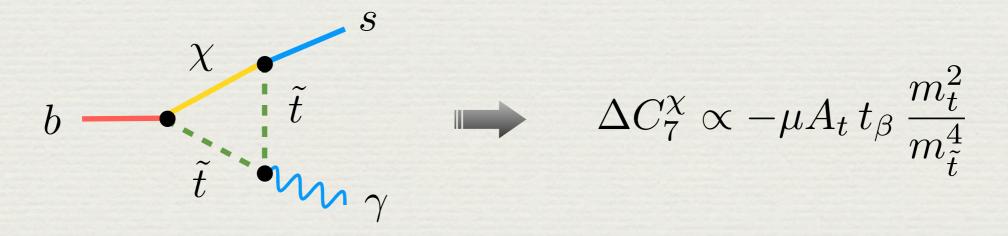


Unlike chargino effects, stau loops not  $t_{\beta}$  suppressed. In fact,  $R_{\gamma} > 1$  needs light stau with large mixing  $X_{\tau} = A_{\tau} - \mu t_{\beta}$ , which is most easily achieved for  $t_{\beta} >> 1$  &  $\mu$  significantly above weak scale

### MSSM: Anatomy of $B \rightarrow X_s \gamma$

In parameter region of interest, dominant MSSM contributions to inclusive radiative B decay stems from loops with stop & higgsinolike chargino:

$$R_{X_s} = \frac{\operatorname{Br}(B \to X_s \gamma)}{\operatorname{Br}(B \to X_s \gamma)_{SM}} \approx 1 - 2.61 \,\Delta C_7 + 1.66 \,(\Delta C_7)^2$$

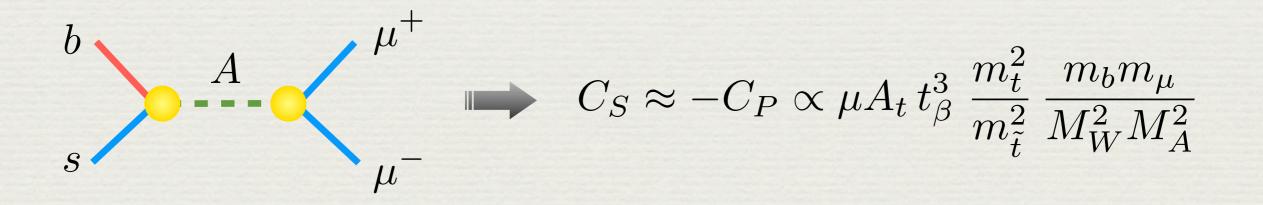


For  $t_{\beta} = 50$ ,  $m_{\tilde{t}} = 1.5$  TeV,  $|\mu| = 1$  TeV &  $|A_t| = 3$  TeV, rate enhanced (suppressed) by O(30%) relative to SM for sgn( $\mu A_t$ ) = +1 (-1)

### MSSM: Anatomy of $B_s \rightarrow \mu^+\mu^-$

In large-t<sub>β</sub> regime, rare purely leptonic B<sub>s</sub> decay receives dominant corrections from neutral Higgs double penguins:

$$R_{\mu^{+}\mu^{-}} = \frac{\operatorname{Br}(B_{s} \to \mu^{+}\mu^{-})}{\operatorname{Br}(B_{s} \to \mu^{+}\mu^{-})_{\mathrm{SM}}} \approx 1 - 13.2 \ C_{P} + 43.6 \left(C_{S}^{2} + C_{P}^{2}\right)$$



Term linear in pseudoscalar coefficient  $C_P$  due to interference with semileptonic axial-vector SM contribution. Data prefers  $C_P > 0$ 

[see for example Babu & Kolda, hep-ph/9900476]

### MSSM: Anatomy of $B_s \rightarrow \mu^+\mu^-$

In fact, upper bound on branching ratio of  $B_s \rightarrow \mu^+\mu^-$  translates into two-sided limit on product  $\mu A_t$ . For example,  $R_{\mu^+\mu^-} < 1.3$  gives

$$-\frac{0.16}{\text{TeV}^2} \lesssim \frac{1}{(1+\epsilon_b t_\beta)^2} \frac{\mu A_t}{m_{\tilde{t}}^2 M_A^2} \left(\frac{t_\beta}{50}\right)^3 \lesssim \frac{1.37}{\text{TeV}^2}$$
$$\epsilon_b \propto \frac{\alpha_s}{\pi} \frac{\mu M_3}{m_{\tilde{b}}^2}$$

Inequality shows that for sgn( $\mu A_t$ ) = sgn( $\mu M_3$ ) = +1 constraint from  $B_s \rightarrow \mu^+\mu^-$  more easily evaded. In MSSM branching fraction can be suppressed by up to 50% with respect to SM

### Slice of MSSM Parameter Space

Above suggests that parameter space with A<sub>t</sub> > 0 & µ > 0 is least constrained & may lead to interesting effects. Fix relevant MSSM parameters to following weak-scale values

 $t_{\beta} = 60, \quad M_A = 1 \,\mathrm{TeV}$ 

 $M_1 = 50 \,\text{GeV}\,, \quad M_2 = 300 \,\text{GeV}\,, \quad M_3 = 1.2 \,\text{TeV}$ 

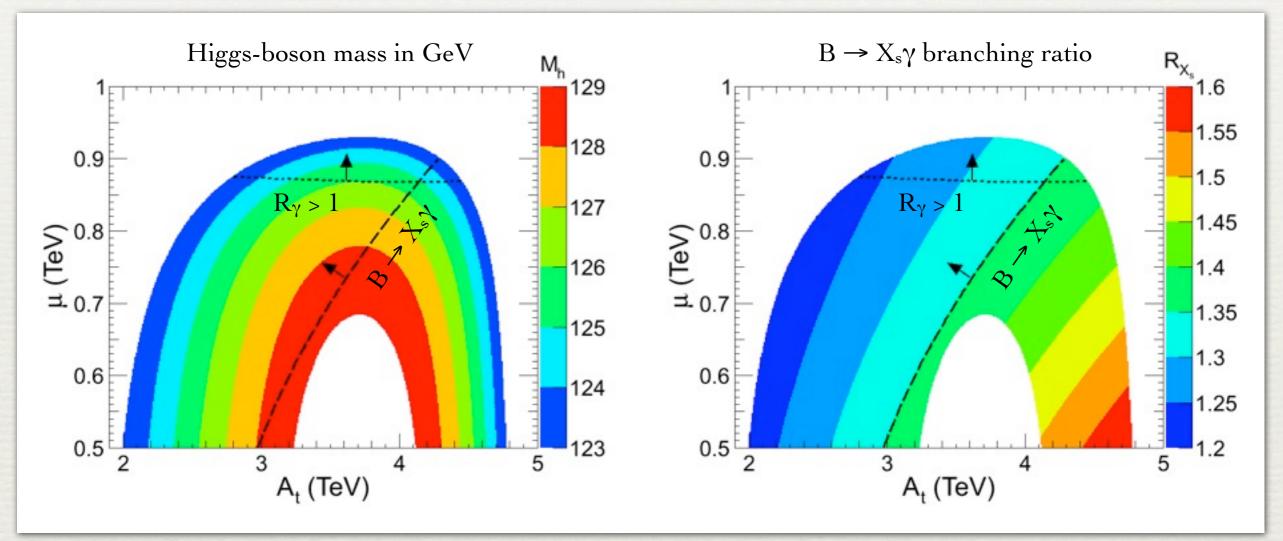
 $\tilde{m}_{Q_3} = \tilde{m}_{u_3} = 1.5 \,\mathrm{TeV}$ 

 $\tilde{m}_{L_3} = \tilde{m}_{l_3} = 350 \,\text{GeV}, \quad A_\tau = 500 \,\text{GeV}$ 

& common mass of 1.5 TeV & 2 TeV (1 TeV) for remaining left- & right-handed squarks (sleptons). Keep  $A_t \& \mu$  as free parameters

### At-µ Planes: Higgs-Boson Properties

#### [UH & Mahmoudi, 1210.7806]



Combination of  $M_h$ ,  $R_\gamma \& B \to X_s \gamma$  singles out  $A_t \approx [2.5, 4.5]$  TeV  $\& \mu \approx 0.9$  TeV. In preferred parameter space, observed Higgs-boson properties, i.e.,  $R_h \approx 0.95$ ,  $R_{W,Z,\tau} \approx 0.7 \& R_b \approx 1.2$ , are reproduced

### At-µ Planes: Higgs-Boson Properties

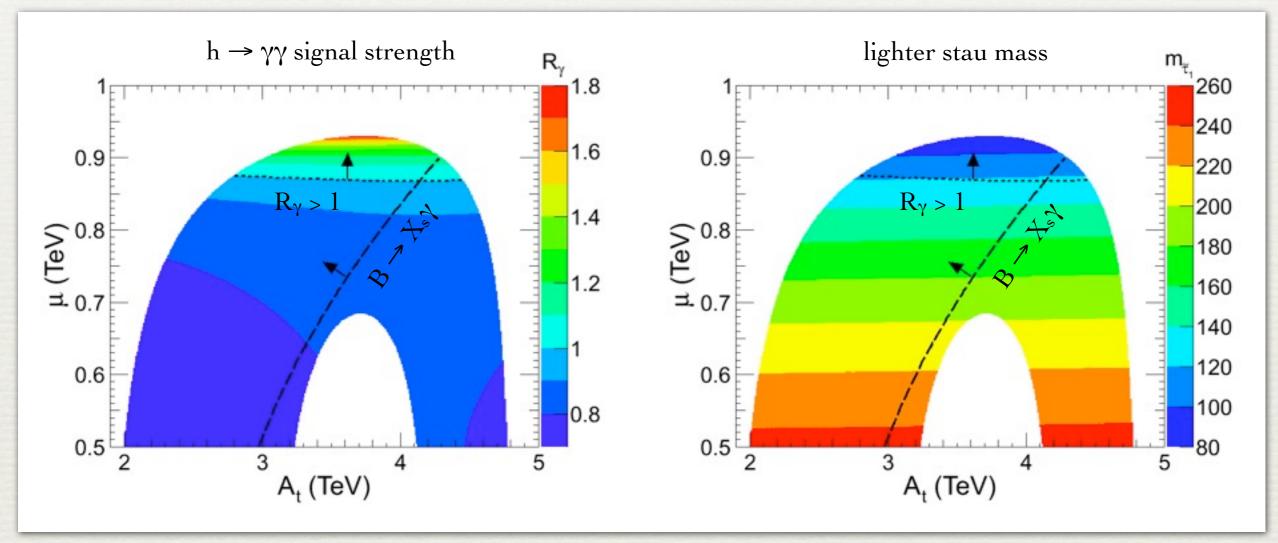
#### [UH & Mahmoudi, 1210.7806]



Combination of  $M_h$ ,  $R_\gamma \& B \rightarrow X_s \gamma$  singles out  $A_t \approx [2.5, 4.5]$  TeV  $\& \mu \approx 0.9$  TeV. In preferred parameter space, observed Higgs-boson properties, i.e.,  $R_h \approx 0.95$ ,  $R_{W,Z,\tau} \approx 0.7 \& R_b \approx 1.2$ , are reproduced

### At-µ Planes: Diphoton Signal

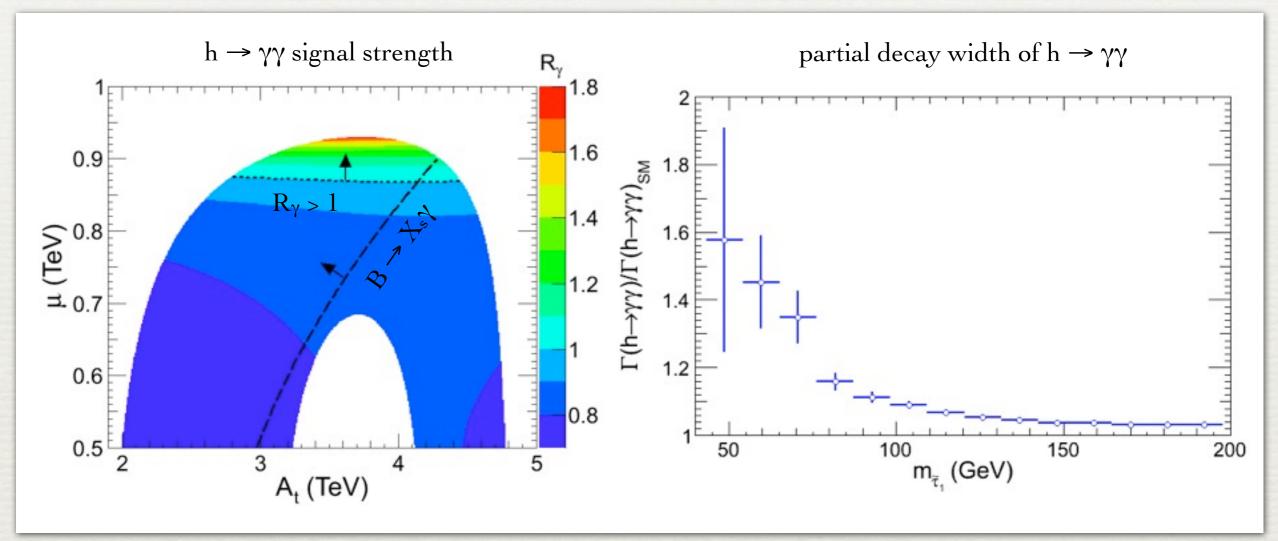
#### [UH & Mahmoudi, 1210.7806]



Enhancement in diphoton rate strongly correlated with mass  $m_{\tilde{\tau}_1}$  of lighter stau mass eigenstate &  $\mu$  parameter. Can find upper bound on  $R_{\gamma}$  as function of  $m_{\tilde{\tau}_1}$  & absolute limit of  $R_{\gamma} \leq 1.7$ 

### At-µ Planes: Diphoton Signal

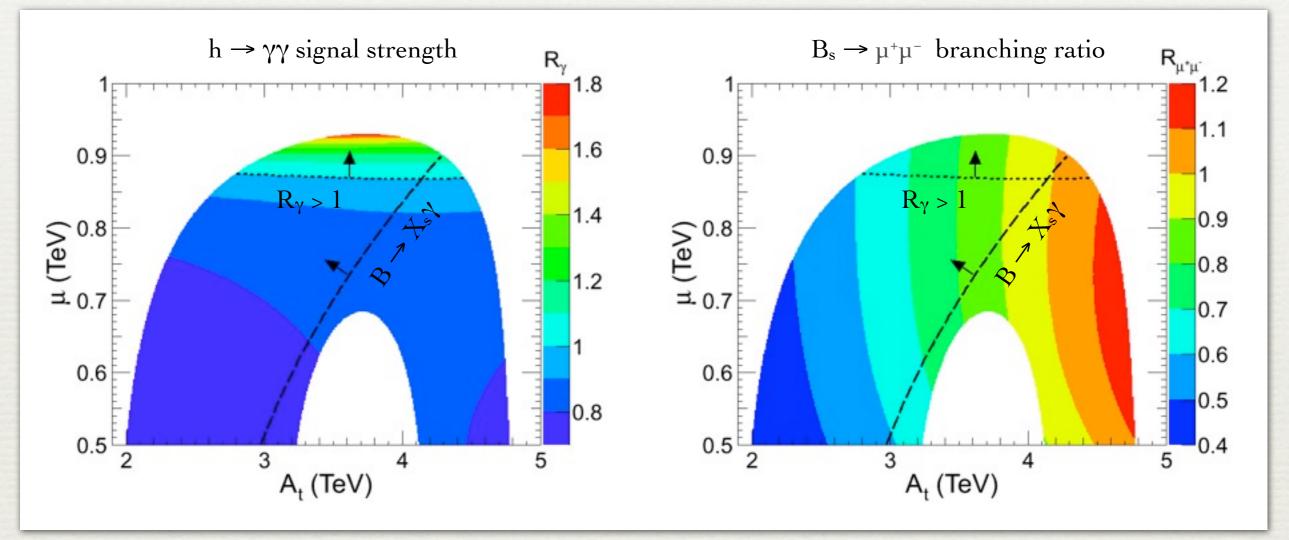
#### [UH & Mahmoudi, 1210.7806]



Enhancement in diphoton rate strongly correlated with mass  $m_{\tilde{\tau}_1}$  of lighter stau mass eigenstate &  $\mu$  parameter. Can find upper bound on  $R_{\gamma}$  as function of  $m_{\tilde{\tau}_1}$  & absolute limit of  $R_{\gamma} \leq 1.7$ 

A<sub>t</sub>- $\mu$  Planes: B<sub>s</sub>  $\rightarrow \mu^+\mu^-$  Decay

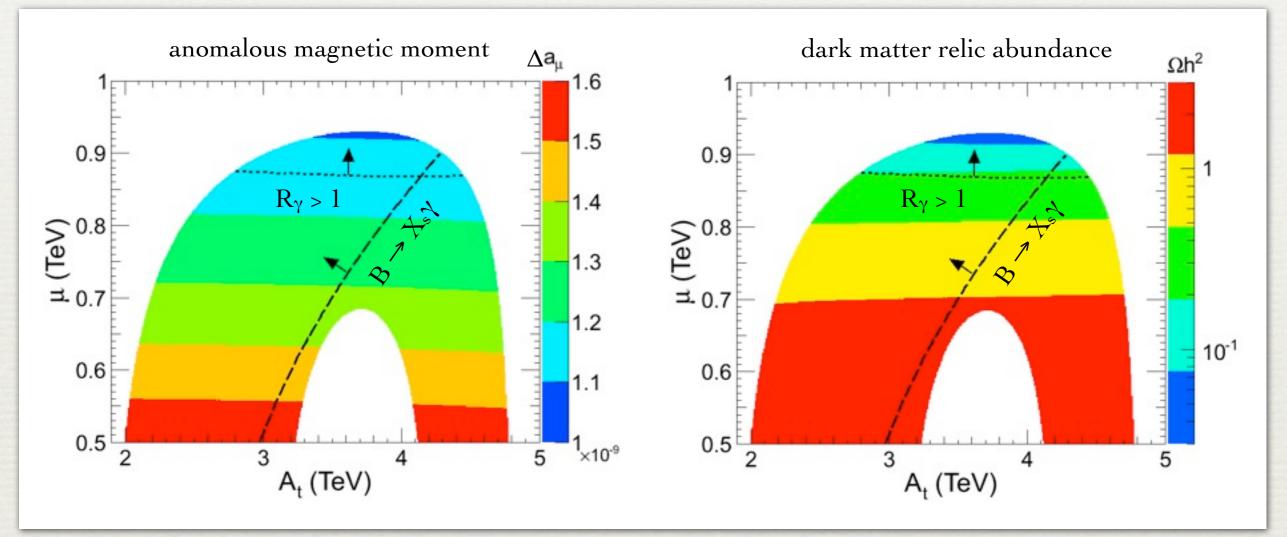
[UH & Mahmoudi, 1210.7806]



In parameter space favored by  $M_h$ ,  $R_\gamma \& B \to X_s \gamma$ , rate of  $B_s \to \mu^+\mu^$ below SM prediction. For  $M_A = 1$  TeV, effects can reach up to -40%. Decoupling heavy Higgses,  $M_A >> 1$  TeV, reduces these deviations

### At-µ Planes: a<sub>µ</sub> & Dark Matter

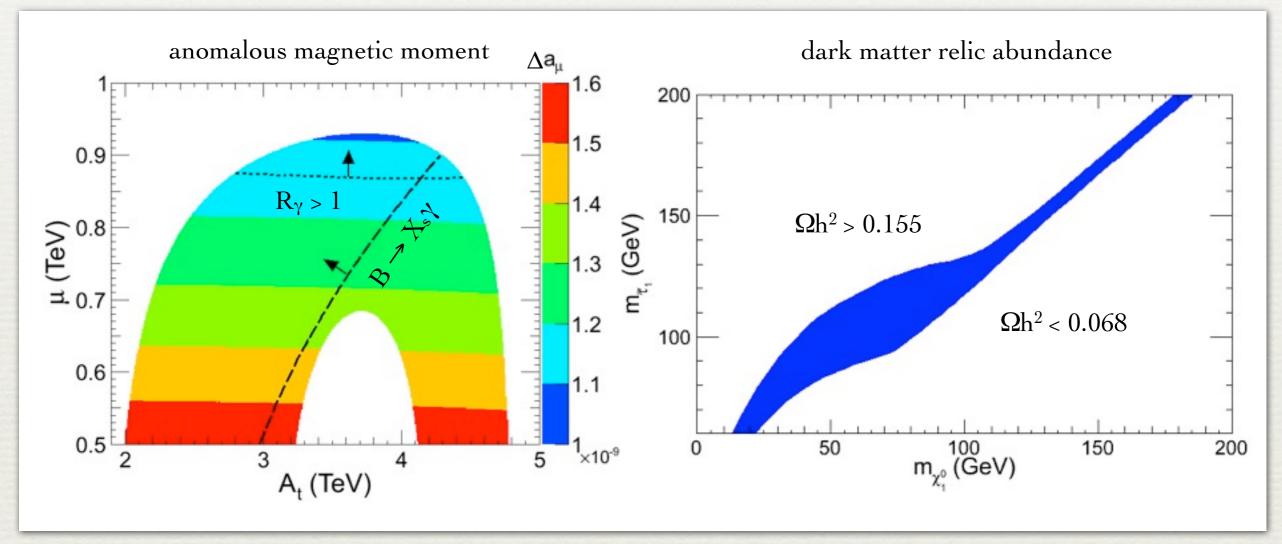
#### [UH & Mahmoudi, 1210.7806]



Tension in muon anomalous magnetic moment reduced (assuming lightish sleptons) & relic density  $\Omega h^2$  can be obtained. For fixed  $m_{\tilde{\tau}_1}$  only narrow stripe of neutralino masses  $m_{\chi_1^0}$  consistent with WMAP

### At-µ Planes: a<sub>µ</sub> & Dark Matter

#### [UH & Mahmoudi, 1210.7806]

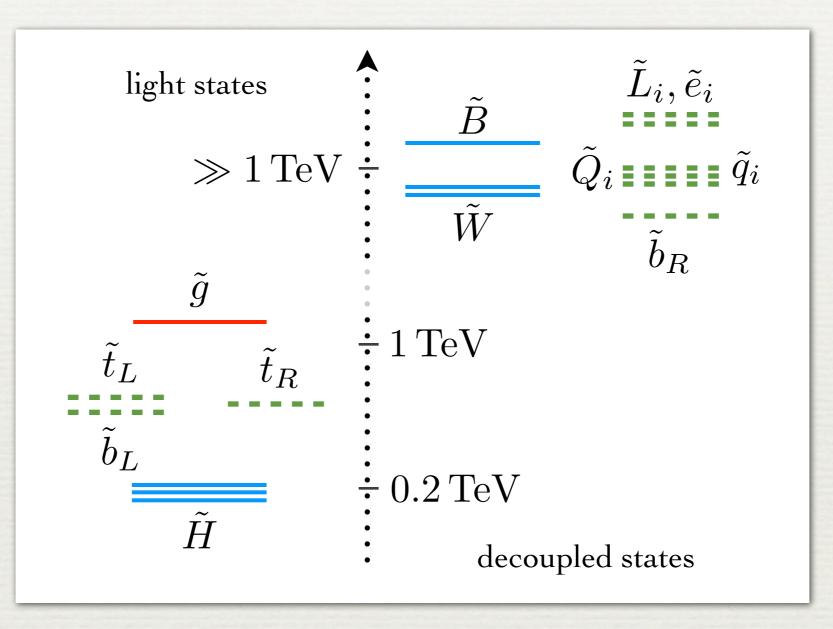


Tension in muon anomalous magnetic moment reduced (assuming lightish sleptons) & relic density  $\Omega h^2$  can be obtained. For fixed  $m_{\tilde{\tau}_1}$  only narrow stripe of neutralino masses  $m_{\chi_1^0}$  consistent with WMAP

# Fingerprinting NSUSY

based on work in progress with Altmannshofer

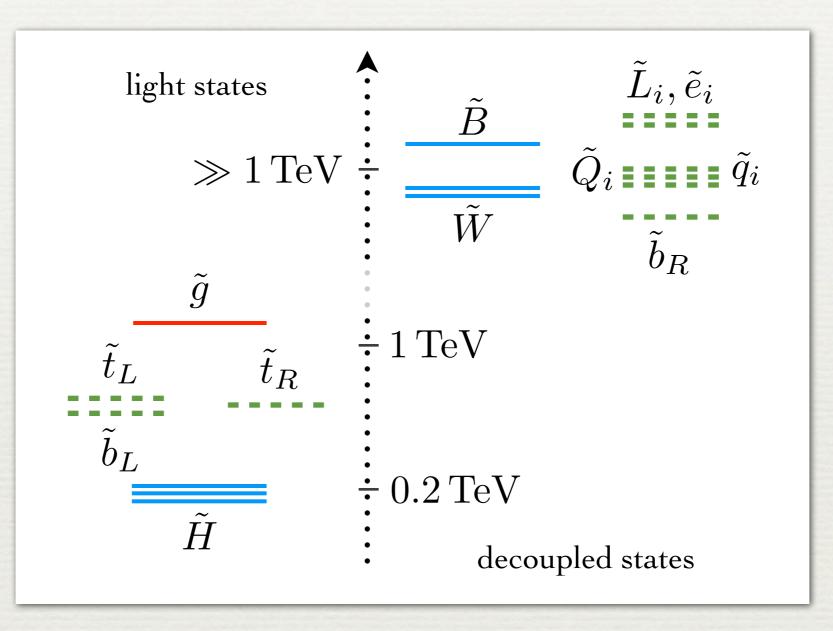
### "Natural" Supersymmetry (NSUSY)



To avoid destabilizing weak scale only higgsinos ( $\tilde{H}$ ), stops ( $\tilde{t}_L$ ,  $\tilde{t}_R$ ), left-handed sbottom ( $\tilde{b}_L$ ) & gluino ( $\tilde{g}$ ) need to be below/at TeV scale

[see for example Brust et al. 1110.6670; Papucci, Ruderman & Weiler, 1110.6926]

### "Natural" Supersymmetry (NSUSY)



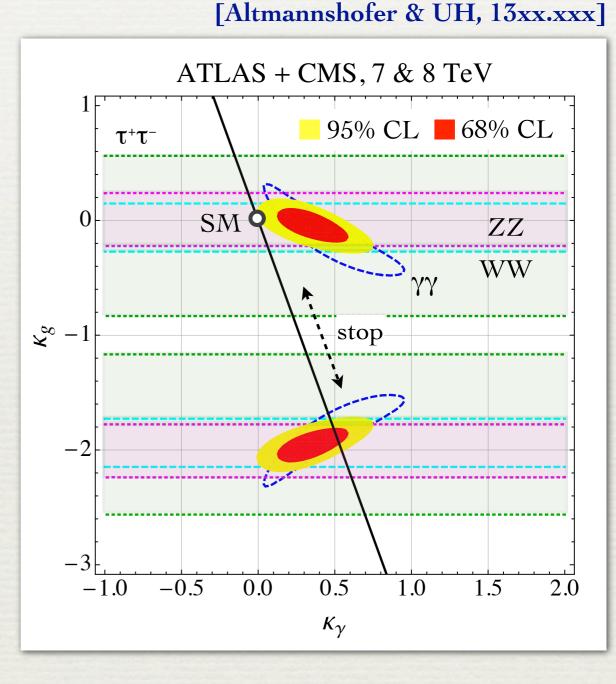
Light stops & charginos should leave imprints in indirect probes of BSM physics such as Higgs, flavor, precision observables, etc. Do these constraints allow to set robust lower limits on sparticles?

### gg $\rightarrow$ h & h $\rightarrow \gamma\gamma$ : Stops Walk the Line

Stop effects in gluon-gluon fusion & diphoton signal strongly correlated:

$$\frac{\kappa_{\gamma}}{\kappa_{g}} \approx -\frac{4}{3} \frac{1}{F_W - 4/3}$$

 $F_W \approx 6.24$ 



[see recently Carmi et al., 1202.1718, 1207.1718; Espinosa et al., 1207.7355; as well as older/newer studies of other groups]

### gg $\rightarrow$ h & h $\rightarrow \gamma\gamma$ : Stops Walk the Line

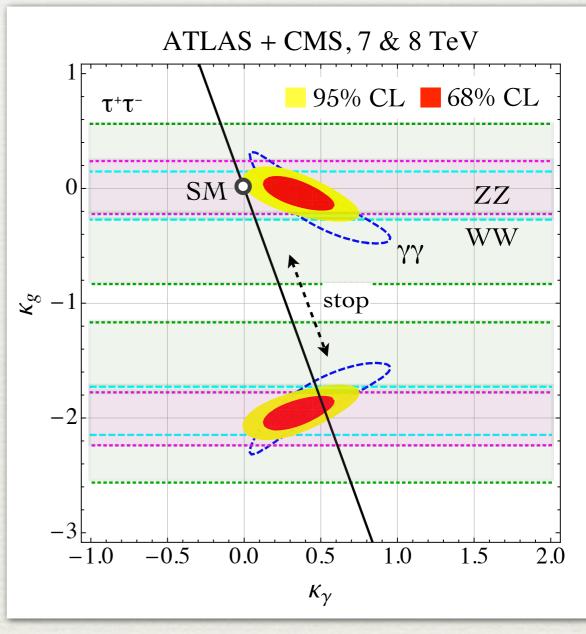
Stop effects in gluon-gluon fusion & diphoton signal strongly correlated:

$$\frac{\kappa_{\gamma}}{\kappa_g} \approx -\frac{4}{3} \frac{1}{F_W - 4/3}$$

 $F_W \approx 6.24$ 

If h → γγ remains high & uncertainties improve, stops alone cannot explain data (ignoring κ<sub>g</sub> ≈ -2 solution)

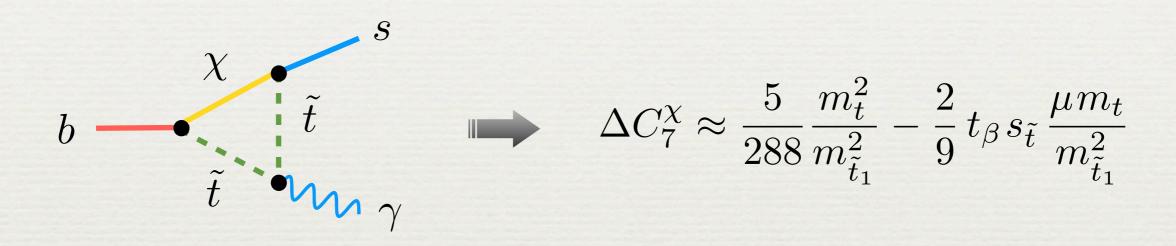




[see recently Carmi et al., 1202.1718, 1207.1718; Espinosa et al., 1207.7355; as well as older/newer studies of other groups]

### NSUSY: Flavor Footprints

Light stops & charginos lead to specific pattern of deviations in flavor observables:

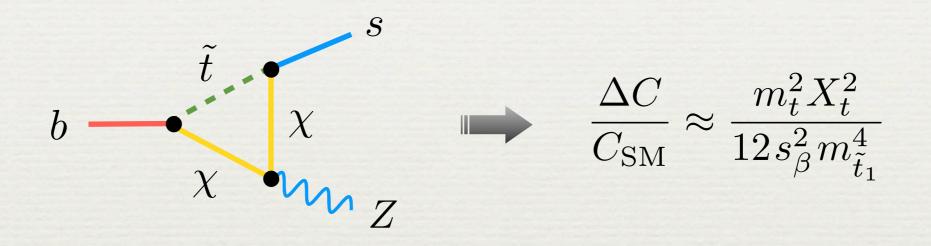


Even for small stop mixing angle, i.e.,  $|s_{\tilde{t}}| = |\sin \theta_{\tilde{t}}| << 1, 2^{nd}$  term can dominate over  $1^{st}$  one. For  $sgn(s_{\tilde{t}}\mu) = +1$  (-1), stop-chargino loops interfere constructively (destructively) with SM. Presently constructive BSM contributions preferred by data

[see recently also Espinosa et al., 1207.7355; Delgado et al. 1212.6847]

### NSUSY: Flavor Footprints

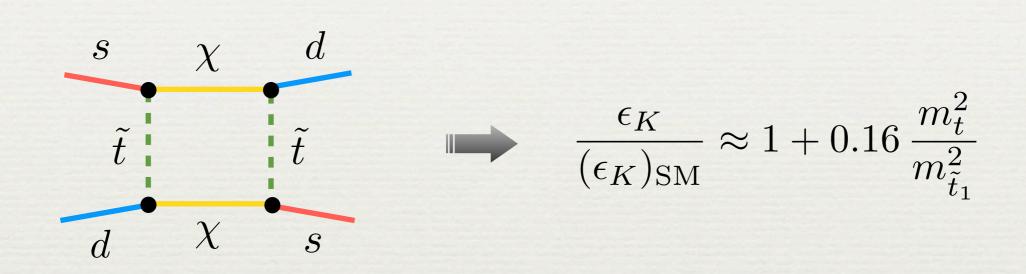
Light stops & charginos lead to specific pattern of deviations in flavor observables:



Due to hierarchy  $|M_2| >> |\mu|$ , stop-chargino effects in Z-penguin below 10% level. Predictions for  $B_s \rightarrow \mu^+\mu^-$ ,  $B \rightarrow K^*l^+l^-$ ,  $Z \rightarrow b\bar{b}$ as well as rare kaon decays essentially unaltered

### NSUSY: Flavor Footprints

Light stops & charginos lead to specific pattern of deviations in flavor observables:

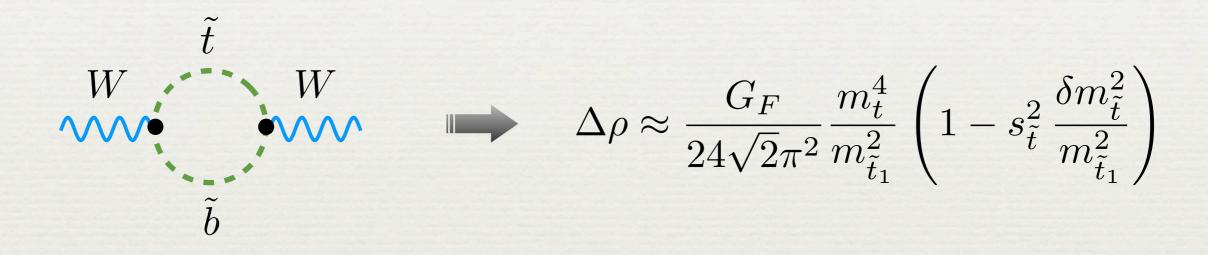


Stop-chargino loops increase amount of indirect CP violation in neutral kaon sector ( $\epsilon_K$ ) & for not too large |µ| help to improve overall quality of unitarity triangle fit

[see recently also Delgado et al. 1212.6847]

### NSUSY: Oblique Corrections

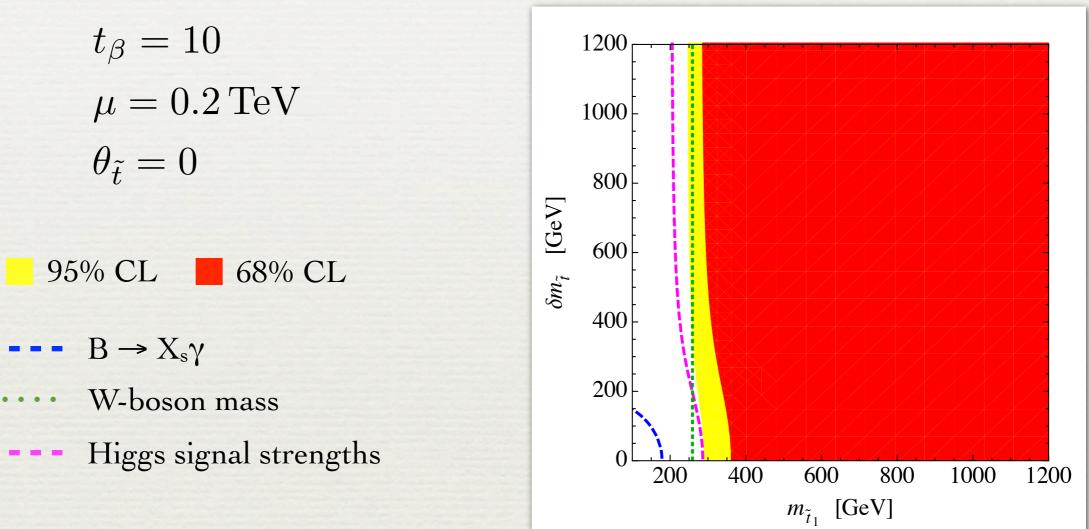
Further constraints on sector of 3<sup>rd</sup> generation squarks derive from ρ parameter, parametrizing custodial symmetry breaking:



Like  $B \rightarrow X_s \gamma$ ,  $\Delta M_W \propto \Delta \rho$  quite sensitive to stop mixing & mass splitting  $\delta m_{\tilde{t}}^2 = m_{\tilde{t}1}^2 - m_{\tilde{t}2}^2$ . At present W-boson mass world average above SM expectation so that mixed/split light stops are preferred

[see recently also Espinosa et al., 1207.7355]

### Indirect Bounds on Stop Sector

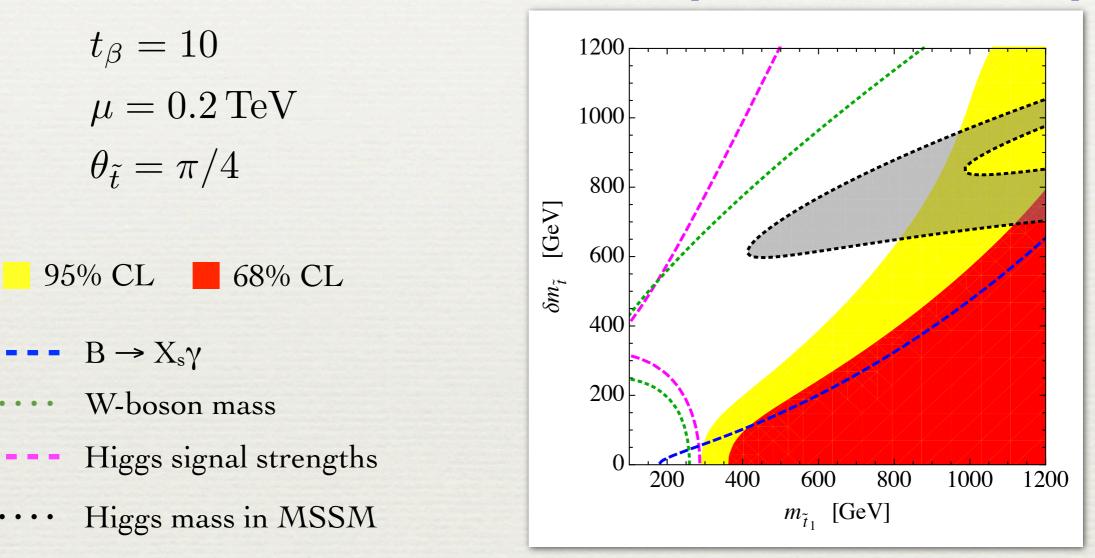


#### [Altmannshofer & UH, 13xx.xxx]

Depending on choice of parameters in stop sector, combination of indirect measurements can provide limits on mass of lightest stop eigenstate of around 300 GeV

### Indirect Bounds on Stop Sector

[Altmannshofer & UH, 13xx.xxx]



Depending on choice of parameters in stop sector, combination of indirect measurements can provide limits on mass of lightest stop eigenstate of around 300 GeV

### Indirect Bounds on Stop Sector

 $t_{\beta} = 2$ 1200  $\mu = -0.2 \,\mathrm{TeV}$ 1000  $\theta_{\tilde{t}} = \pi/4$ 800 [GeV] 600 95% CL 68% CL  $\delta m_{ ilde{t}}$ 400  $-- B \rightarrow X_s \gamma$ 200 W-boson mass --- Higgs signal strengths 400 200 600 800 1000 1200  $m_{\tilde{t}_1}$  [GeV]

[Altmannshofer & UH, 13xx.xxx]

But if constraint from Higgs-boson mass measurement is ignored (only applies in SUSY with minimal Higgs sector), no relevant model-independent lower bound on stop mass can be found

## Conclusions

- 7 & 8 TeV LHC runs took hope for spectacular effects in rare B decays. But at moment data not precise enough to exclude BSM contaminations of O(50%). This still leaves room for visible & interesting effects in flavor physics, in particular, if CP violating
- O(70%) enhancements of h → γγ signal generically require a new light & strongly-coupling particle (stau, chargino, charged Higgs, vector-like lepton, ...). Impossible to hide such a state. If real, sooner or later has to show up somewhere else!
- Only synergy between high- & low-p<sub>T</sub> observations may give us key to solving puzzles of fundamental physics. LHC precision measurements of B-mixing observables, B<sub>s</sub> → μ<sup>+</sup>μ<sup>-</sup>, B → K<sup>\*</sup>l<sup>+</sup>l<sup>-</sup>, angle γ, etc. crucial in endeavour

# Backup Slides

### Anatomy of Higgs Mass

For large  $t_{\beta}$  there are further contributions from sbottom & stau sector that can be relevant ( $\tilde{f} = \tilde{b}, \tilde{\tau}$ ):

$$(\Delta m_h^2)_{\tilde{f}} \approx -\frac{N_c^{\tilde{f}}}{\sqrt{2}G_F} \frac{y_f^4}{48\pi^2} \frac{\mu^4}{m_{\tilde{f}}^4}$$

where  $N_c^{b,\tilde{\tau}} = 3,1$ . Corrections are negative & quartic in Higgsino mass  $\mu$ . Their impact is minimized for sgn( $\mu M_{3,2}$ ) = +1

[see for example Carena et al., hep-ph/9504316, hep-ph/9508343; Haber et al., hep-ph/9609331]

#### Master Formula for $h \rightarrow b\bar{b}$

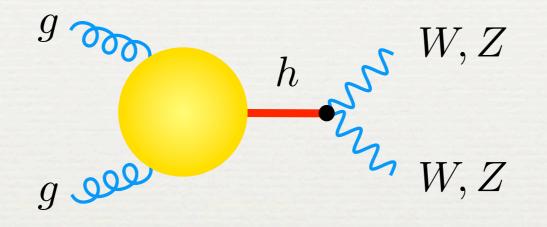
$$\frac{h}{\bar{b}} \qquad \kappa_b \approx \frac{1}{1 + \epsilon_b t_\beta} \frac{M_h^2 + (\Delta M_h^2)_{\tilde{t}} + M_Z^2}{M_A^2}$$

$$\epsilon_b = \frac{\mu A_t}{16\pi^2} \frac{y_t^2}{m_{\tilde{t}}^2} f(x_{\tilde{t}\mu}) + \frac{2\alpha_s}{3\pi} \frac{\mu M_3}{m_{\tilde{b}}^2} f(x_{\tilde{b}3})$$

$$(\Delta M_h^2)_{\tilde{t}} \approx \frac{3G_F}{\sqrt{2}\pi^2} m_t^4 \left[ -\ln\left(\frac{m_t^2}{m_{\tilde{t}}^2}\right) + \frac{X_t^2}{m_{\tilde{t}}^2} \left(1 - \frac{X_t^2}{12m_{\tilde{t}}^2}\right) \right]$$

In MSSM,  $h \rightarrow b\bar{b}$  can receive large decoupling corrections, that are correlated to shift  $\varepsilon_b$  in bottom Yukawa & stop effects in  $M_h$ 

### Master Formula for pp $\rightarrow$ WW,ZZ



$$R_V \approx 1 + 0.47 \left( \frac{m_t^2}{m_{\tilde{t}_1}^2} + \frac{m_t^2}{m_{\tilde{t}_2}^2} - \frac{m_t^2 X_t^2}{m_{\tilde{t}_1}^2 m_{\tilde{t}_2}^2} - \frac{m_b^2 X_b^2}{m_{\tilde{b}_1}^2 m_{\tilde{b}_2}^2} \right)$$
$$-1.20 \frac{1}{1 + \epsilon_b t_\beta} \frac{M_h^2 + (\Delta M_h^2)_{\tilde{t}} + M_Z^2}{M_A^2}$$

Also massive vector-boson channels plagued by non-decoupling corrections associated to Br(h → bb) ≈ 60%

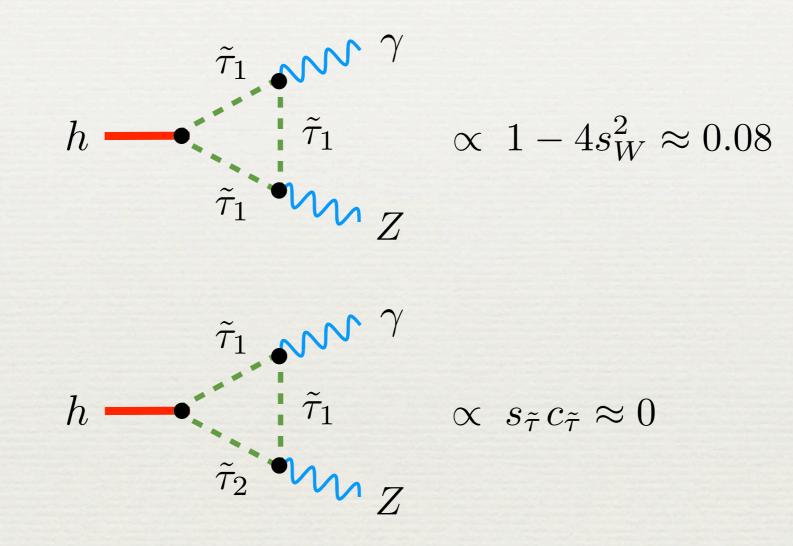
### Master Formula for $pp \rightarrow \gamma\gamma$

9 000 h 9 000

$$\begin{aligned} R_{\gamma} &\approx 1 + 0.33 \left( \frac{m_{t}^{2}}{m_{\tilde{t}_{1}}^{2}} + \frac{m_{t}^{2}}{m_{\tilde{t}_{2}}^{2}} - \frac{m_{t}^{2} X_{t}^{2}}{m_{\tilde{t}_{1}}^{2} m_{\tilde{t}_{2}}^{2}} \right) - 0.43 \frac{m_{b}^{2} X_{b}^{2}}{m_{\tilde{t}_{1}}^{2} m_{\tilde{t}_{2}}^{2}} + 0.10 \frac{m_{\tau}^{2} X_{\tau}^{2}}{m_{\tilde{\tau}_{1}}^{2} m_{\tilde{\tau}_{2}}^{2}} \\ &+ 1.63 \operatorname{sgn}\left(\mu M_{2}\right) \frac{M_{W}^{2}}{m_{\chi_{1}^{\pm}}^{4} m_{\chi_{2}^{\pm}}} \frac{1}{t_{\beta}} - 1.20 \frac{1}{1 + \epsilon_{b} t_{\beta}} \frac{M_{h}^{2} + (\Delta M_{h}^{2})_{\tilde{t}} + M_{Z}^{2}}{M_{A}^{2}} \end{aligned}$$

Large non-decoupling corrections arise from fact that for Higgs of around 125 GeV branching fraction of Higgs to bb is about 60%

Stau Loops in  $h \rightarrow Z\gamma$ 



In limit of maximal stau mixing, i.e.,  $|s_{\tilde{\tau}}| = |\sin\theta_{\tilde{\tau}}| \approx 1$ , stau effects in  $h \rightarrow Z\gamma$  suppressed. Partial decay width shifted by utmost ±20%

[see for example Giudice, Paradisi & Strumia, 1207.6393]

### Anatomy of $a_{\mu}$

Throughout parameter space of interest, dominant contribution to muon anomalous magnetic moment arises from chargino-sneutrino diagrams:

For  $t_{\beta} = 50$ ,  $m_{\tilde{v}} = |\mu| = 1$  TeV &  $|M_2| = 0.2$  TeV, one has numerically

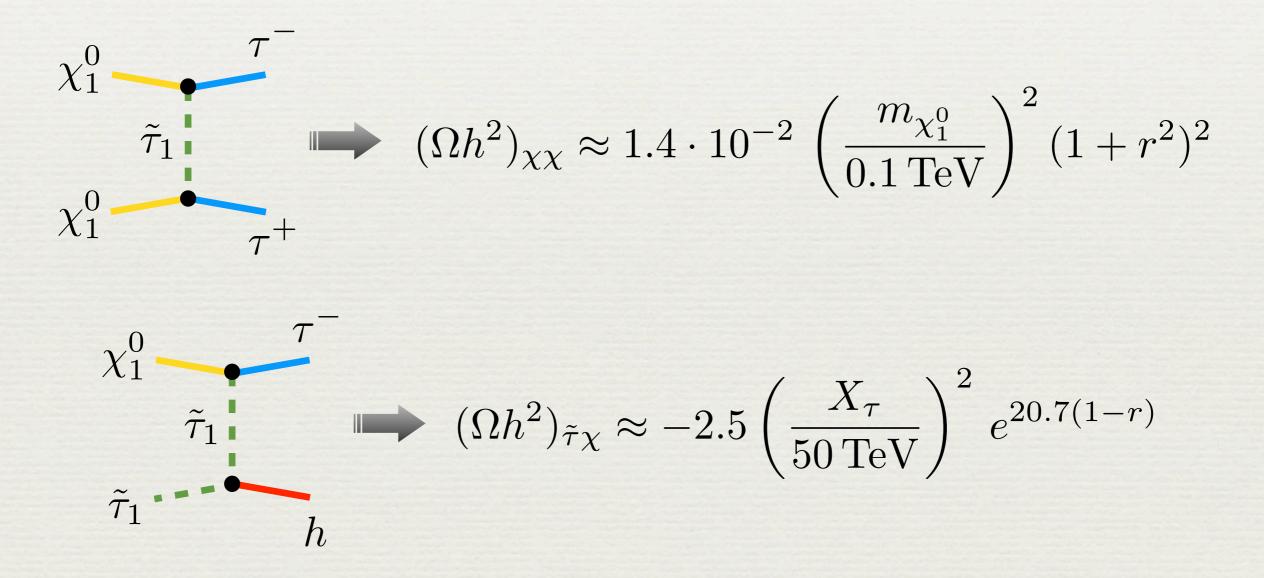
$$\Delta a_{\mu}^{\chi} \approx \operatorname{sgn}\left(\mu M_2\right) 7.5 \cdot 10^{-10}$$

meaning that for  $\mu M_2 > 0$  tension between experimental result & SM prediction is reduced

[see for example Moroi, hep-ph/9512396]

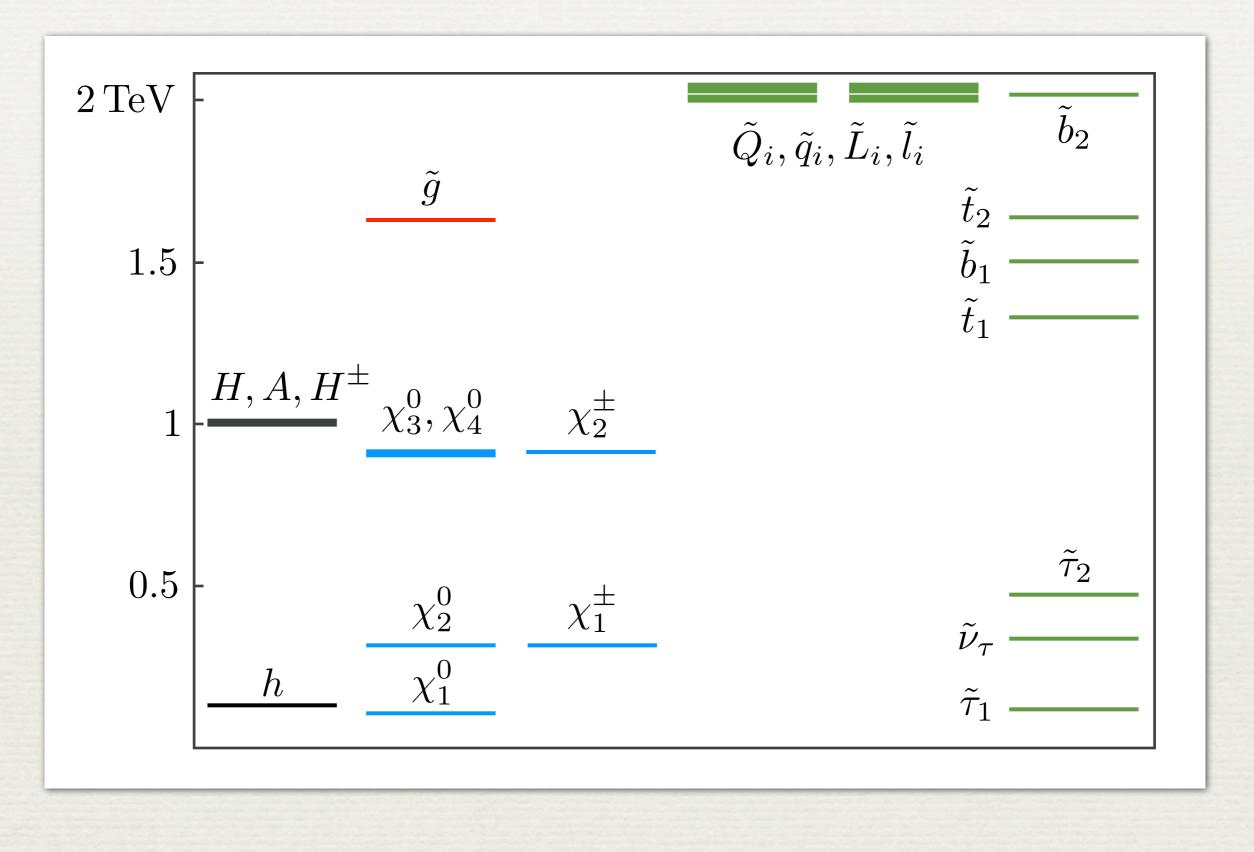
#### Anatomy of Dark Matter Relic Density

If  $m_{\chi_1^0} \leq 100$  GeV, channel  $\chi_1^0 \chi_1^0 \rightarrow \tau^+ \tau^-$  dominant. For heavier  $\chi_1^0$ , coannihilation  $\chi_1^0 \tilde{\tau}_1 \rightarrow h\tau$  important if  $r = m\tilde{\tau}_1/m_{\chi_1^0} \approx 1$ :

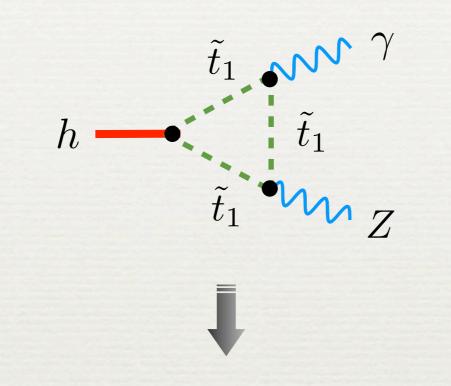


[see for example Gomez, Lazarides & Pallis, hep-ph/9907261]

### "Unnatural" MSSM Spectrum



### Stop Loops in $h \rightarrow Z\gamma$

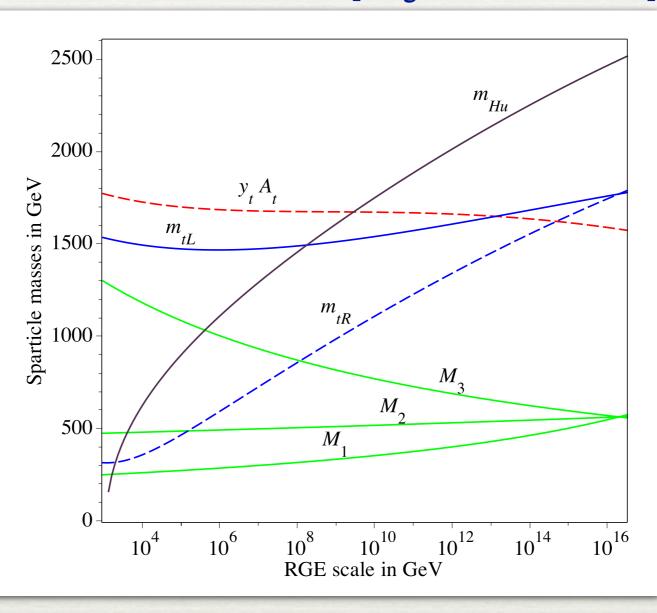


$$\kappa_{Z\gamma} \approx \frac{1}{12c_W} \frac{m_t}{m_{\tilde{t}_1}^2} \left(\frac{c_{\tilde{t}}^2}{2} - \frac{2s_W^2}{3}\right) \left(m_t - \frac{s_{2\tilde{t}}X_t}{2}\right)$$

Dominant effects in  $h \rightarrow Z\gamma$  due to loops of lightest stop eigenstate. For stop mass of 200 GeV, decay width shifted by maximal ±20%

### Renormalization Group (RG) Evolution

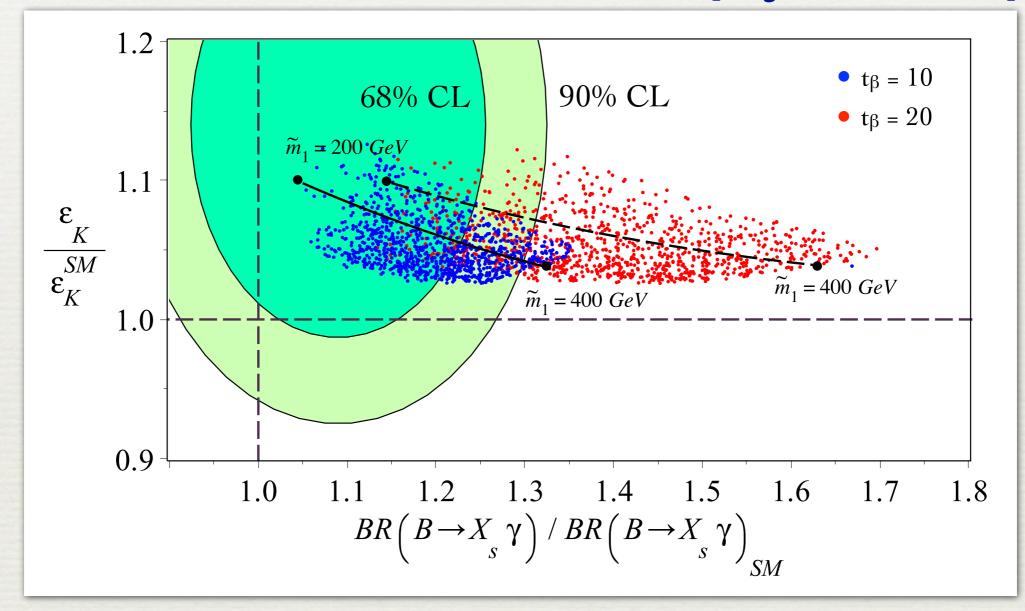
[Delgado et al. 1212.6847]



Assuming that squarks are heavier than gauginos by factor of 3 at unification scale, RG effects can lead to  $\tilde{t}_R(\tilde{t}_L)$  of 0.3 TeV (1.5 TeV)

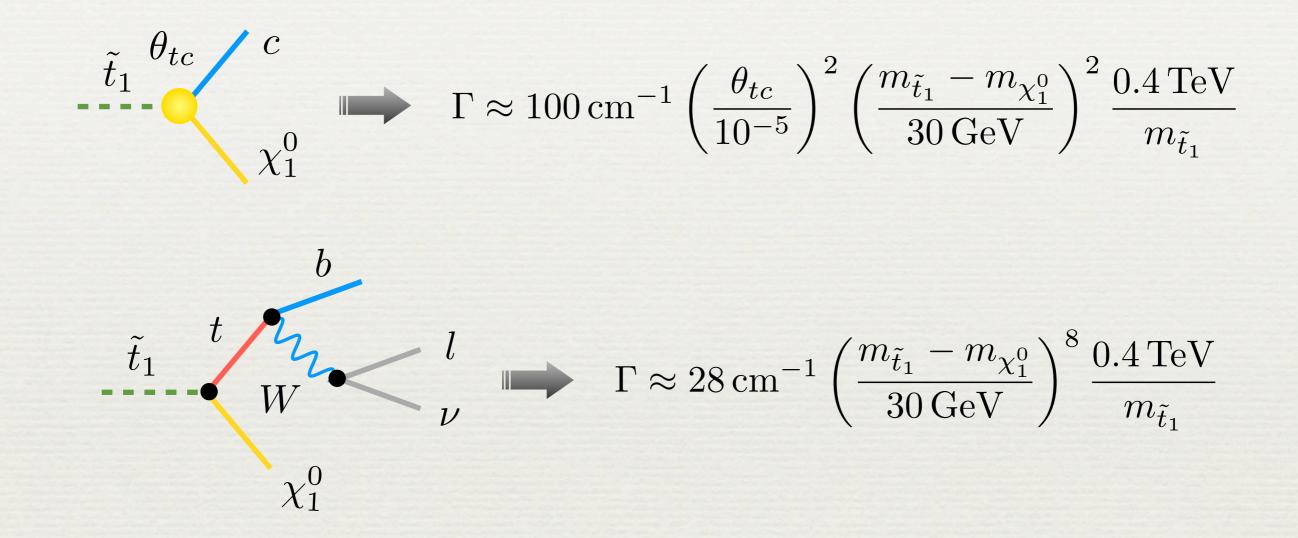
Light Stops:  $B \rightarrow X_s \gamma vs. \epsilon_K$ 

[Delgado et al. 1212.6847]



Flavor data favor  $\mu < 0$  & mass splitting of stop eigenstates with  $\tilde{t}_R$ lighter than  $\tilde{t}_L$  which maximizes (minimizes) effect in  $\varepsilon_K (B \rightarrow X_s \gamma)$ 

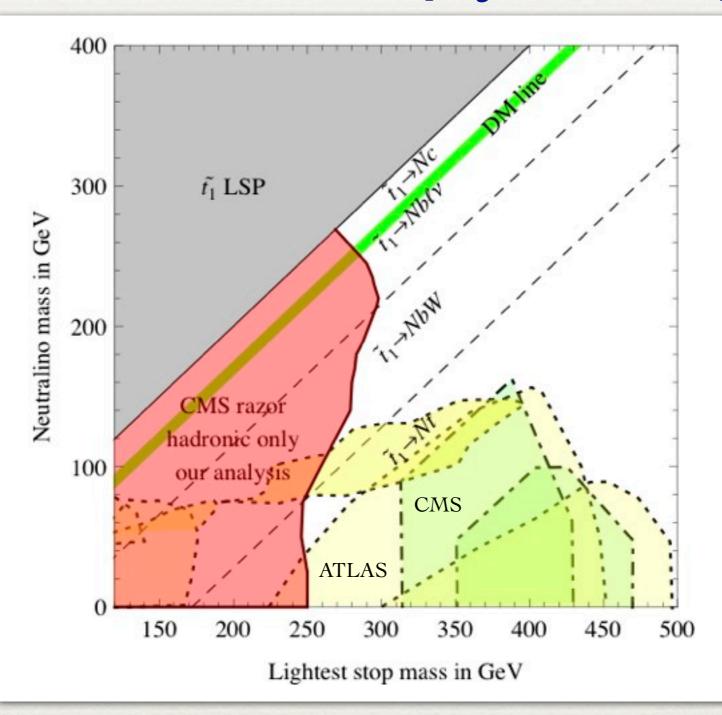
Stop Decay Rates



4-body mode can compete with 2-body decay if stop-scharm mixing angle  $\theta_{tc}$  below 10<sup>-5</sup> & stop-neutralino mass splitting not to small [Delgado et al. 1212.6847]

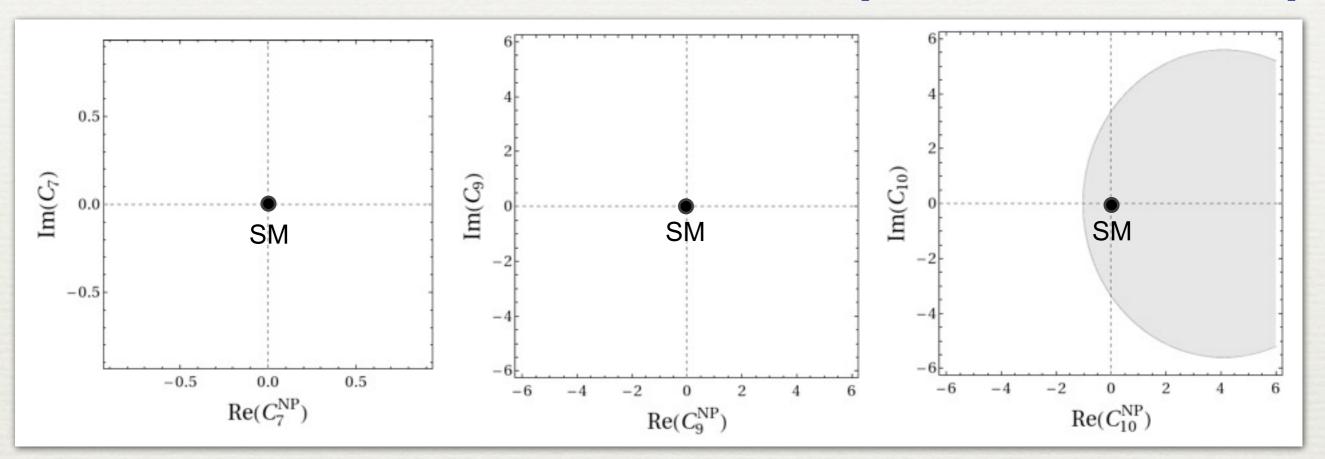
### LHC Bounds on Stops & Neutralinos

[Delgado et al. 1212.6847]



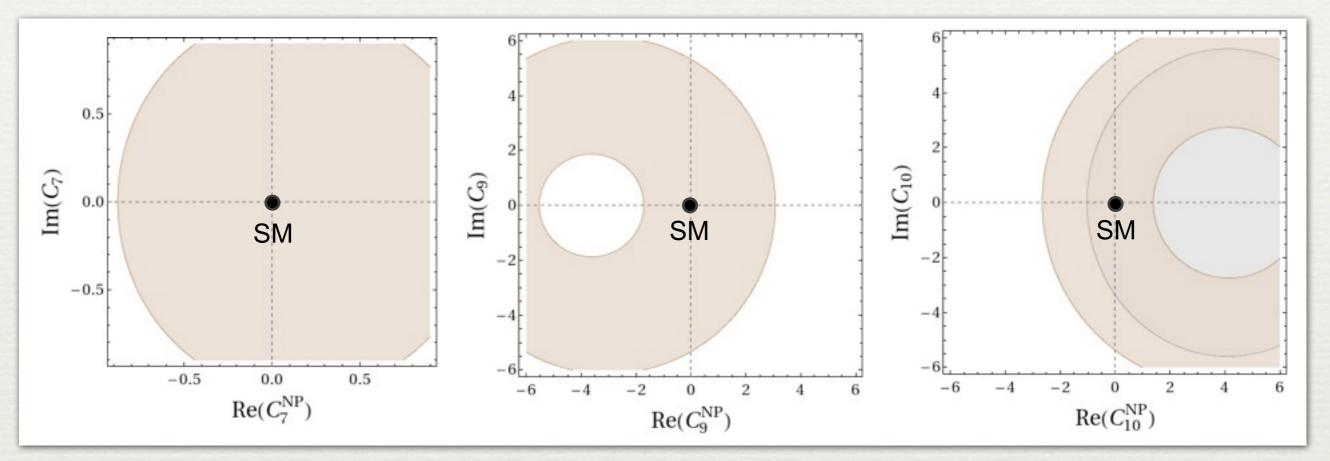
## Rare B-Meson Decays

#### [Altmannshofer & Straub, 1206.0273]



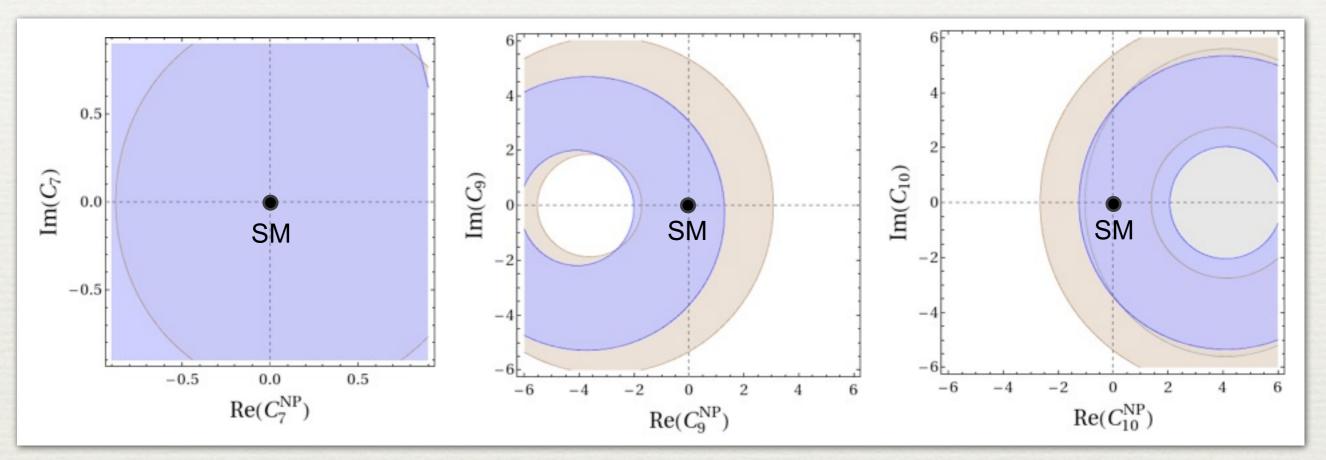
•  $B_s \rightarrow \mu^+ \mu^-$ 

#### [Altmannshofer & Straub, 1206.0273]



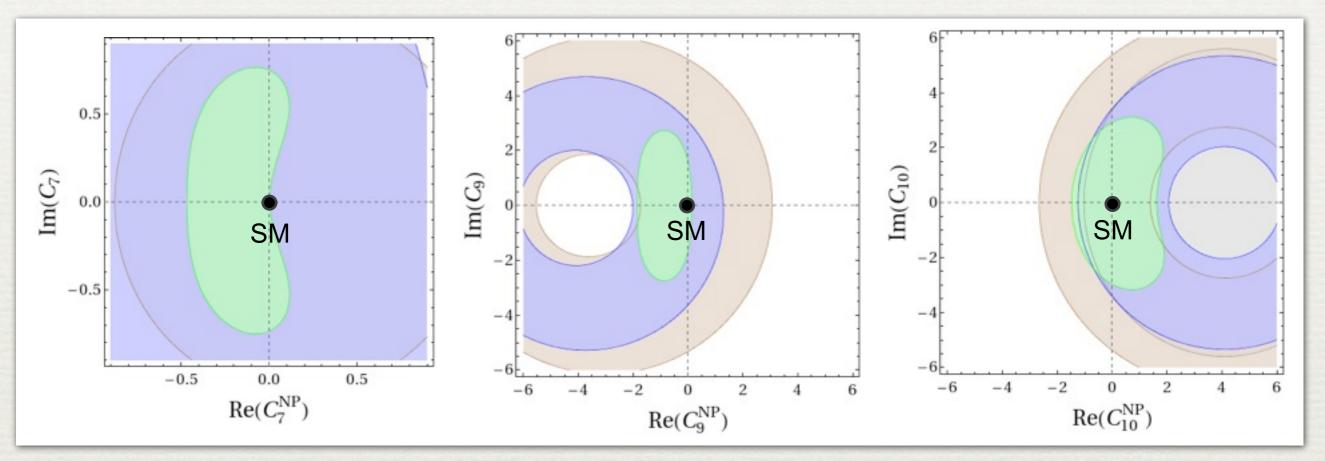
• 
$$B_s \rightarrow \mu^+ \mu^-$$
 •  $B \rightarrow X_s \mu^+ \mu^-$ 

#### [Altmannshofer & Straub, 1206.0273]



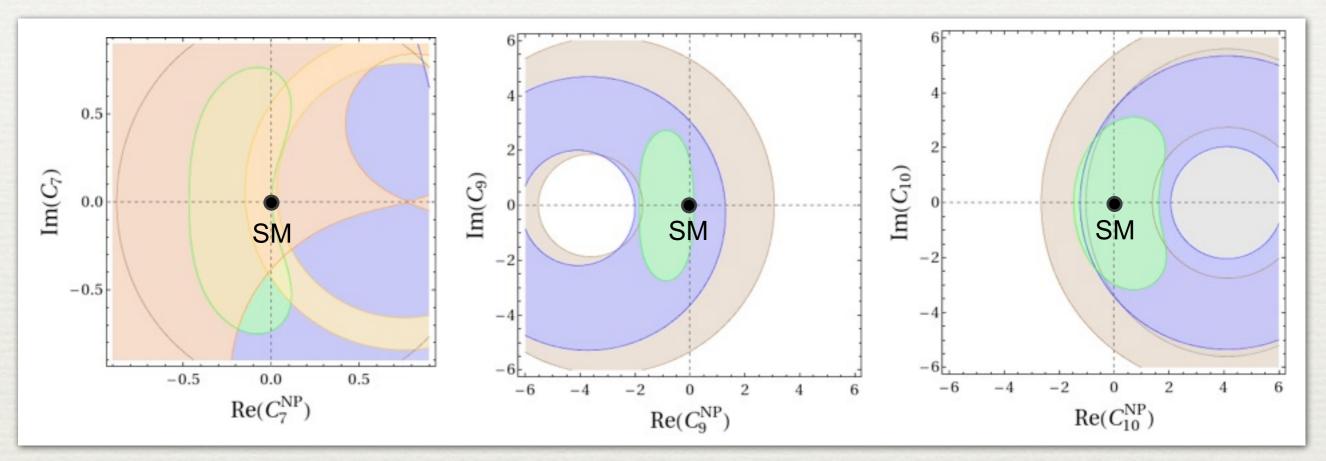
•  $B_s \rightarrow \mu^+ \mu^-$  •  $B \rightarrow X_s \mu^+ \mu^-$  •  $B \rightarrow K \mu^+ \mu^-$ 

#### [Altmannshofer & Straub, 1206.0273]



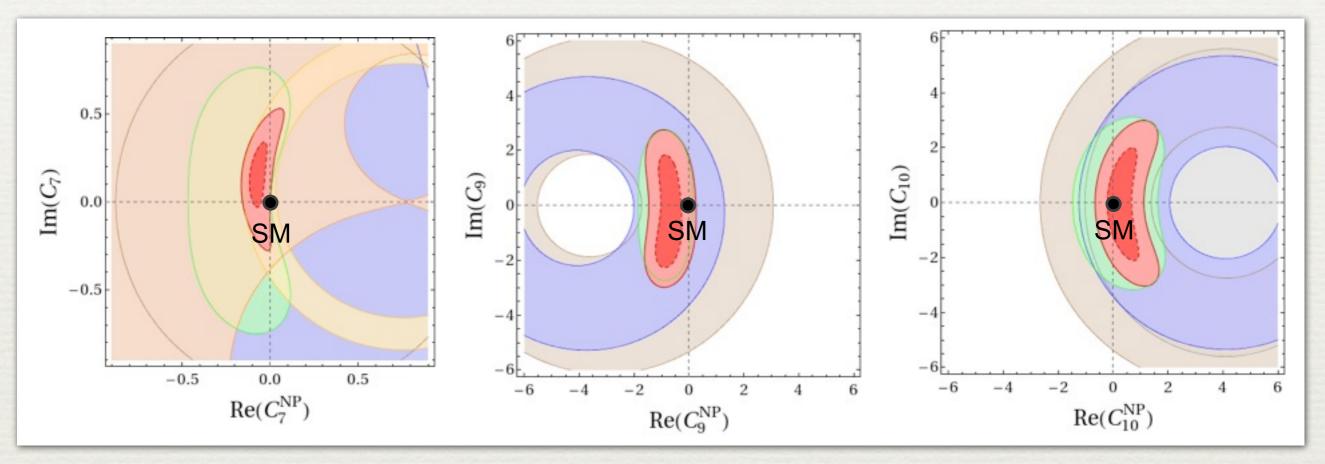
•  $B_s \rightarrow \mu^+ \mu^-$  •  $B \rightarrow X_s \mu^+ \mu^-$  •  $B \rightarrow K \mu^+ \mu^-$  •  $B \rightarrow K^* \mu^+ \mu^-$ 

#### [Altmannshofer & Straub, 1206.0273]



•  $B_s \rightarrow \mu^+ \mu^-$  •  $B \rightarrow X_s \mu^+ \mu^-$  •  $B \rightarrow K \mu^+ \mu^-$  •  $B \rightarrow K^* \mu^+ \mu^-$  •  $B \rightarrow X_s \gamma$ 

#### [Altmannshofer & Straub, 1206.0273]



•  $B_s \rightarrow \mu^+ \mu^-$  •  $B \rightarrow X_s \mu^+ \mu^-$  •  $B \rightarrow K \mu^+ \mu^-$  •  $B \rightarrow K^* \mu^+ \mu^-$  •  $B \rightarrow X_s \gamma$ 

Data shows reasonable agreement with SM: χ²/dofs = 21.8/24
Need to measure CP-violating observables to better determine imaginary parts of Wilson coefficients

### Implications for BSM Scale

#### [Altmannshofer & Straub, 1206.0273]

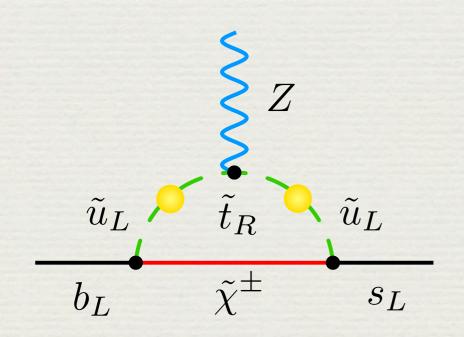
| Operator           |                                                                     | $\Lambda_{\rm NP}$ [TeV] for $ C_i  = 1$ |     |    |    |  |
|--------------------|---------------------------------------------------------------------|------------------------------------------|-----|----|----|--|
|                    |                                                                     | +                                        | —   | +i | -i |  |
| $Q_7 =$            | $\frac{m_b}{e}(\bar{s}\sigma_{\mu\nu}P_Rb)F^{\mu\nu}$               | 69                                       | 270 | 43 | 38 |  |
| $Q'_7 =$           | $\frac{m_b}{e}(\bar{s}\sigma_{\mu\nu}P_Lb)F^{\mu\nu}$               | 46                                       | 70  | 78 | 47 |  |
| $Q_9 =$            | $(\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\ell)$           | 29                                       | 64  | 21 | 22 |  |
| $Q'_9 =$           | $(\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\ell)$           | 51                                       | 22  | 21 | 23 |  |
| $Q_{10} =$         | $(\bar{s}\gamma_{\mu}P_{L}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$ | 43                                       | 33  | 23 | 23 |  |
| $Q'_{10} =$        | $(\bar{s}\gamma_{\mu}P_{R}b)(\bar{\ell}\gamma^{\mu}\gamma_{5}\ell)$ | 25                                       | 89  | 24 | 23 |  |
| $Q_S^{(\prime)} =$ | $\frac{m_b}{m_{B_s}}(\bar{s}P_{R(L)}b)(\bar{\ell}\ell)$             | 93                                       | 93  | 98 | 98 |  |
| $Q_P =$            | $rac{m_b}{m_{B_s}}(ar{s}P_Rb)(ar{\ell}\gamma_5\ell)$               | 173                                      | 58  | 93 | 93 |  |
| $Q'_P =$           | $rac{m_b}{m_{B_s}}(ar{s}P_Lb)(ar{\ell}\gamma_5\ell)$               | 58                                       | 173 | 93 | 93 |  |
|                    |                                                                     |                                          |     |    |    |  |

Bounds not as strong as those from K-K & B-B mixing, but for generic BSM physics, scales above 20 TeV are probed

### Two-Sided Limits on $B_s \rightarrow \mu^+\mu^-$

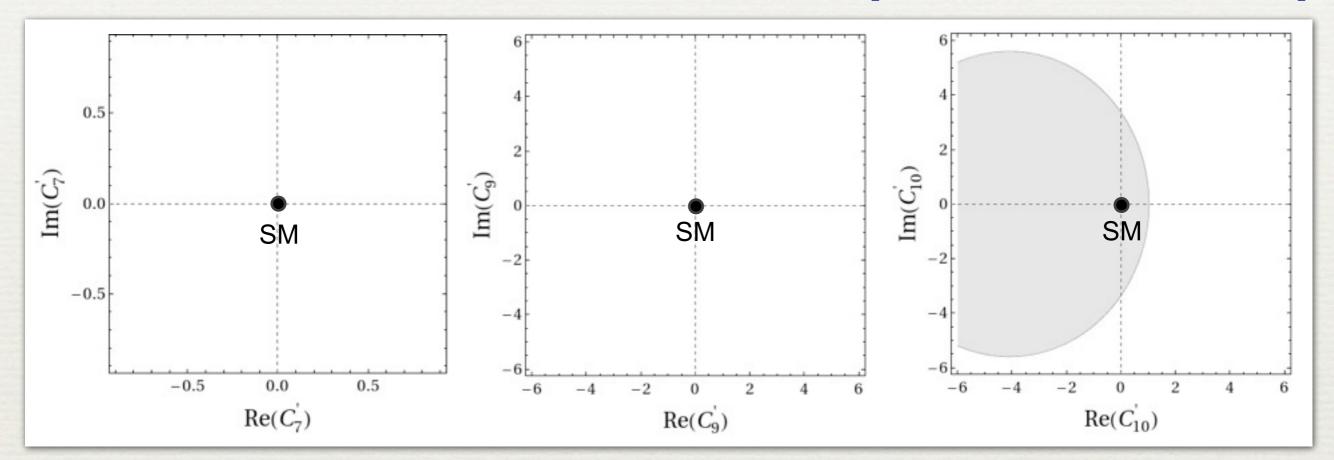
[Altmannshofer & Straub, 1206.0273]

| $C_{7,9,10}$                                   | $\mathbb{R}$ | $\mathbb{C}$ |              |              | $\mathbb{R}$ | $\mathbb{C}$ |
|------------------------------------------------|--------------|--------------|--------------|--------------|--------------|--------------|
| $C_{7,9,10}'$                                  |              |              | $\mathbb{R}$ | $\mathbb{C}$ | $\mathbb{R}$ | $\mathbb{C}$ |
| Br $(B_s \to \mu^+ \mu^-)$ [10 <sup>-9</sup> ] | [1.9, 5.2]   | [1.1, 4.6]   | [1.1, 4.2]   | [0.9, 4.6]   | < 4.6        | < 4.2        |



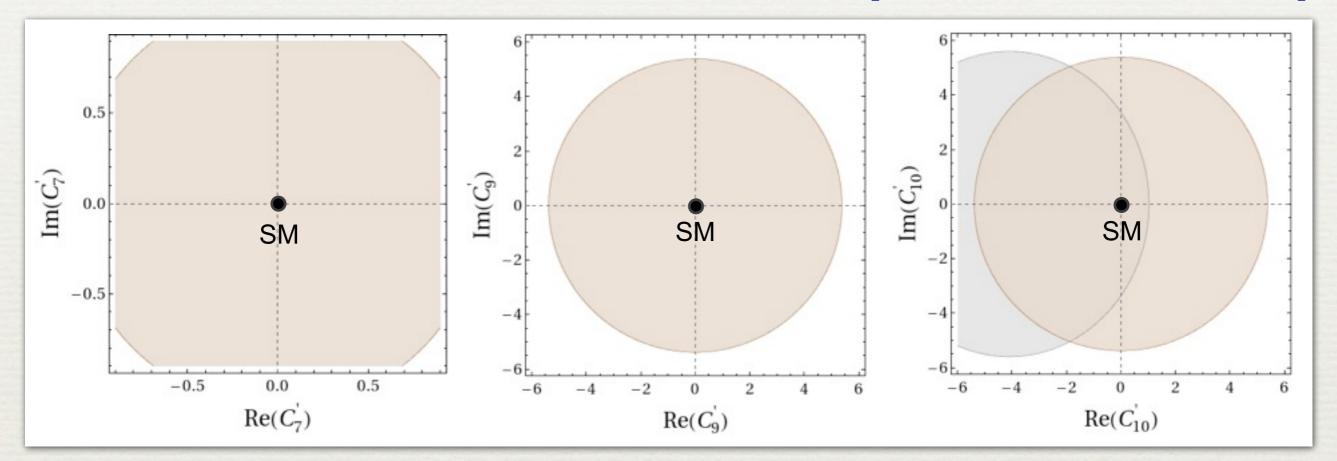
LHC bound on  $B_s \rightarrow \mu^+\mu^-$  can be saturated without (pseudo)scalar operators. Experiments only now start to probe BSM physics due to Z-penguins that enters through semileptonic operators

#### [Altmannshofer & Straub, 1206.0273]



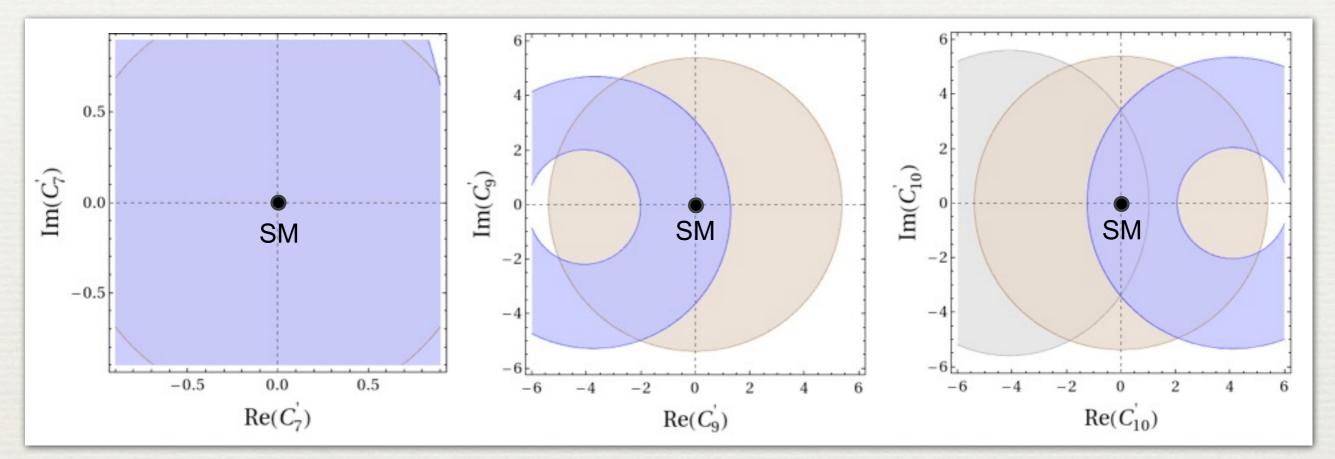
•  $B_s \rightarrow \mu^+ \mu^-$ 

#### [Altmannshofer & Straub, 1206.0273]



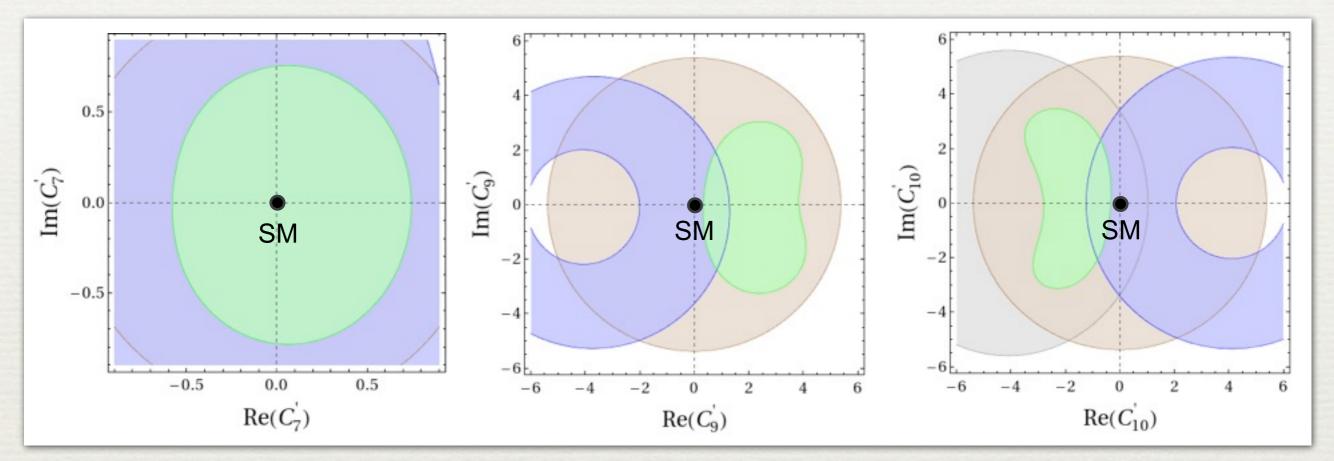
•  $B_s \rightarrow \mu^+ \mu^-$  •  $B \rightarrow X_s \mu^+ \mu^-$ 

#### [Altmannshofer & Straub, 1206.0273]



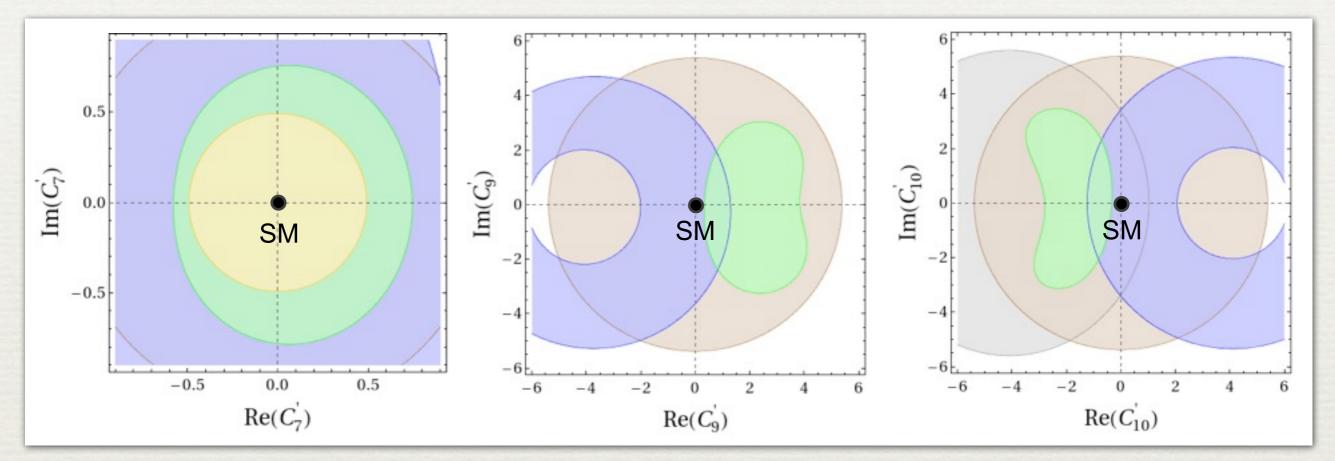
•  $B_s \rightarrow \mu^+ \mu^-$  •  $B \rightarrow X_s \mu^+ \mu^-$  •  $B \rightarrow K \mu^+ \mu^-$ 

#### [Altmannshofer & Straub, 1206.0273]



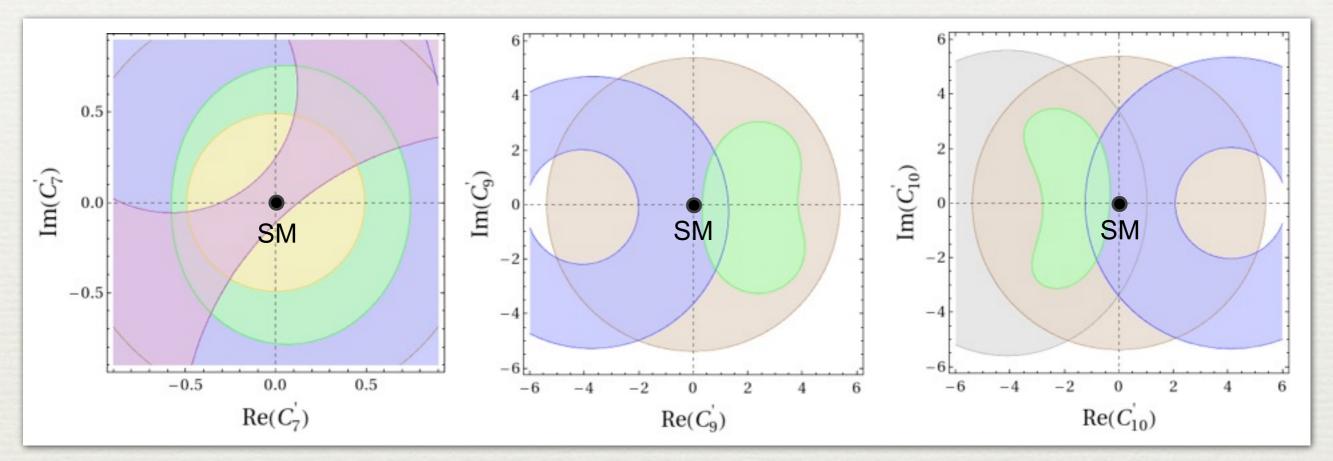
•  $B_s \rightarrow \mu^+ \mu^-$  •  $B \rightarrow X_s \mu^+ \mu^-$  •  $B \rightarrow K \mu^+ \mu^-$  •  $B \rightarrow K^* \mu^+ \mu^-$ 

#### [Altmannshofer & Straub, 1206.0273]



•  $B_s \rightarrow \mu^+ \mu^-$  •  $B \rightarrow X_s \mu^+ \mu^-$  •  $B \rightarrow K \mu^+ \mu^-$  •  $B \rightarrow K^* \mu^+ \mu^-$  •  $B \rightarrow X_s \gamma$ 

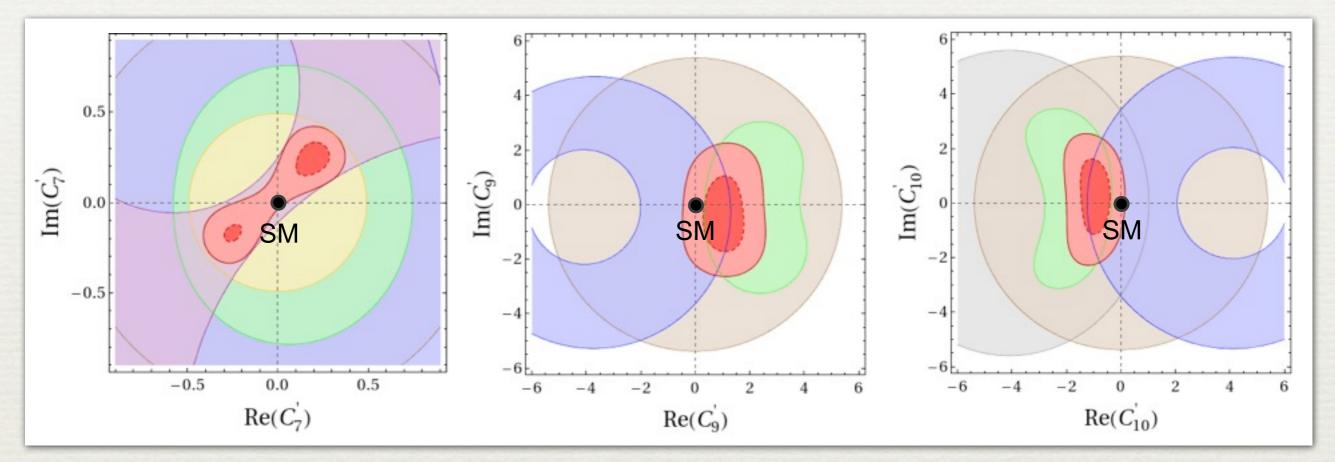
#### [Altmannshofer & Straub, 1206.0273]



•  $B_s \rightarrow \mu^+ \mu^-$  •  $B \rightarrow X_s \mu^+ \mu^-$  •  $B \rightarrow K \mu^+ \mu^-$  •  $B \rightarrow K^* \mu^+ \mu^-$  •  $B \rightarrow X_s \gamma$ 

• B  $\rightarrow$  K\* $\gamma$ 

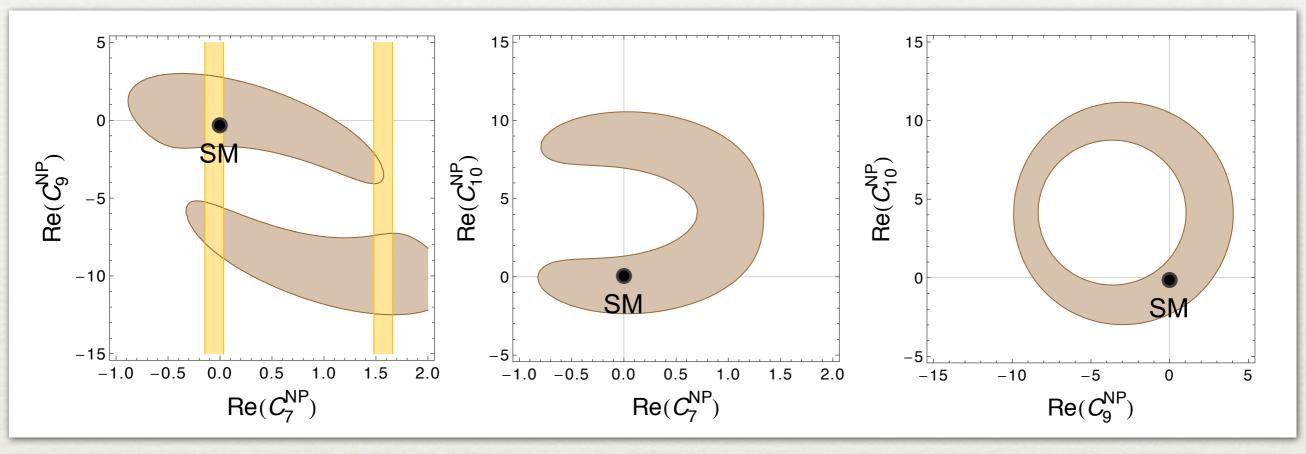
#### [Altmannshofer & Straub, 1206.0273]



•  $B_s \rightarrow \mu^+\mu^-$  •  $B \rightarrow X_s\mu^+\mu^-$  •  $B \rightarrow K\mu^+\mu^-$  •  $B \rightarrow K^*\mu^+\mu^-$  •  $B \rightarrow X_s\gamma$ •  $B \rightarrow K^*\gamma$ 

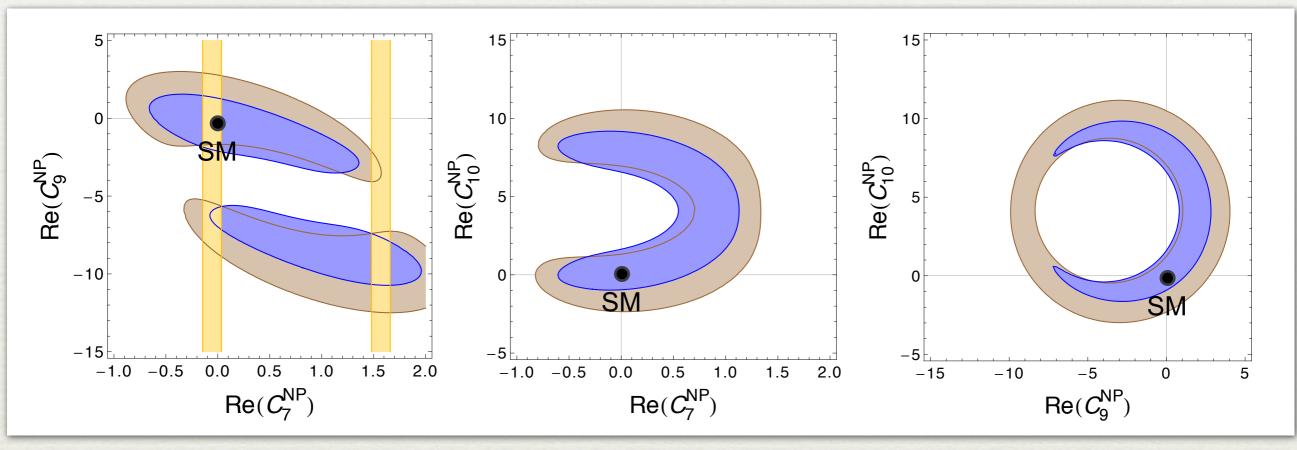
Different exclusive decays provide complementary information

#### [Altmannshofer, Paradisi & Straub, 1111.1257]



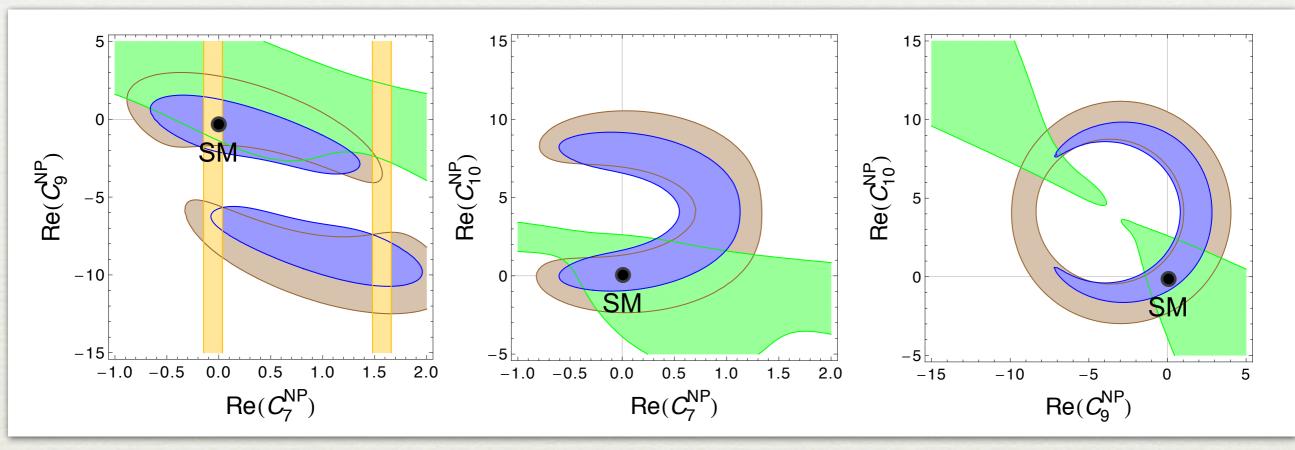
 $\begin{array}{ll} \mathsf{BR}(B \to X_{s}\ell^{+}\ell^{-}) & \mathsf{BR}(B \to X_{s}\gamma) \\ \bullet & \mathrm{Br}(B \to X_{s}\mu^{+}\mu^{-}) & \bullet & \mathrm{Br}(B \to X_{s}\gamma) \end{array}$ 

#### [Altmannshofer, Paradisi & Straub, 1111.1257]



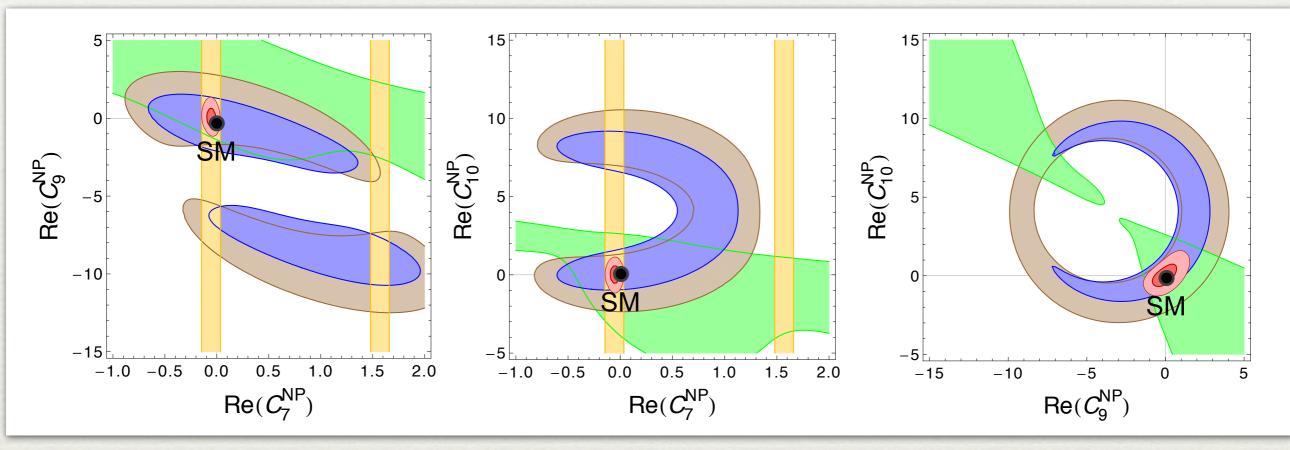
 $\begin{array}{ll} \mathsf{BR}(B \to X_{\mathfrak{s}}\ell^{+}\ell^{-}) & \mathsf{BR}(B \to X_{\mathfrak{s}}\gamma) & \mathsf{BR}(B \to K^{*}\mu^{+}\mu^{-}) \\ \bullet & \mathrm{Br}(B \to X_{\mathfrak{s}}\mu^{+}\mu^{-}) & \bullet & \mathrm{Br}(B \to X_{\mathfrak{s}}\gamma) & \bullet & \mathrm{Br}(B \to K^{*}\mu^{+}\mu^{-}) \end{array}$ 

#### [Altmannshofer, Paradisi & Straub, 1111.1257]



 $\begin{array}{ll} \mathsf{BR}(B \to X_{s}\ell^{+}\ell^{-}) & \mathsf{BR}(B \to X_{s}\gamma) & \mathsf{BR}(B \to K^{*}\mu^{+}\mu^{-}) & \mathsf{A}_{\mathsf{FB}}(B \to K^{*}\mu^{+}\mu^{-}) \\ \bullet & \mathrm{Br}(B \to X_{s}\mu^{+}\mu^{-}) & \bullet & \mathrm{Br}(B \to X_{s}\gamma) & \bullet & \mathrm{Br}(B \to K^{*}\mu^{+}\mu^{-}) & \bullet & \mathrm{A}_{\mathsf{FB}}(B \to K^{*}\mu^{+}\mu^{-}) \\ \end{array}$ 

#### [Altmannshofer, Paradisi & Straub, 1111.1257]

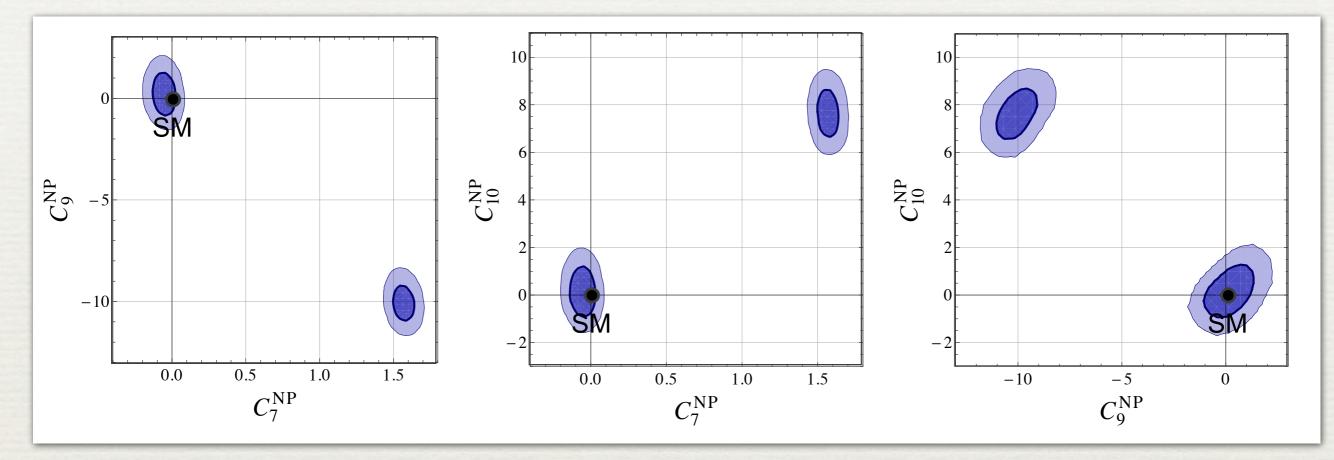


 $\begin{array}{ll} \mathsf{BR}(B \to X_{s}\ell^{+}\ell^{-}) & \mathsf{BR}(B \to X_{s}\gamma) & \mathsf{BR}(B \to K^{*}\mu^{+}\mu^{-}) & \mathsf{A}_{\mathsf{FB}}(B \to K^{*}\mu^{+}\mu^{-}) \\ \bullet & \mathrm{Br}(B \to X_{s}\mu^{+}\mu^{-}) & \bullet & \mathrm{Br}(B \to X_{s}\gamma) & \bullet & \mathrm{Br}(B \to K^{*}\mu^{+}\mu^{-}) & \bullet & \mathrm{A}_{\mathsf{FB}}(B \to K^{*}\mu^{+}\mu^{-}) \\ \end{array}$ 

B → K<sup>\*</sup>µ<sup>+</sup>µ<sup>-</sup> data exclude various "mirror solutions"
Exclusive b → sµ<sup>+</sup>µ<sup>-</sup> data (in particular angular distributions) breaks degeneracies & excludes various mirror solutions

### Disfavored Mirror Solutions

#### [Altmannshofer, Paradisi & Straub, 1111.1257]

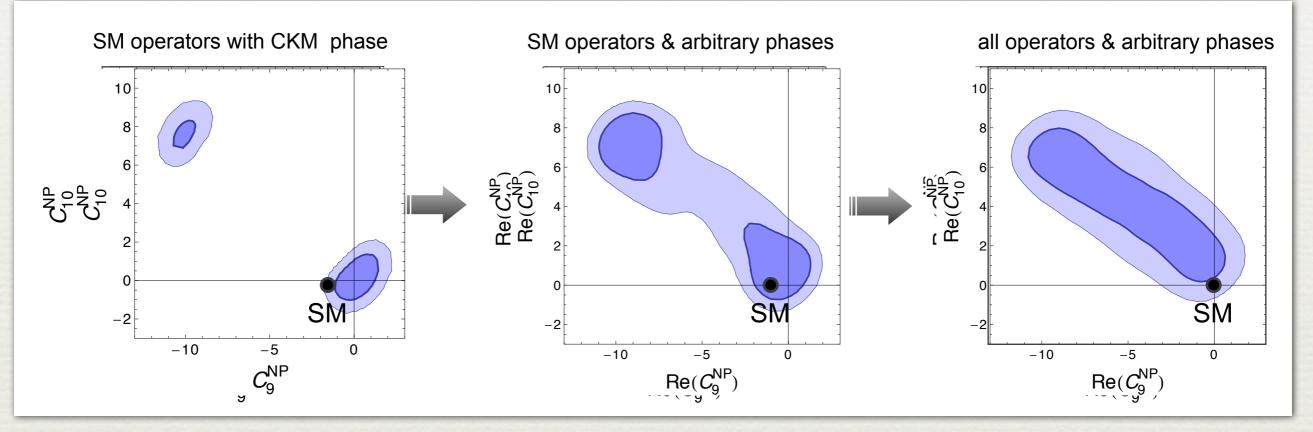


Flipped-sign solutions:

C<sub>7,9,10</sub> = −C<sup>SM</sup><sub>7,9,10</sub> cannot be excluded, but ...
C<sub>7</sub> = −C<sup>SM</sup><sub>7</sub> disfavored by Br(B → X<sub>s</sub>µ<sup>+</sup>µ<sup>-</sup>)
C<sub>9,10</sub> = −C<sup>SM</sup><sub>9,10</sub> disfavored by A<sub>FB</sub>(B → K<sup>\*</sup>µ<sup>+</sup>µ<sup>-</sup>)

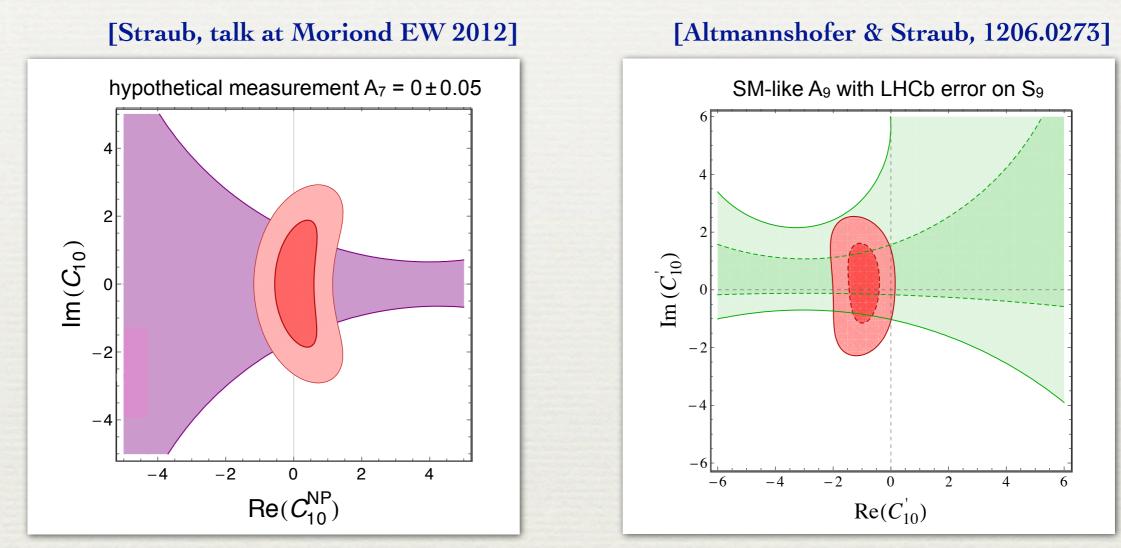
# Impact of Assumptions on Constraints

#### [Altmannshofer, Paradisi & Straub, 1111.1257]



Constraints significantly weakened by allowing for additional phase and/or chirality-flipped operators. Need more data (in particular on CP-violating observables) to break degeneracies

# Future (?) Impact of CP-violating Observables



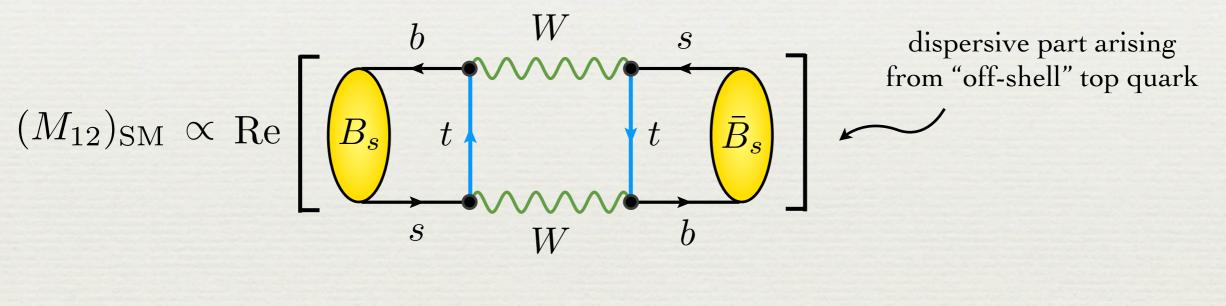
< 0.1 would give a valuable constraint

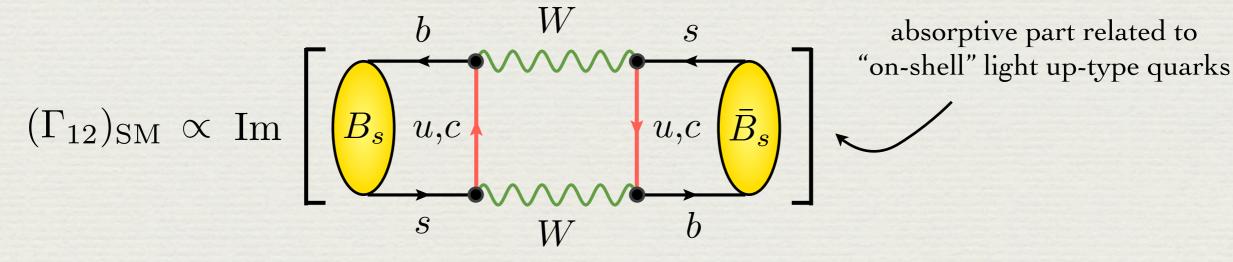
CP-violating observables such as A7 & A9 provide constraints that are orthogonal in plane of Wilson coefficients to those of CP-conserving observables like AFB, FL, S3, ...

# B-Meson Mixing

# Standard Model & Beyond

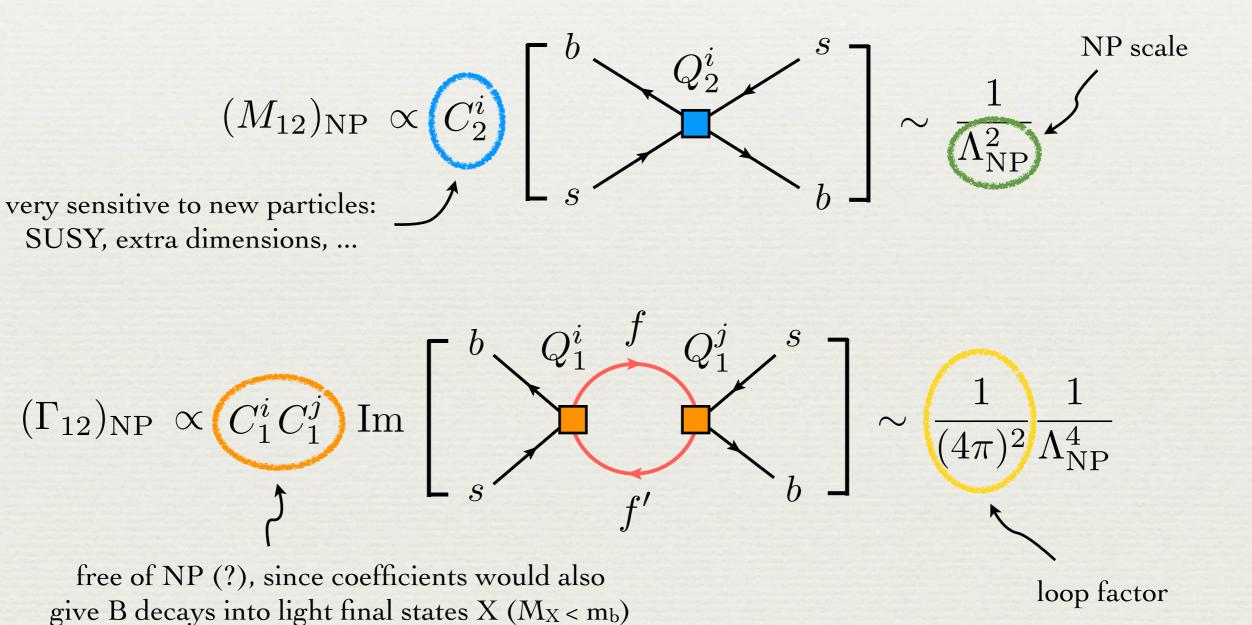
B<sub>s</sub>-B<sub>s</sub> oscillations encoded in elements M<sub>12</sub> &  $\Gamma_{12}$  of hermitian mass & decay rate matrices (CPT ⇒ M<sub>11</sub> = M<sub>22</sub>,  $\Gamma_{11} = \Gamma_{22}$ ). In Standard Model (SM) leading effects due to electroweak box diagrams:





### Standard Model & Beyond

Generic, sufficiently heavy new physics (NP) in  $M_{12}$  ( $\Gamma_{12}$ ) can be described via effective  $\Delta B = 2$  ( $\Delta B = 1$ ) interactions:



#### Parameters & Observables

Model-independent parametrization of NP effects in B<sub>s</sub> system:

$$M_{12} = (M_{12})_{\rm SM} + (M_{12})_{\rm NP} = (M_{12})_{\rm SM} R_M e^{i\phi_M}$$

$$\Gamma_{12} = (\Gamma_{12})_{\rm SM} + (\Gamma_{12})_{\rm NP} = (\Gamma_{12})_{\rm SM} R_{\Gamma} e^{i\phi_{\Gamma}}$$

Expressed through R<sub>M,Γ</sub>,  $\phi_{M,\Gamma}$  &  $(\phi_s)_{SM} = \arg(-(M_{12})_{SM}/(\Gamma_{12})_{SM})$ , mass  $\Delta M$  & width difference  $\Delta \Gamma$ , flavor-specific (e.g. semileptonic) CP asymmetry  $a_{fs}^s$  & CP-violating (CPV) phase  $\phi_{\psi\phi}$  take form

 $\Delta M = (\Delta M)_{\rm SM} R_M, \quad \Delta \Gamma \approx (\Delta \Gamma)_{\rm SM} R_{\Gamma} \cos (\phi_M - \phi_{\Gamma}) ,$  $a_{fs}^s \approx (a_{fs}^s)_{\rm SM} \frac{R_{\Gamma}}{R_M} \frac{\sin (\phi_M - \phi_{\Gamma})}{(\phi_s)_{\rm SM}}, \quad \phi_{\psi\phi} = (\phi_{\psi\phi})_{\rm SM} + \phi_M$ 

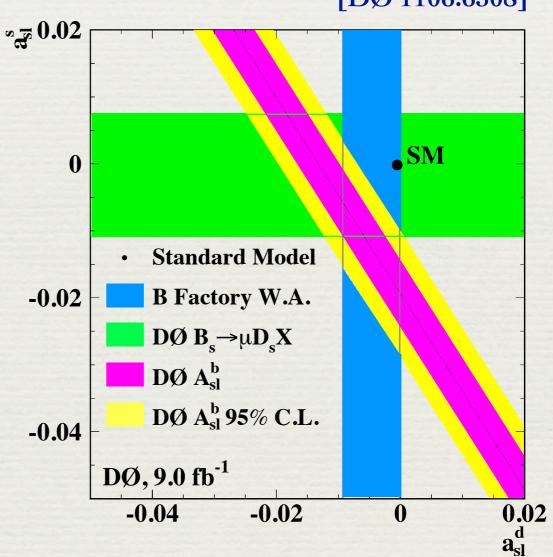
)

#### Parameters & Observables

Besides  $\phi_{\psi\phi}$  (from mixed-induced, time-dependent CP asymmetry in  $B_s \rightarrow \psi\phi$ ) &  $a_{fs}^s$  (from tree-level  $B_s \rightarrow \mu^+ D_s^- X$  decay), there is a  $3^{rd}$  relevant CPV quantity in B sector, i.e., like-sign dimuon charge asymmetry  $A_{SL}^b$ : [DØ 1106.6308]

$$\begin{aligned} A_{\rm SL}^b &= \frac{N_b^{++} - N_b^{--}}{N_b^{++} + N_b^{--}} \\ &= C_d \left[ a_{fs}^d + (1 - C_d) \right] a_{fs}^s \end{aligned}$$

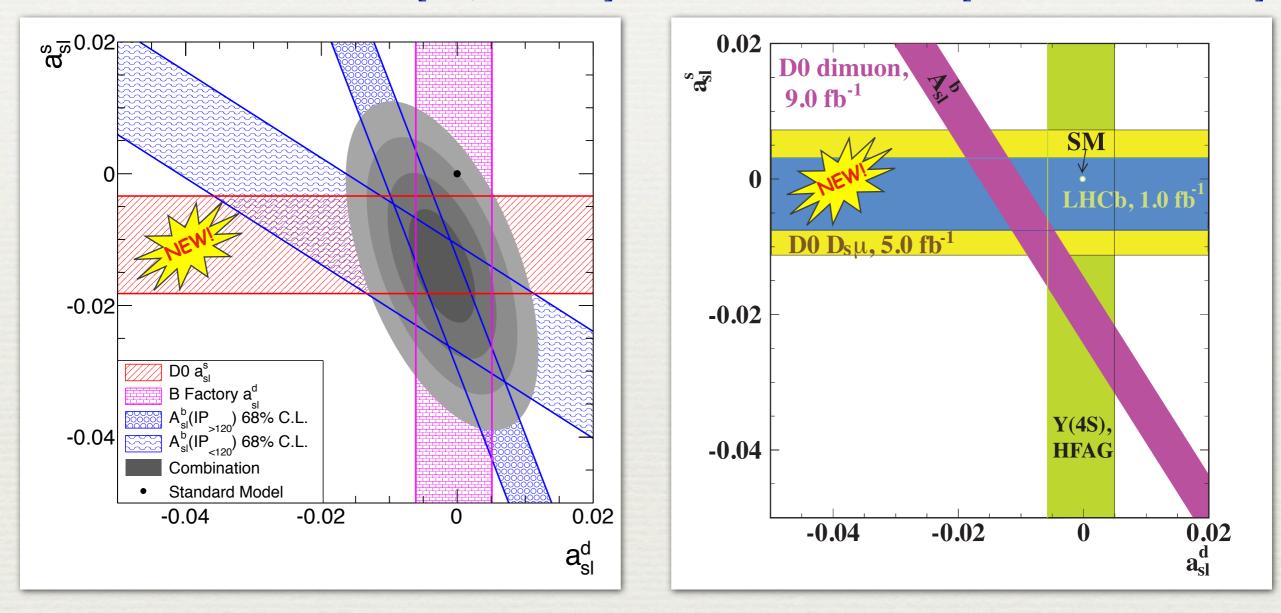
 $N_b^{\pm\pm} = \#$  of events with  $\mu^{\pm}\mu^{\pm}$ ,  $C_d \approx [0.5, 0.6] \propto \text{ production } B_d/B_s$ 



# New Data on CP asymmetry in B<sub>s</sub> Mixing

[LHCC-CONF-2012-022]

[DØ, 1207.1769]



Recent determinations of a<sup>s</sup><sub>fs</sub> by DØ & LHCb agree with each other & SM within errors. Further improvements needed to clarify origin of A<sup>b</sup><sub>SL</sub> anomaly

### SM Predictions vs. Data

|                                     | SM predictions<br>[Lenz & Nierste, 1106.6308] | data before 2011                                               | data at present                |
|-------------------------------------|-----------------------------------------------|----------------------------------------------------------------|--------------------------------|
| $\Delta M [ps^{-1}]$                | $17.3 \pm 2.6$                                | 17.70 ± 0.08<br>[CDF]                                          | 17.73 ± 0.05<br>[CDF & LHCb]   |
| ΔΓ [ps <sup>-1</sup> ]              | $0.087 \pm 0.021$                             | 0.154 <sup>+0.054</sup> <sub>-0.070</sub> (0.9σ)<br>[CDF & DØ] | 0.116 ± 0.019 (1.0σ)<br>[LHCb] |
| φ <sub>ψφ</sub> [°]                 | $-2.1 \pm 0.1$                                | $-44_{-21}^{+17}$ (2.3 $\sigma$ )<br>[CDF & DØ]                | -0.11 ± 5.0<br>[LHCb]          |
| A <sup>b</sup> <sub>SL</sub> [10-4] | $-2.1 \pm 0.4$                                | -85 ± 28 (3.0σ)<br>[DØ]                                        | -79 ± 20 (3.9σ)<br>[DØ]        |
| $a_{fs}^{s} [10^{-5}]^{\dagger}$    | $1.9 \pm 0.3$                                 | -1200 ± 700 (1.7σ)                                             | -1300 ± 800 (1.5σ)             |

<sup>†</sup>calculated from measured  $A_{SL}^{b}$  &  $a_{fs}^{s} = (-4.7 \pm 4.6) \times 10^{-3}$  from BaBar & Belle

[HFAG, 1010.1589]

#### Implications of Present Data Set

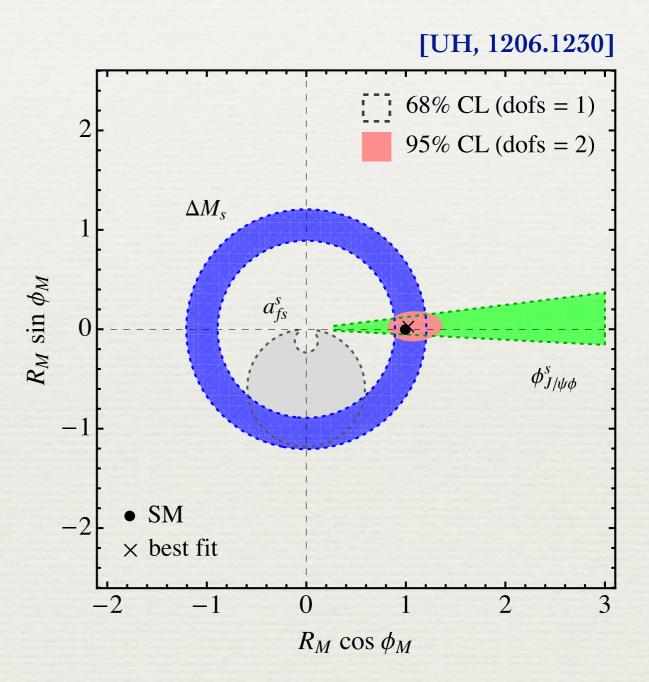
For  $(M_{12})_{NP} \neq 0$ ,  $(\Gamma_{12})_{NP} = 0$ , fit to new data only slightly better than SM hypothesis ( $\chi^2$ /dofs = 3.4/2 vs.  $\chi^2$ /dofs = 3.5/2)

[Bobeth & UH, 1109.1826; also Lenz, Nierste & CKMfitter, 1203.0238]

In fact, for NP in M<sub>12</sub> only & a<sup>d</sup><sub>fs</sub> = (a<sup>d</sup><sub>fs</sub>)<sub>SM</sub>, A<sup>b</sup><sub>SL</sub> measurement implies:

 $S_{\psi\phi} = \sin \phi_{\psi\phi} = -2.5 \pm 1.3$ 

[see e.g. Dobrescu, Fox & Martin, 1005.4238; Ligeti et al., 1006.0432; ...]



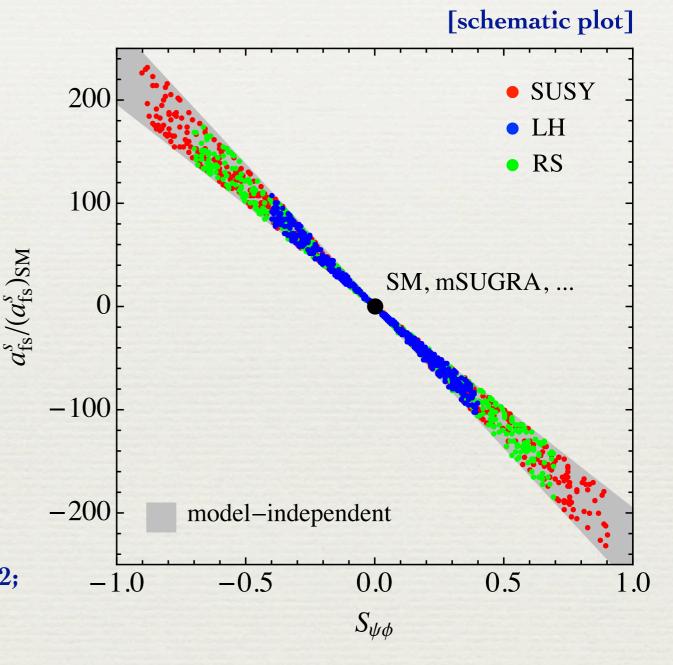
## If NP in M<sub>12</sub>, Which Kind?

In all NP models without direct CPV in decay (like SUSY, little Higgs (LH), Randall-Sundrum (RS) scenarios, ...), observables a<sup>s</sup><sub>fs</sub> & S<sub>\u03c8</sub> strongly correlated:

$$\frac{a_{fs}^s}{(a_{fs}^s)_{\rm SM}} \approx -240 \, \frac{S_{\psi\phi}}{R_M}$$

 $R_M = 1.05 \pm 0.16$ 

[see e.g. Ligeti, Papucci & Perez, hep-ph/0604112; Blanke et al., 0805.4393, 0809.1073; Altmannshofer et al., 0909.1333; Casagrande et al., 0912.1625; ...]



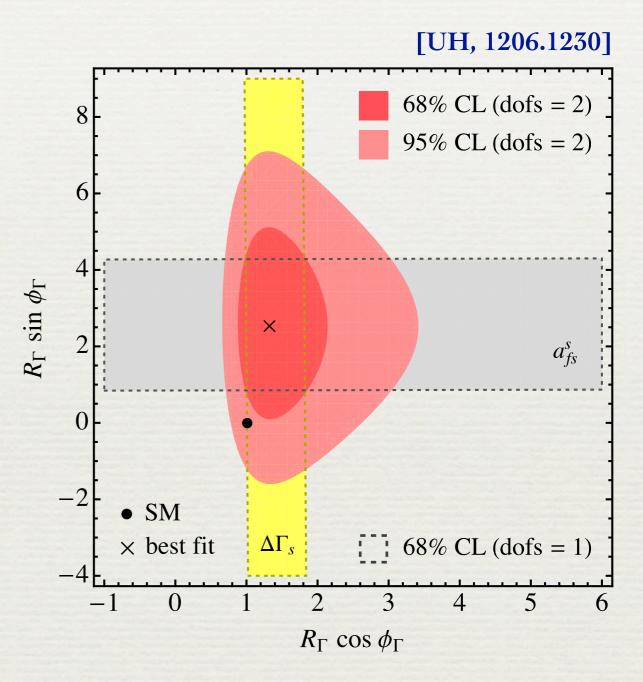
## Implications of Present Data Set

For  $(M_{12})_{NP} \neq 0$ ,  $(\Gamma_{12})_{NP} = 0$ , fit to new data only slightly better than SM hypothesis ( $\chi^2$ /dofs = 3.4/2 vs.  $\chi^2$ /dofs = 3.5/2)

[Bobeth & UH, 1109.1826; also Lenz, Nierste & CKMfitter, 1203.0238]

In fact, scenario with NP in Γ<sub>12</sub> only, allows for significantly better fit (χ<sup>2</sup>/dofs = 0.2/2) than M<sub>12</sub>-only assumption

[Bobeth & UH, 1109.1826]



Given latter result, worthwhile to ask: how big can NP in  $\Gamma_{12}$  be?

# NP in $\Gamma_{12}$ : $(\bar{s}b)(\bar{\tau}\tau)$ Operators

While any operator  $(\bar{s}b)f$  with f leading to flavor-neutral final state of 2 or more fields & mass less than  $m_b$  can alter  $\Gamma_{12}$ , possible f's in practice limited, because  $B_s \rightarrow f \& B_d \rightarrow X_s f$  modes involving light states in final state strongly constrained. A exception are B decays to tau pairs

[see e.g. Dighe, Kundu & Nandi, 0705.4547, 1005.1629; Bauer & Dunn, 1006.1629; Alok, Baek & London, 1010.1333; Kim, Seo & Shin, 1010.5123; Bobeth & UH, 1109.1826; ...]

# NP in $\Gamma_{12}$ : $(\bar{s}b)(\bar{\tau}\tau)$ Operators

While any operator  $(\bar{s}b)f$  with f leading to flavor-neutral final state of 2 or more fields & mass less than  $m_b$  can alter  $\Gamma_{12}$ , possible f's in practice limited, because  $B_s \rightarrow f \& B_d \rightarrow X_s f$  modes involving light states in final state strongly constrained. A exception are B decays to tau pairs

Can study size of NP in  $\Gamma_{12}$  using an effective theory containing a complete set of  $(\bar{s}b)(\tau \bar{\tau})$  operators (A, B = L, R):

$$\mathcal{L}_{\text{eff}}^{\text{NP}} = \frac{4G_F}{\sqrt{2}} V_{ts}^* V_{tb} \sum_i C_i Q_i \,,$$

 $P_{L,R} = (1 \mp \gamma_5)/2 \,,$ 

$$Q_{S,AB} = (\bar{s}P_A b)(\bar{\tau}P_B \tau),$$
$$Q_{V,AB} = (\bar{s}\gamma_\mu P_A b)(\bar{\tau}\gamma^\mu P_B \tau),$$
$$Q_{T,A} = (\bar{s}\sigma_{\mu\nu} P_A b)(\bar{\tau}\sigma^{\mu\nu} P_A \tau)$$

# NP in $\Gamma_{12}$ : $(\bar{s}b)(\bar{\tau}\tau)$ Operators

Assuming single operator dominance, calculation of

$$(\Gamma_{12})_{\rm NP} \propto C_i C_j \, {\rm Im} \left[ \begin{array}{c} b & Q_i & \tau & Q_j \\ & & & \\ s & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \right]$$

translates into

$$(R_{\Gamma})_{S,AB} < 1 + (0.4 \pm 0.1) |C_{S,AB}|^2 ,$$
  
$$(R_{\Gamma})_{V,AB} < 1 + (0.4 \pm 0.1) |C_{V,AB}|^2 ,$$
  
$$(R_{\Gamma})_{T,A} < 1 + (0.9 \pm 0.2) |C_{T,A}|^2$$

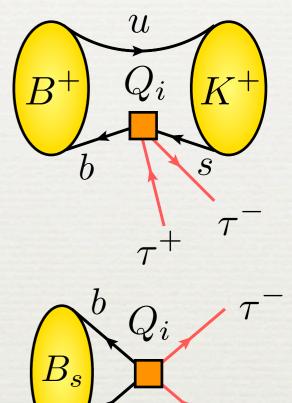
which implies that C<sub>i</sub>'s have to be around 1 (i.e., size of leading SM current-current coefficient) or larger to describe data well

# Bounds on $(\bar{s}b)(\bar{\tau}\tau)$ Operators

Direct constraints arise from

►  $Br(B^+ \rightarrow K^+\tau^+\tau^-) < 3.3 \cdot 10^{-3} (90\% \text{ CL})$ 

[Flood for BaBar, PoS ICHEP2010, 234 (2010)]



Br(B<sub>s</sub> 
$$\rightarrow \tau^+\tau^-) \leq 3\%$$
, Br(B  $\rightarrow X_s\tau^+\tau^-) \leq 2.5\%$ 

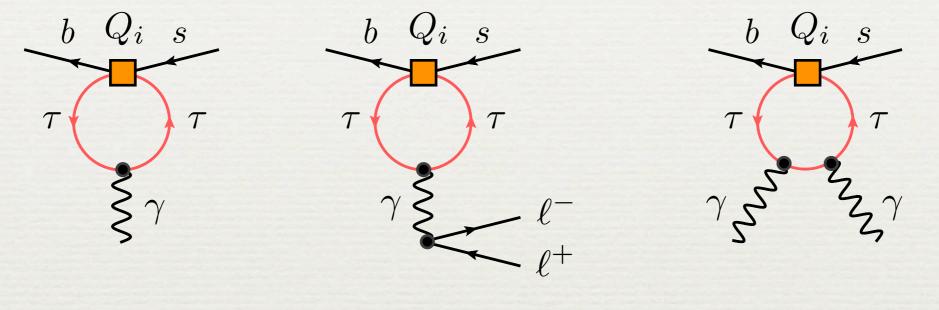
[see e.g. Grossman, Ligeti & Nardi, hep-ph/9607473; Dighe, Kundu & Nandi, 1005.4051; Bobeth & UH, 1109.1826]

Bounds on purely leptonic & inclusive semileptonic Br's from  $B_{d,s}$ lifetime ratio & contamination of b  $\rightarrow$  clv decays. LEP searches of  $B \rightarrow X + E_{miss}$  & charm counting of comparable strength

Indirect constraints from  $b \rightarrow s\gamma$ ,  $l^+l^-$  relevant for tensor operators

# Bounds on $(\bar{s}b)(\bar{\tau}\tau)$ Operators

Indirect constraints due to operator mixing & matrix elements:<sup>†</sup>



 $Q_{T,R} \to Q_7, \qquad Q_{V,LA} \to Q_9, \qquad Q_{S,AB} \to \vec{\epsilon}_1 \cdot \vec{\epsilon}_2,$  $Q_{T,L} \to Q'_7 \qquad Q_{V,RA} \to Q'_9 \qquad Q_{S,AB}, Q_{V,AB} \to \vec{\epsilon}_1 \times \vec{\epsilon}_2$ 

Bounds on C<sub>i</sub>'s derived by taking into account measurements of  $B \rightarrow X_s \gamma$  (Br),  $B \rightarrow K^* \gamma$  (Br, S, A<sub>I</sub>),  $B \rightarrow X_s l^+ l^-$  (Br),  $B \rightarrow K l^+ l^-$  (Br),  $B \rightarrow K^* l^+ l^-$  (Br, A<sub>FB</sub>, F<sub>L</sub>) & upper limit on B<sub>s</sub>  $\rightarrow \gamma \gamma$  (Br) <sup>†</sup>Q<sub>S,AB</sub> does not mix into  $b \rightarrow s\gamma$ , l<sup>+</sup>l<sup>-</sup> but has non-zero  $b \rightarrow s\gamma\gamma$  elements

# Upper Bounds on Wilson Coefficients

|       | limit on C <sub>i</sub> (m <sub>b</sub> ) | $\begin{array}{l} \text{limit on } \Lambda_{\text{NP}} \\ \text{for } C_{i}^{\Lambda} = 1 \end{array}$ | process                             |
|-------|-------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------------------------|
| S, AB | < 0.5                                     | 2.0 TeV                                                                                                | $B_s \rightarrow \tau^+ \tau^-$     |
| V, AB | < 0.8                                     | 1.0 TeV                                                                                                | $B^+ \rightarrow K^+ \tau^+ \tau^-$ |
| T, L  | < 0.06                                    | 3.2 TeV                                                                                                | $b \rightarrow s\gamma, l^+l^-$     |
| T, R  | < 0.09                                    | 2.8 TeV                                                                                                | $b \rightarrow s\gamma, l^+l^-$     |

Assuming single operator dominance & complex C<sub>i</sub>, one obtains quite loose bounds on scalar & vector operators, whereas tensor contributions are severely constrained, mostly due to  $B \rightarrow X_s \gamma$ 

# Details on Bounds on Wilson Coefficients

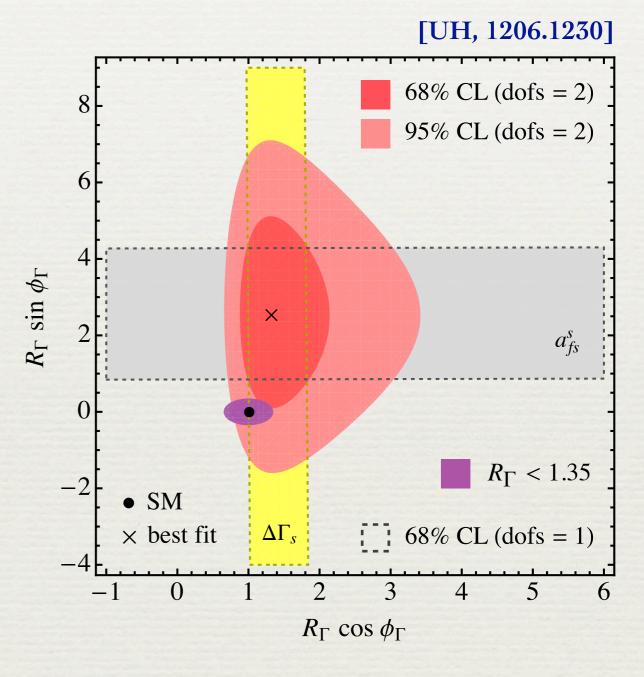
| C <sub>i</sub> (m <sub>b</sub> ) | $B^+ \rightarrow K^+ \tau^+ \tau^-$ | $B_s \rightarrow \tau^+ \tau^-$ | $B \rightarrow X_s \tau^+ \tau^-$ | $b \rightarrow s\gamma, l^+l^-$ | $B_s \rightarrow \gamma \gamma$ |
|----------------------------------|-------------------------------------|---------------------------------|-----------------------------------|---------------------------------|---------------------------------|
| S, AB                            | < 0.8                               | ≤ 0.5                           | ≤ 2.9                             |                                 | < 3.4, 2.3                      |
| V, AB                            | < 0.8                               | ≲ 1.0                           | ≲ 1.5                             | < 1.1, 1.0                      | < 5.9                           |
| T, A                             | < 0.4                               |                                 | < 0.4                             | < 0.06, 0.09                    |                                 |
| 7                                |                                     |                                 |                                   | < 0.23                          | < 2.2                           |
| 7'                               |                                     |                                 |                                   | < 0.20                          | < 1.9                           |
| 9                                |                                     |                                 |                                   | < 2.0                           |                                 |
| 9'                               |                                     |                                 |                                   | < 1.7                           |                                 |

Present Data:  $(\Gamma_{12})_{NP}$  Due to  $b \rightarrow s\tau^+\tau^-$ 

Upper limit on C<sub>i</sub> translate into:

$$(R_{\Gamma})_{S,AB} < 1.15$$
,  
 $(R_{\Gamma})_{V,AB} < 1.35$ ,  
 $(R_{\Gamma})_{T,L} < 1.004$ ,  
 $(R_{\Gamma})_{T,R} < 1.008$ 

Largest correction due to vector operator can change  $|\Gamma_{12}|_{\text{SM}}$  by 35%. Tension in C-meson sector can be relaxed, but effects are factor of around 10 too small to provide full explanation



#### Future (?) Bounds on Wilson Coefficients

[UH, 1206.1230] 1.50F 3.00F 2.00 1.00 1.50 bound on  $|C_{V,AB}(m_b)|$ bound on  $|C_{S,A}(m_b)|$ 1.00 0.70 0.70 0.50 0.50 0.30 0.30 0.20 1.5 2.0 3.0 5.0 7.0 10.0 2.0 3.0 7.0 10.0 1.0 1.5 5.0 1.0 improvement in measurement improvement in measurement

-  $\operatorname{Br}(B_{s} \to \tau^{+}\tau^{-})$  -  $\operatorname{Br}(B^{+} \to K^{+}\tau^{+}\tau^{-})$  -  $\operatorname{Br}(B \to X_{s}\tau^{+}\tau^{-})$ at present:  $\leq 3\%$   $< 3.3 \cdot 10^{-3}$   $\leq 2.5\%$ 

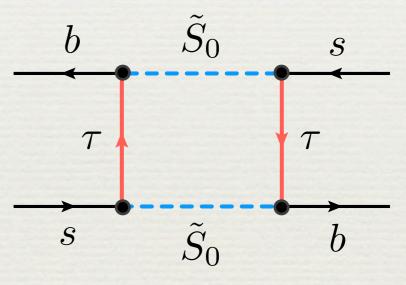
### Lepto-Quark Contributions to $\Gamma_{12}$

For SU(2) singlet scalar lepto-quarks (LQs) relevant coupling

$$\mathcal{L}_{LQ} \ni (\lambda_{R\tilde{S}_0})_{ij} \left( \bar{d}_j^c P_R e_i \right) \tilde{S}_0 + h.c$$

leads to  $\Delta B = 1 \& \Delta B = 2$  interactions

$$\mathcal{L}_{\text{eff}} \ni -\frac{(\lambda_{R\tilde{S}_{0}})_{32}(\lambda_{R\tilde{S}_{0}})_{33}}{2M_{\tilde{S}_{0}}^{2}}Q_{V,RR}$$

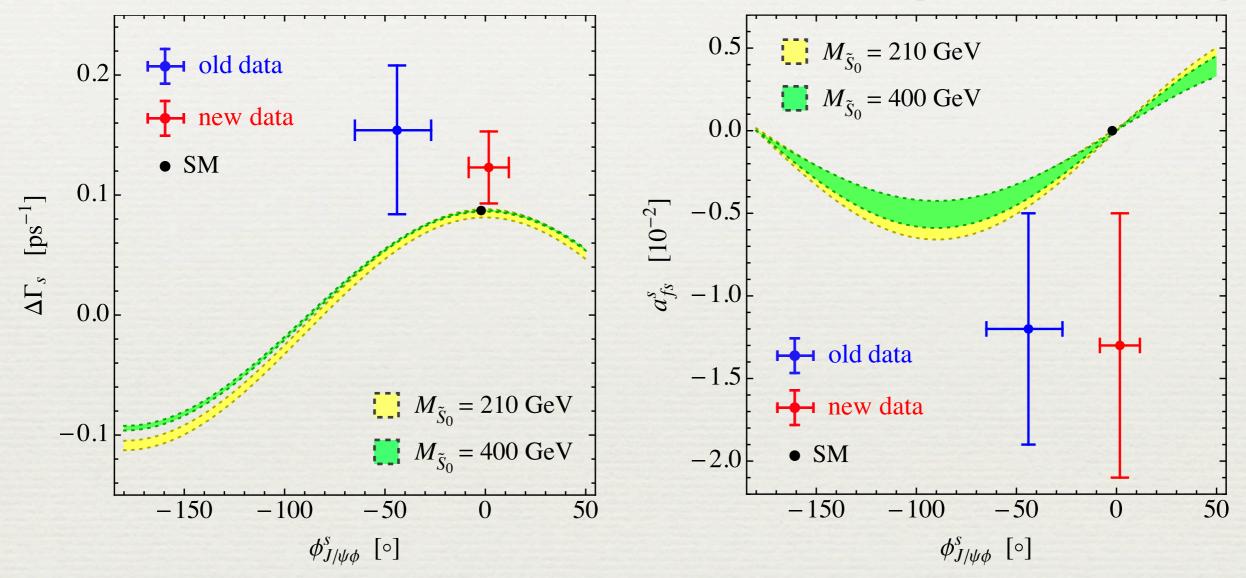


which give a real ratio (btw.  $r_{SM} \approx -200$ )

$$r_{\rm LQ} = \frac{(M_{12})_{\rm LQ}}{(\Gamma_{12})_{\rm LQ}} = 2084 \left(\frac{M_{\tilde{S}_0}^2}{250 \,{\rm GeV}}\right)$$

# Predictions for SU(2) Singlet Scalar LQs

[Bobeth & UH, 1109.1826]



Even a light LQ fails to describe data & parameter space shrinks further for heavier LQs. Visible cosine-, sine-like correlations &  $\Delta\Gamma < (\Delta\Gamma)_{SM}$  model-independent feature

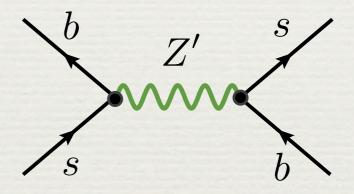
#### Z' Contributions to $\Gamma_{12}$

For left-handed Z' boson relevant couplings

$$\mathcal{L}_{Z'} \ni \frac{g}{\cos \theta_W} \left[ \left( \kappa_{sb}^L \, \bar{s} \gamma^\mu P_L b + \text{h.c.} \right) + \kappa_{\tau\tau}^L \, \bar{\tau} \gamma^\mu P_L \tau \right] Z'_\mu$$

give rise to  $\Delta B = 1 \& \Delta B = 2$  interactions

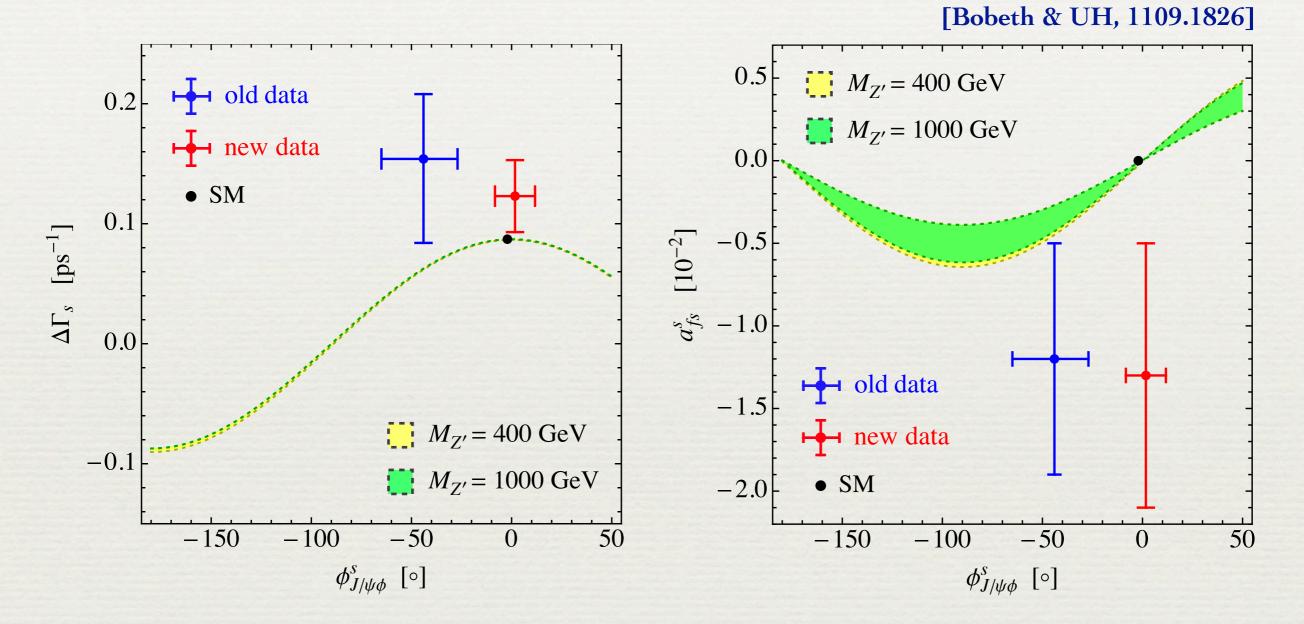
$$\mathcal{L}_{\text{eff}} \ni -\frac{8G_F}{\sqrt{2}} \frac{M_Z^2}{M_{Z'}^2} \kappa_{sb}^L \kappa_{\tau\tau}^L Q_{V,LL}$$



which again produce a real ratio

$$r_{Z'} = \frac{(M_{12})_{Z'}}{(\Gamma_{12})_{Z'}} = 6.0 \cdot 10^5 \left(\frac{M_{Z'}}{250 \,\text{GeV}} \frac{1}{\kappa_{\tau\tau}^L}\right)^2$$

# Predictions for Left-handed Z'



Left-handed Z' provides an even worse description of data than LQs. Model-independent correlations &  $\Delta\Gamma < (\Delta\Gamma)_{SM}$  also present in case of new neutral vector boson

# Further Comments on NP in $\Gamma_{12}^{s,d}$

Bounds on  $(\bar{s}b)(\bar{\tau}\mu)$  are stronger by roughly a factor of 7 than those on  $(\bar{s}b)(\bar{\tau}\tau)$  operators, since  $Br(B^+ \rightarrow K\tau^{\pm}\mu^{\mp}) < 7.7 \cdot 10^{-5}$ compared to  $Br(B^+ \rightarrow K^{+}\tau^{+}\tau^{-}) < 3.3 \cdot 10^{-3}$ . Hence, contributions from  $(\bar{s}b)(\bar{\tau}\mu)$  operators cannot improve fit to  $B_s$  data notable

An contribution from  $(\bar{d}b)(\bar{\tau}\tau)$  operators to  $\Gamma_{12}^d$  large enough to explain data excluded by bound  $Br(B \rightarrow \tau^+\tau^-) < 4.1 \cdot 10^{-3}$ . Case of  $\tau^{\pm}\mu^{\mp}$  final state even less favorable

My naive guess is that (db)(cc) operators are heavily constrained (should be numerically smaller than QCD/electroweak penguins in SM) by exclusive B decays & thus also cannot resolve tension in B-mixing sector. A dedicated analysis is however missing