Dmitrij Siemens

Combined analysis of $\tau \mathbb{N} \rightarrow$ $\rightarrow \mathbb{N}$ and ou $\mathrm{N} \rightarrow$ owriN in chiral effective field theory at one-loop level

- Formal Aspects
- Combined Fit
- Predictions

Motivation and Methodology

Formal Aspects

χ PPI \& $\mathrm{H} \| \mathrm{B} \gamma \mathrm{PI}$

Effective Lagrangian

χ PPI \& $\mathrm{H} \| \mathrm{B} \gamma \mathrm{PI}$

Effective Lagrangian

χ PPI \& $\mathrm{H} \| \mathrm{B} \gamma \mathrm{PI}$

Effective Lagrangian

$$
\begin{aligned}
& \mathcal{L}_{\text {eff }}=\mathcal{L}_{\pi \pi}^{(2)}+\mathcal{L}_{\pi \pi}^{(4)}+\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{\pi N}^{(2)}+\mathcal{L}_{\pi N}^{(3)}+\mathcal{L}_{\pi N}^{(4)} \quad Q=\left\{\frac{q}{\Lambda_{\chi}}, \frac{M_{\pi}}{\Lambda_{\chi}}\right\} \\
& -\frac{g_{A}}{2 F_{\pi}} q_{1} \gamma_{5} \tau^{a} \\
& -\frac{g_{A}}{F_{\pi}} S \cdot q_{1} \tau^{a}
\end{aligned}
$$

$\varepsilon^{\text {ancme }}$

Tree Graphs

χ PPI \& $\mathrm{H} \| \mathrm{B} \gamma \mathrm{PI}$

Effective Lagrangian

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\pi \pi}^{(2)}+\mathcal{L}_{\pi \pi}^{(4)}+\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{\pi N}^{(2)}+\mathcal{L}_{\pi N}^{(3)}+\mathcal{L}_{\pi N}^{(4)} \quad Q=\left\{\frac{q}{\Lambda_{\chi}}, \frac{M_{\pi}}{\Lambda_{\chi}}\right\} \\
& -\frac{g_{A}}{2 F_{\pi}} q_{1} \gamma_{5} \tau^{a} \\
& -\frac{g_{A}}{F_{\pi}} S \cdot q_{1} \tau^{a}
\end{aligned}
$$

Examples

Tree Graphs

χ PPI \& $\mathrm{H} \| \mathrm{B} \gamma \mathrm{PI}$

Effective Lagrangian

$$
\begin{aligned}
& \left.\mathcal{L}_{\text {eff }}=\mathcal{L}_{\pi \pi}^{(2)}+\mathcal{L}_{\pi \pi}^{(4)}+\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{\pi N}^{(2)}+\mathcal{L}_{\pi N}^{(3)}\right)+\mathcal{L}_{\pi N}^{(4)} \quad Q=\left\{\frac{q}{\Lambda_{\chi}}, \frac{M_{\pi}}{\Lambda_{\chi}}\right\} \\
& -\frac{g_{A}}{2 F_{\pi}} q_{1} \gamma_{5} \tau^{a} \\
& -\frac{g_{A}}{F_{\pi}} S \cdot q_{1} \tau^{a}
\end{aligned}
$$

Tree Graphs

χ PPI \& $\mathrm{H} \| \mathrm{B} \gamma \mathrm{PI}$

Effective Lagrangian

$$
\begin{aligned}
& \left.\mathcal{L}_{\text {eff }}=\mathcal{L}_{\pi \pi}^{(2)}+\mathcal{L}_{\pi \pi}^{(4)}+\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{\pi N}^{(2)}+\mathcal{L}_{\pi N}^{(3)}\right)+\mathcal{L}_{\pi N}^{(4)} \quad Q=\left\{\frac{q}{\Lambda_{\chi}}, \frac{M_{\pi}}{\Lambda_{\chi}}\right\} \\
& -\frac{g_{A}}{2 F_{\pi}} q_{1} \gamma_{5} \tau^{a} \\
& -\frac{g_{A}}{F_{\pi}} S \cdot q_{1} \tau^{a}
\end{aligned}
$$

Eampe

Tree Graphs

$\chi^{\prime P I}$ \& $\mathrm{H} \mathrm{B}_{\mathrm{BPI}}$

Effective Lagrangian

$$
\begin{aligned}
& \mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\pi \pi}^{(2)}+\mathcal{L}_{\pi \pi}^{(4)}+\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{\pi N}^{(2)}+\mathcal{L}_{\pi N}^{(3)}+\mathcal{L}_{\pi N}^{(4)} \quad Q=\left\{\frac{q}{\Lambda_{\chi}}, \frac{M_{\pi}}{\Lambda_{\chi}}\right\} \\
& \\
& -\frac{g_{A}}{2 F_{\pi}} q_{1} \gamma_{5} \tau^{a} \quad q_{1}
\end{aligned}
$$

EanMe

Tree Graphs

$\chi^{\prime P I}$ \& $\mathrm{H} \mathrm{B}_{\mathrm{BPI}}$

Effective Lagrangian

$$
\begin{aligned}
& \mathcal{L}_{\text {eff }}=\mathcal{L}_{\pi \pi}^{(2)}+\mathcal{L}_{\pi \pi}^{(4)}+\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{\pi N}^{(2)}+\mathcal{L}_{\pi N}^{(3)}+\mathcal{L}_{\pi N}^{(4)} \quad Q=\left\{\frac{q}{\Lambda_{\chi}}, \frac{M_{\pi}}{\Lambda_{\chi}}\right\} \\
& -\frac{g_{A}}{2 F_{\pi}} q_{1} \gamma_{5} \tau^{a} \\
& -\frac{g_{A}}{F_{\pi}} S \cdot q_{1} \tau^{a}
\end{aligned}
$$

EanMe

Tree Graphs

$\chi^{\prime P I}$ \& $\mathrm{H} \mathrm{B}_{\mathrm{BPI}}$

Effective Lagrangian

$$
\begin{gathered}
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\pi \pi}^{(2)}+\mathcal{L}_{\pi \pi}^{(4)}+\mathcal{L}_{\pi N}^{(1)}+\mathcal{L}_{\pi N}^{(2)}+\mathcal{L}_{\pi N}^{(3)}+\mathcal{L}_{\pi N}^{(4)}
\end{gathered} Q=\left\{\frac{q}{\Lambda_{\chi}}, \frac{M_{\pi}}{\Lambda_{\chi}}\right\}
$$

EanMe

Tree Graphs

Renormalization I

$$
\begin{aligned}
& \text { Meson Sector } \\
& M^{2}=M_{\pi}^{2}+\delta M^{(4)} \\
& Z_{\pi}=1+\delta Z_{\pi}^{(4)} \\
& F=F_{\pi}+\delta F_{\pi}^{(4)}
\end{aligned}
$$

Nucleon Self Energy

$$
\begin{aligned}
m & =m_{N}+\delta m^{(2)}+\delta m^{(3)}+\delta m^{(4)} \\
Z_{N} & =1+\delta Z_{N}^{(3)}+\delta Z_{N}^{(4)}
\end{aligned}
$$

Axial-coupling constant

$$
g=g_{A}+\delta g^{(3)}+\delta g^{(4)}
$$

$$
\frac{g_{\pi N N} F_{\pi}}{m_{N}}=g_{A}-2 M_{\pi}^{2} d_{18}+\mathcal{O}\left(Q^{5}\right)
$$

Linear Combinations

$$
\begin{aligned}
& c_{1} \rightarrow c_{1}+2 M_{\pi}^{2}\left(e_{22}-4 e_{38}\right) \\
& c_{2} \rightarrow c_{2}-8 M_{\pi}^{2}\left(e_{20}+e_{35}\right) \\
& c_{3} \rightarrow c_{3}-4 M_{\pi}^{2}\left(2 e_{19}-e_{22}-e_{36}\right) \\
& c_{4} \rightarrow c_{4}-4 M_{\pi}^{2}\left(2 e_{21}-e_{37}\right)
\end{aligned}
$$

Loop graphs - Tadpole type

Transition from LO loops to NLO loops

Transition from LO loops to NLO loops

LO Δ graphs

Transition from LO loops to NLO loops

LO Δ graphs

Transition from LO loops to NLO loops

LO Δ graphs

Transition from $\pi \mathrm{N} \rightarrow \pi \pi \mathrm{N}$ graphs to $\pi \mathrm{N} \rightarrow \pi \mathrm{N}$ graphs

Renormalization II

Meson Sector

$$
\begin{aligned}
l_{i} & =\frac{\beta_{l_{i}}}{32 \pi^{2}} \bar{l}_{i}+\beta_{l_{i}}\left(\bar{\lambda}+\frac{1}{32 \pi^{2}} \log \left(\frac{M_{\pi}^{2}}{\mu^{2}}\right)\right) \\
\bar{\lambda} & =\frac{1}{16 \pi^{2}}\left(\frac{1}{d-4}+\frac{1}{2}\left(\gamma_{E}-1-\ln 4 \pi\right)\right)
\end{aligned}
$$

HB approach

$$
\begin{aligned}
& d_{i}=\bar{d}_{i}+\frac{\beta_{d_{i}}}{F_{\pi}^{2}}\left(\bar{\lambda}+\frac{1}{32 \pi^{2}} \log \left(\frac{M_{\pi}^{2}}{\mu^{2}}\right)\right) \\
& e_{i}=\bar{e}_{i}+\frac{\beta_{e_{i}}}{F_{\pi}^{2}}\left(\bar{\lambda}+\frac{1}{32 \pi^{2}} \log \left(\frac{M_{\pi}^{2}}{\mu^{2}}\right)\right)
\end{aligned}
$$

Covariant "Modified" EOMS

$$
\begin{gathered}
c_{i}=\bar{c}_{i}+\delta c_{i}^{(3)}+\delta c_{i}^{(4)} \\
d_{i}=\bar{d}_{i}+\delta d_{i}^{(3)}+\delta d_{i}^{(4)} \\
e_{i}=\bar{e}_{i}+\delta e_{i}^{(4)} \\
\hdashline x \in\{c, d, e\} \\
\delta x_{i}^{(n)}=\bar{x}_{i, f}^{(n)}+\frac{\beta_{x_{i}, B}^{(n)}}{F_{\pi}^{2}}\left(\bar{\lambda}+\frac{1}{32 \pi^{2}} \log \left(\frac{m_{N}^{2}}{\mu^{2}}\right)\right)+\frac{\beta_{x_{i}, M}^{(n)}}{F_{\pi}^{2}}\left(\bar{\lambda}+\frac{1}{32 \pi^{2}} \log \left(\frac{M_{\pi}^{2}}{\mu^{2}}\right)\right)
\end{gathered}
$$

Combined Fit

Phase Shifis - ouN \rightarrow ouN

$$
T^{b a}=\chi_{N^{\prime}}^{\dagger}\left(\delta^{a b} T^{+}+\mathrm{i} \epsilon^{b a c} \tau_{c} T^{-}\right) \chi_{N}
$$

Phase Shifis - ouN \rightarrow ouN

$$
\begin{array}{c:c}
T^{b a}=\chi_{N^{\prime}}^{\dagger}\left(\delta^{a b} T^{+}+\mathrm{i} \epsilon^{b a c} \tau_{c} T^{-}\right) \chi_{N} \\
\hdashline T_{l \pm}^{I}(s)= & \frac{1}{16 \pi \sqrt{s}}\left(\left(E+m_{N}\right)\left(A_{l}^{I}(s)+\left(\sqrt{s}-m_{N}\right) B_{l}^{I}(s)\right)\right. \\
& \left.+\left(E-m_{N}\right)\left(-A_{l \pm}^{I}(s)+\left(\sqrt{s}+m_{N}\right) B_{l \pm}^{I}\right)\right) \\
\hdashline X_{l}^{I}(s)=\int_{-1}^{1} \mathrm{~d} z X^{I}(s, t) P_{l}(z) & X \in\{A, B\}
\end{array}
$$

Phase Shifis - ouN \rightarrow ouN

$$
\begin{aligned}
& T^{b a}=\chi_{N^{\prime}}^{\dagger}\left(\delta^{a b} T^{+}+\mathrm{i} \epsilon^{b a c} \tau_{c} T^{-}\right) \chi_{N} \\
& T^{ \pm}=\bar{u}^{\left(s^{\prime}\right)}\left(A^{ \pm}+q B^{ \pm}\right) u^{(s)} \\
& f_{l \pm}^{I}(s)=\frac{1}{16 \pi \sqrt{s}}\left(\left(E+m_{N}\right)\left(A_{l}^{I}(s)+\left(\sqrt{s}-m_{N}\right) B_{l}^{I}(s)\right)\right. \\
& \left.+\left(E-m_{N}\right)\left(-A_{l \pm}^{I}(s)+\left(\sqrt{s}+m_{N}\right) B_{l \pm}^{I}\right)\right) \\
& X_{l}^{I}(s)=\int_{-1}^{1} \mathrm{~d} z X^{I}(s, t) P_{l}(z) \\
& X \in\{A, B\} \\
& T^{ \pm}=\bar{u}_{v}^{\left(s^{\prime}\right)}\left(g^{ \pm}+2 \mathrm{i} S \cdot q \times q^{\prime} h^{ \pm}\right) u_{v}^{(s)} \\
& f_{l \pm}^{I}(s)=\frac{E+m_{N}}{16 \pi \sqrt{s}} \int_{-1}^{1} \mathrm{~d} z\left(g^{I} P_{l}(z)+\boldsymbol{q}^{2} h^{I}\left(P_{l \pm}(z)-z P_{l}(z)\right)\right)
\end{aligned}
$$

HB χ PT

Phase Shifis - ouN \rightarrow ouN

$$
\begin{aligned}
& T^{b a}=\chi_{N^{\prime}}^{\dagger}\left(\delta^{a b} T^{+}+\mathrm{i} \epsilon^{b a c} \tau_{c} T^{-}\right) \chi_{N} \\
& T^{ \pm}=\bar{u}^{\left(s^{\prime}\right)}\left(A^{ \pm}+q B^{ \pm}\right) u^{(s)} \\
& f_{l \pm}^{I}(s)=\frac{1}{16 \pi \sqrt{s}}\left(\left(E+m_{N}\right)\left(A_{l}^{I}(s)+\left(\sqrt{s}-m_{N}\right) B_{l}^{I}(s)\right)\right. \\
& \left.+\left(E-m_{N}\right)\left(-A_{l \pm}^{I}(s)+\left(\sqrt{s}+m_{N}\right) B_{l \pm}^{I}\right)\right) \\
& X_{l}^{I}(s)=\int_{-1}^{1} \mathrm{~d} z X^{I}(s, t) P_{l}(z) \\
& X \in\{A, B\} \\
& T^{ \pm}=\bar{u}_{v}^{\left(s^{\prime}\right)}\left(g^{ \pm}+2 \mathrm{i} S \cdot q \times q^{\prime} h^{ \pm}\right) u_{v}^{(s)} \\
& f_{l \pm}^{I}(s)=\frac{E+m_{N}}{16 \pi \sqrt{s}} \int_{-1}^{1} \mathrm{~d} z\left(g^{I} P_{l}(z)+\boldsymbol{q}^{2} h^{I}\left(P_{l \pm}(z)-z P_{l}(z)\right)\right)
\end{aligned}
$$

HB χ PT

Isospin basis

$$
X^{I=1 / 2}=X^{+}+2 X^{-}, \quad X^{I=3 / 2}=X^{+}-X^{-}
$$

Phase Shifis - ouN \rightarrow ouN

$$
\begin{array}{c:c}
T^{b a}=\chi_{N^{\prime}}^{\dagger}\left(\delta^{a b} T^{+}+\mathrm{i} \epsilon^{b a c} \tau_{c} T^{-}\right) \chi_{N} \\
\hdashline T^{ \pm}=\bar{u}^{\left(s^{\prime}\right)}\left(A^{ \pm}+q B^{ \pm}\right) u^{(s)} \\
f_{l \pm}^{I}(s)= & \frac{1}{16 \pi \sqrt{s}}\left(\left(E+m_{N}\right)\left(A_{l}^{I}(s)+\left(\sqrt{s}-m_{N}\right) B_{l}^{I}(s)\right)\right. \\
& \left.+\left(E-m_{N}\right)\left(-A_{l \pm}^{I}(s)+\left(\sqrt{s}+m_{N}\right) B_{l \pm}^{I}\right)\right) \\
& X_{l}^{I}(s)=\int_{-1}^{1} \mathrm{~d} z X^{I}(s, t) P_{l}(z)
\end{array}
$$

$$
X^{I=1 / 2}=X^{+}+2 X^{-}, \quad X^{I=3 / 2}=X^{+}-X^{-}
$$

Unitarization
prescription

$$
\delta_{l \pm}^{I}(s)=\arctan \left(|\boldsymbol{q}| \Re f_{l \pm}^{I}(s)\right)
$$

Observables - ouN \rightarrow owu N

Unpolarized Observables

Observables - ouN \rightarrow uwu N

Observables - ouN \rightarrow vur N

Observables - ouN \rightarrow owu N

$$
\begin{aligned}
& \text { Unpolarized Observables } \\
& \sigma_{\text {tot }} \\
& \frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \omega_{2} \mathrm{~d} \Omega_{2}}, \frac{\mathrm{~d}^{3} \sigma}{\mathrm{~d} \omega_{2} \mathrm{~d} \Omega_{2} \mathrm{~d} \Omega_{3}} \text { and } W \\
& \frac{\mathrm{~d} \sigma}{d M_{\pi \pi}^{2}}, \frac{\mathrm{~d} \sigma}{\mathrm{~d} t}, \frac{\mathrm{~d} \sigma}{\mathrm{~d} t M_{\pi \pi}^{2}} \text { and } \frac{\mathrm{d} \sigma}{\mathrm{~d} \cos \theta}
\end{aligned}
$$

Observables - ouN \rightarrow uwu N

Unpolarized Observables

$\sigma_{\text {tot }}$
$\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \omega_{2} \mathrm{~d} \Omega_{2}}, \frac{\mathrm{~d}^{3} \sigma}{\mathrm{~d} \omega_{2} \mathrm{~d} \Omega_{2} \mathrm{~d} \Omega_{3}}$ and W

- $\frac{\mathrm{d} \sigma}{d M_{\pi \pi}^{2}}, \frac{\mathrm{~d} \sigma}{\mathrm{~d} t}, \frac{\mathrm{~d} \sigma}{\mathrm{~d} t M_{\pi \pi}^{2}}$ and $\frac{\mathrm{d} \sigma}{\mathrm{d} \cos \theta}$

Observables - uN \rightarrow ow u N

Unpolarized Observables

$\sigma_{\text {tot }}$
$\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \omega_{2} \mathrm{~d} \Omega_{2}}, \frac{\mathrm{~d}^{3} \sigma}{\mathrm{~d} \omega_{2} \mathrm{~d} \Omega_{2} \mathrm{~d} \Omega_{3}}$ and W

- $\frac{\mathrm{d} \sigma}{d M_{\pi \pi}^{2}}, \frac{\mathrm{~d} \sigma}{\mathrm{~d} t}, \frac{\mathrm{~d} \sigma}{\mathrm{~d} t M_{\pi \pi}^{2}}$ and $\frac{\mathrm{d} \sigma}{\mathrm{d} \cos \theta}$

Unpolarized Matrix Element Squared

$$
|\mathcal{M}|^{2}=\frac{1}{2} \sum_{s, s^{\prime}} T_{s s^{\prime}}^{\dagger} T_{s s^{\prime}}
$$

Observables - ouN \rightarrow owu N

Unpolarized Observables

$\sigma_{\text {tot }}$
$\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \omega_{2} \mathrm{~d} \Omega_{2}}, \frac{\mathrm{~d}^{3} \sigma}{\mathrm{~d} \omega_{2} \mathrm{~d} \Omega_{2} \mathrm{~d} \Omega_{3}}$ and W
$\frac{\mathrm{d} \sigma}{d M_{\pi \pi}^{2}}, \frac{\mathrm{~d} \sigma}{\mathrm{~d} t}, \frac{\mathrm{~d} \sigma}{\mathrm{~d} t M_{\pi \pi}^{2}}$ and $\frac{\mathrm{d} \sigma}{\mathrm{d} \cos \theta}$
Unpolarized Matrix Element Squared

$$
|\mathcal{M}|^{2}=\frac{1}{2} \sum_{s, s^{\prime}} T_{s s^{\prime}}^{\dagger} T_{s s^{\prime}}
$$

$$
\chi \text { PT } \quad T_{s s^{\prime}}^{a b c}=\mathrm{i} \bar{u}^{\left(s^{\prime}\right)} \gamma_{5}\left(F_{1}^{a b c}+\left(\phi_{2}+\phi_{3}\right) F_{2}^{a b c}+\left(\phi_{2}-\phi_{3}\right) F_{3}^{a b c}+\left(\phi_{2} \phi_{3}-\phi_{3} \phi_{2}\right) F_{4}^{a b c}\right) u^{(s)}
$$

Observables - ouN \rightarrow owu \mathbb{N}

Unpolarized Observables

- $\sigma_{\text {tot }}$
- $\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \omega_{2} \mathrm{~d} \Omega_{2}}, \frac{\mathrm{~d}^{3} \sigma}{\mathrm{~d} \omega_{2} \mathrm{~d} \Omega_{2} \mathrm{~d} \Omega_{3}}$ and W
- $\frac{\mathrm{d} \sigma}{d M_{\pi \pi}^{2}}, \frac{\mathrm{~d} \sigma}{\mathrm{~d} t}, \frac{\mathrm{~d} \sigma}{\mathrm{~d} t M_{\pi \pi}^{2}}$ and $\frac{\mathrm{d} \sigma}{\mathrm{d} \cos \theta}$

Unpolarized Matrix Element Squared

$$
|\mathcal{M}|^{2}=\frac{1}{2} \sum_{s, s^{\prime}} T_{s s^{\prime}}^{\dagger} T_{s s^{\prime}}
$$

$$
\begin{array}{c|l}
\chi \mathrm{PT} & T_{s s^{\prime}}^{a b c}=\mathrm{i} \bar{u}^{\left(s^{\prime}\right)} \gamma_{5}\left(F_{1}^{a b c}+\left(q_{2}+q_{3}\right) F_{2}^{a b c}+\left(q_{2}-q_{3}\right) F_{3}^{a b c}+\left(q_{2} q_{3}-q_{3} q_{2}\right) F_{4}^{a b c}\right) u^{(s)} \\
\mathrm{HB} \chi \mathrm{PT} & T_{s s^{\prime}}^{a b c}=\bar{u}_{v}^{\left(s^{\prime}\right)}\left(S \cdot q_{1} A^{a b c}+S \cdot q_{2} B^{a b c}+S \cdot q_{3} C^{a b c}+\mathrm{i} \epsilon_{\mu \nu \alpha \beta} q_{1}^{\mu} q_{2}^{\nu} q_{3}^{\alpha} v^{\beta} D^{a b c}\right) u_{v}^{(s)}
\end{array}
$$

Observables - ouN \rightarrow our N

Unpolarized Observables

- $\sigma_{\text {tot }}$
- $\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \omega_{2} \mathrm{~d} \Omega_{2}}, \frac{\mathrm{~d}^{3} \sigma}{\mathrm{~d} \omega_{2} \mathrm{~d} \Omega_{2} \mathrm{~d} \Omega_{3}}$ and W
- $\frac{\mathrm{d} \sigma}{d M_{\pi \pi}^{2}}, \frac{\mathrm{~d} \sigma}{\mathrm{~d} t}, \frac{\mathrm{~d} \sigma}{\mathrm{~d} t M_{\pi \pi}^{2}}$ and $\frac{\mathrm{d} \sigma}{\mathrm{d} \cos \theta}$

Unpolarized Matrix Element Squared

$$
|\mathcal{M}|^{2}=\frac{1}{2} \sum_{s, s^{\prime}} T_{s s^{\prime}}^{\dagger} T_{s s^{\prime}}
$$

$$
\begin{array}{c|c}
\chi \mathrm{PT} & T_{s s^{\prime}}^{a b c}=\mathrm{i} \bar{u}^{\left(s^{\prime}\right)} \gamma_{5}\left(F_{1}^{a b c}+\left(q_{2}+q_{3}\right) F_{2}^{a b c}+\left(q_{2}-q_{3}\right) F_{3}^{a b c}+\left(q_{2} q_{3}-q_{3} q_{2}\right) F_{4}^{a b c}\right) u^{(s)} \\
\mathrm{HB} \chi \mathrm{PT} & T_{s s^{\prime}}^{a b c}=\bar{u}_{v}^{\left(s^{\prime}\right)}\left(S \cdot q_{1} A^{a b c}+S \cdot q_{2} B^{a b c}+S \cdot q_{3} C^{a b c}+\mathrm{i} \epsilon_{\mu \nu \alpha \beta} q_{1}^{\mu} q_{2}^{\nu} q_{3}^{\alpha} v^{\beta} D^{a b c}\right) u_{v}^{(s)} \\
X^{a b c}=\chi_{N^{\prime}}^{\dagger}\left(\tau^{a} \delta^{b c} X_{1}+\tau^{b} \delta^{a c} X_{2}+\tau^{c} \delta^{a b} X_{3}+\mathrm{i} \epsilon^{a b c} X_{4}\right) \chi_{N}
\end{array}
$$

Observables - ouN \rightarrow uwu N

Unpolarized Observables

$\sigma_{\text {tot }}$

- $\frac{\mathrm{d}^{2} \sigma}{\mathrm{~d} \omega_{2} \mathrm{~d} \Omega_{2}}, \frac{\mathrm{~d}^{3} \sigma}{\mathrm{~d} \omega_{2} \mathrm{~d} \Omega_{2} \mathrm{~d} \Omega_{3}}$ and W
- $\frac{\mathrm{d} \sigma}{d M_{\pi \pi}^{2}}, \frac{\mathrm{~d} \sigma}{\mathrm{~d} t}, \frac{\mathrm{~d} \sigma}{\mathrm{~d} t \mathrm{~d} M_{\pi \pi}^{2}}$ and $\frac{\mathrm{d} \sigma}{\mathrm{d} \cos \theta}$

Unpolarized Matrix Element Squared

$$
|\mathcal{M}|^{2}=\frac{1}{2} \sum_{s, s^{\prime}} T_{s s^{\prime}}^{\dagger} T_{s s^{\prime}}
$$

Fltting Procedure

Fitting Procedure

Combined Fit

$$
\chi^{2}=\chi_{\pi N}^{2}+\chi_{\pi \pi N}^{2}+\chi_{c}^{2}
$$

$$
\begin{aligned}
& \chi_{\pi N}^{2}=\sum_{i} \frac{\left(\delta_{i}^{e x p}-\delta_{i}^{t h}\right)^{2}}{\Delta \delta_{i}^{2}} \\
& \Delta \delta_{S, P}=5 \% \quad \Delta \delta_{D}=20 \%
\end{aligned}
$$

$$
\chi_{\pi \pi N}^{2}=\sum_{i} \frac{\left(\sigma_{i}^{e x p}-\sigma_{i}^{t h}\right)^{2}}{\Delta \sigma_{i}^{2}}
$$

$$
\Delta \sigma=\Delta \sigma^{e x p}
$$

$$
\begin{aligned}
& \chi_{c}^{2}=\sum_{i} \frac{\left(x_{i}-\bar{x}_{i}\right)^{2}}{R_{i}^{2}} \\
& R_{d_{i}}=3 \quad R_{e_{i}}=5
\end{aligned}
$$

Fltting Procedure

Combined Fit

$$
\chi^{2}=\chi_{\pi N}^{2}+\chi_{\pi \pi N}^{2}+\chi_{c}^{2}
$$

$$
\begin{gathered}
\chi_{\pi N}^{2}=\sum_{i} \frac{\left(\delta_{i}^{e x p}-\delta_{i}^{t h}\right)^{2}}{\Delta \delta_{i}^{2}} \\
\Delta \delta_{S, P}=5 \% \quad \Delta \delta_{D}=20 \%
\end{gathered}
$$

$$
\begin{aligned}
& \chi_{c}^{2}=\sum_{i} \frac{\left(x_{i}-\bar{x}_{i}\right)^{2}}{R_{i}^{2}} \\
& R_{d_{i}}=3 \quad R_{e_{i}}=5
\end{aligned}
$$

Naturalness Condition

Fits

Input

m_{N}	M_{π}	F_{π}	g_{A}	l_{1}	l_{2}	l_{3}	l_{4}
938.27	139.57	92.4	1.27	-0.4 ± 0.6	4.3 ± 0.1	2.9 ± 2.4	4.4 ± 0.2

Bijnens, Ecker 2014

LECs	HB			Cov		
	KH	GW	RS	KH	GW	RS
c_{1}	-1.27 ± 0.08	-1.60 ± 0.07	-1.39 ± 0.02	-1.12 $\pm 0.08 \mid$	-1.43 ± 0.07	-1.25 ± 0.02
c_{2}	3.56 ± 0.12	3.35 ± 0.11	3.42 ± 0.04	3.49 ± 0.11	3.38 ± 0.10	3.57 ± 0.04
c_{3}	-6.29 ± 0.08	-6.43 ± 0.07	-6.19 ± 0.03	-5.94 ± 0.08	-6.15 ± 0.07	-6.08 ± 0.03
c_{4}	3.60 ± 0.04	3.64 ± 0.04	3.61 ± 0.02	3.35 ± 0.04	3.44 ± 0.04	3.48 ± 0.02
$d_{1}+d_{2}$	3.67 ± 0.15	3.34 ± 0.13	3.30 ± 0.06	3.06 ± 0.12	2.98 ± 0.11	3.15 ± 0.05
d_{3}	-4.14 ± 0.29	-3.10 ± 0.28	-3.30 ± 0.10	-2.46 ± 0.18	-1.97 ± 0.17	-2.48 ± 0.06
d_{4}	-0.86 ± 2.15	-1.01 ± 2.14	-0.97 ± 2.18	4.44 ± 1.70	4.43 ± 1.70	4.48 ± 1.67
d_{5}	0.66 ± 0.18	-0.02 ± 0.17	0.11 ± 0.05	0.00 ± 0.15	-0.49 ± 0.14	-0.26 ± 0.05
d_{10}	-0.62 ± 1.84	-0.26 ± 1.86	-0.44 ± 1.86	-1.80 ± 1.91	-1.17 ± 1.93	-1.98 ± 1.88
d_{11}	-2.65 ± 1.99	-2.30 ± 2.00	-2.46 ± 2.00	-2.24 ± 2.07	-1.99 ± 2.07	-2.41 ± 2.07
d_{12}	3.85 ± 1.96	3.40 ± 1.99	3.38 ± 1.98	5.41 ± 1.80	4.73 ± 1.82	5.62 ± 1.77
d_{13}	1.21 ± 2.06	1.08 ± 2.06	1.02 ± 2.07	-0.78 ± 2.02	-0.81 ± 2.02	-0.69 ± 2.02
$d_{14}-d_{15}$	-6.92 ± 0.28	-5.95 ± 0.25	-5.88 ± 0.12	-5.02 ± 0.21	-4.50 ± 0.19	-4.92 ± 0.10
d_{16}	1.62 ± 0.74	1.34 ± 0.74	1.55 ± 0.73	1.76 ± 0.70	1.64 ± 0.71	1.73 ± 0.69
	170	131	159	242	98	166
$\chi_{\pi \pi N}^{2}$	172	169	167	176	171	176

$$
\left|c_{i}\right| \sim 1.0<3.0<5.5 \quad\left|d_{i}\right| \sim 1.5<4.0<7.0
$$

Bits

Input

m_{N}	M_{π}	F_{π}	g_{A}	l_{1}	l_{2}	l_{3}	l_{4}
938.27	139.57	92.4	1.27	-0.4 ± 0.6	4.3 ± 0.1	2.9 ± 2.4	4.4 ± 0.2

$g_{\pi N \Delta}$	g_{1}
1.35	2.29

Bijnens, Ecker 2014

LECs	HB			Cov		
	KH	GW	RS	KH	GW	RS
c_{1}	-1.29 ± 0.08	-1.61 ± 0.07	-1.35 ± 0.02	-0.93 ± 0.08	-1.26 ± 0.07	-0.98 ± 0.02
c_{2}	1.50 ± 0.12	1.34 ± 0.11	1.29 ± 0.04	1.44 ± 0.11	1.39 ± 0.10	1.34 ± 0.04
c_{3}	-2.52 ± 0.08	-2.70 ± 0.08	-2.25 ± 0.03	-2.34 ± 0.08	-2.65 ± 0.08	-2.16 ± 0.03
c_{4}	1.84 ± 0.04	1.90 ± 0.04	1.77 ± 0.02	1.62 ± 0.04	1.74 ± 0.04	1.61 ± 0.02
$d_{1}+d_{2}$	0.57 ± 0.15	0.32 ± 0.14	-0.13 ± 0.06	0.42 ± 0.13	0.46 ± 0.12	0.05 ± 0.05
d_{3}	-1.64 ± 0.29	-0.74 ± 0.27	-0.77 ± 0.10	-1.16 ± 0.18	-0.79 ± 0.17	-0.66 ± 0.06
d_{4}	-1.16 ± 2.37	-1.18 ± 2.36	-0.97 ± 2.40	0.04 ± 2.21	0.24 ± 2.12	0.28 ± 2.15
d_{5}	0.90 ± 0.18	0.26 ± 0.17	0.55 ± 0.05	0.66 ± 0.15	0.18 ± 0.14	0.32 ± 0.05
d_{10}	-0.59 ± 1.93	-0.32 ± 1.93	-0.51 ± 1.93	0.29 ± 2.09	0.62 ± 2.08	0.62 ± 2.08
d_{11}	-3.07 ± 2.00	-2.83 ± 2.00	-3.14 ± 2.00	-0.20 ± 2.06	-0.09 ± 2.05	-0.07 ± 2.06
d_{12}	1.01 ± 2.05	0.67 ± 2.06	0.51 ± 2.05	0.66 ± 1.95	0.44 ± 1.94	0.06 ± 1.94
d_{13}	-2.51 ± 2.05	-2.61 ± 2.05	-2.80 ± 2.05	-2.53 ± 1.99	-2.56 ± 1.98	-2.59 ± 1.99
$d_{14}-d_{15}$	-1.66 ± 0.28	-0.82 ± 0.26	0.02 ± 0.12	-0.89 ± 0.22	-0.59 ± 0.20	0.11 ± 0.10
d_{16}	-0.32 ± 0.70	-0.43 ± 0.71	-0.39 ± 0.68	0.97 ± 0.70	0.82 ± 0.70	0.88 ± 0.69
$\chi_{\pi N}^{2}$	123	205	19	126	154	12
$\chi_{\pi \pi N}^{2}$	183	180	188	189	186	187

$$
\left|c_{i}\right| \sim 1.0<3.0<5.5 \quad\left|d_{i}\right| \sim 1.5<4.0<7.0
$$

LECs	HB			Cov		
	KH	GW	RS	KH	GW	RS
c_{1}	-0.77 ± 0.11	-0.96 ± 0.11	-0.94 ± 0.08	-0.90 ± 0.14	-1.18 ± 0.13	-1.02 ± 0.09
c_{2}	2.96 ± 0.32	3.96 ± 0.31	2.84 ± 0.27	3.52 ± 0.32	3.73 ± 0.31	3.35 ± 0.23
c_{3}	-3.97 ± 0.10	-4.89 ± 0.08	-4.06 ± 0.11	-5.26 ± 0.12	-6.00 ± 0.11	-5.23 ± 0.11
c_{4}	2.87 ± 0.09	3.39 ± 0.07	2.90 ± 0.12	3.48 ± 0.08	3.83 ± 0.06	3.47 ± 0.10
$d_{1}+d_{2}$	4.46 ± 0.14	4.23 ± 0.13	4.76 ± 0.08	5.18 ± 0.15	4.94 ± 0.14	5.09 ± 0.07
d_{3}	-4.00 ± 0.21	-2.98 ± 0.20	-3.82 ± 0.08	-5.65 ± 0.28	-5.13 ± 0.25	-5.01 ± 0.12
d_{4}	0.71 ± 2.04	0.17 ± 1.97	0.61 ± 1.88	-2.26 ± 1.88	-2.87 ± 1.76	-2.32 ± 1.88
d_{5}	0.18 ± 0.16	-0.57 ± 0.15	-0.37 ± 0.05	0.69 ± 0.18	0.24 ± 0.16	0.07 ± 0.06
d_{10}	-5.94 ± 1.72	-4.17 ± 1.76	-6.08 ± 1.66	-7.19 ± 1.79	-5.65 ± 1.81	-6.22 ± 1.79
d_{11}	-2.39 ± 1.97	-2.50 ± 1.97	-2.43 ± 1.95	-2.47 ± 2.00	-1.34 ± 1.99	-2.14 ± 1.99
d_{12}	6.10 ± 1.71	6.20 ± 1.73	6.32 ± 1.64	8.82 ± 1.78	7.28 ± 1.76	7.75 ± 1.70
d_{13}	-2.27 ± 2.07	-3.69 ± 2.07	-2.32 ± 2.02	-1.14 ± 1.97	-1.32 ± 1.92	-1.30 ± 1.92
$d_{14}-d_{15}$	-8.00 ± 0.24	-6.89 ± 0.23	-8.23 ± 0.12	-9.54 ± 0.26	-8.77 ± 0.24	-8.93 ± 0.12
d_{16}	6.33 ± 0.70	7.55 ± 0.71	6.45 ± 0.69	-0.70 ± 0.65	-0.89 ± 0.63	-0.72 ± 0.64
e_{10}	-3.54 ± 4.58	-4.18 ± 4.54	-4.21 ± 4.52	-3.73 ± 4.42	-4.91 ± 4.33	-3.69 ± 4.42
e_{11}	0.36 ± 4.74	0.41 ± 4.72	0.68 ± 4.65	2.58 ± 4.10	3.30 ± 3.92	2.65 ± 4.09
e_{12}	1.62 ± 3.73	0.61 ± 3.83	1.85 ± 3.66	1.80 ± 3.52	2.27 ± 3.51	1.70 ± 3.51
e_{13}	-0.87 ± 3.80	-1.19 ± 3.85	-1.43 ± 3.75	-2.21 ± 3.36	-3.20 ± 3.27	-2.50 ± 3.34
e_{14}	1.41 ± 0.11	1.42 ± 0.10	1.18 ± 0.10	0.32 ± 0.12	1.09 ± 0.11	0.40 ± 0.12
e_{15}	-12.73 ± 0.64	-6.41 ± 0.56	-13.55 ± 0.61	-5.36 ± 0.39	-3.37 ± 0.36	-5.50 ± 0.34
e_{16}	6.77 ± 1.27	-0.80 ± 1.22	8.29 ± 1.10	0.92 ± 0.60	-1.48 ± 0.55	1.28 ± 0.47
e_{17}	-0.48 ± 0.11	-0.43 ± 0.11	-0.46 ± 0.11	0.47 ± 0.09	0.02 ± 0.09	0.32 ± 0.10
e_{18}	5.05 ± 0.49	1.96 ± 0.39	6.10 ± 0.61	1.15 ± 0.28	0.08 ± 0.22	1.57 ± 0.35
e_{34}	0.29 ± 4.84	0.43 ± 4.85	0.51 ± 4.82	0.86 ± 4.77	1.22 ± 4.75	0.95 ± 4.77
$\chi_{\pi N}^{2}$	$187+160$	$125+169$	$41+200$	$147+6$	$79+56$	$31+34$
$\chi_{\pi \pi N}^{2}$	244	250	257	234	238	228

$$
\left|c_{i}\right| \sim 1.0<3.0<5.5 \quad\left|d_{i}\right| \sim 1.5<4.0<7.0, \quad\left|e_{i}\right| \sim 2.0<5.5<9.0
$$

LECs	HB			Cov		
	KH	GW	RS	KH	GW	RS
c_{1}	-1.12 ± 0.17	-1.60 $\pm 0.24 \mid$	-1.28 ± 0.11	-1.00 ± 0.20	-1.67 ± 0.21	-1.14 ± 0.11
c_{2}	1.30 ± 0.50	1.30 ± 0.76	1.36 ± 0.36	1.58 ± 0.42	1.07 ± 0.40	1.44 ± 0.24
c_{3}	-1.70 ± 0.11	-2.62 ± 0.10	-1.95 ± 0.12	-2.51 ± 0.16	-3.48 ± 0.15	-2.55 ± 0.12
c_{4}	1.81 ± 0.09	2.25 ± 0.07	2.12 ± 0.12	2.08 ± 0.08	2.41 ± 0.06	2.19 ± 0.10
$d_{1}+d_{2}$	1.29 ± 0.15	1.01 ± 0.14	1.21 ± 0.09	1.48 ± 0.16	1.27 ± 0.15	1.07 ± 0.07
d_{3}	-1.82 ± 0.23	-0.80 ± 0.21	-1.39 ± 0.08	-2.42 ± 0.32	-2.10 ± 0.28	-1.79 ± 0.13
d_{4}	-0.19 ± 3.65	2.54 ± 2.64	-0.41 ± 3.60	0.56 ± 2.11	-1.29 ± 2.20	0.24 ± 2.12
d_{5}	0.65 ± 0.17	-0.07 ± 0.16	0.18 ± 0.05	0.81 ± 0.19	0.44 ± 0.17	0.41 ± 0.06
d_{10}	-1.46 ± 2.27	-0.44 ± 2.41	-1.00 ± 2.22	-1.68 ± 2.27	-1.18 ± 2.23	-1.15 ± 2.26
d_{11}	-1.07 ± 2.19	-0.50 ± 2.24	-0.91 ± 2.18	-1.36 ± 2.20	0.38 ± 2.20	-0.95 ± 2.19
d_{12}	-0.19 ± 2.06	-1.73 ± 2.18	-0.61 ± 2.02	0.48 ± 2.06	-0.91 ± 2.04	-0.39 ± 2.02
d_{13}	-4.58 ± 2.51	-3.98 ± 2.82	-4.84 ± 2.38	-1.08 ± 2.30	-0.22 ± 2.09	-0.95 ± 2.16
$d_{14}-d_{15}$	-2.45 ± 0.27	-1.30 ± 0.25	-1.84 ± 0.13	-3.11 ± 0.28	-2.31 ± 0.26	-2.00 ± 0.13
d_{16}	5.76 ± 0.74	6.40 ± 0.80	6.06 ± 0.75	0.69 ± 0.72	-0.34 ± 0.75	0.54 ± 0.72
e_{10}	-0.32 ± 5.11	0.92 ± 4.90	-0.35 ± 5.10	0.98 ± 5.17	0.28 ± 5.02	0.97 ± 5.17
e_{11}	0.86 ± 5.12	-1.66 ± 5.06	0.75 ± 5.13	-0.64 ± 4.87	0.79 ± 4.54	-0.45 ± 4.82
e_{12}	1.02 ± 3.84	-3.54 ± 3.97	0.78 ± 3.84	-1.59 ± 3.88	-0.69 ± 3.82	-1.71 ± 3.87
e_{13}	2.49 ± 3.73	-3.47 ± 4.46	2.18 ± 3.73	-1.48 ± 3.65	-1.49 ± 3.45	-1.72 ± 3.58
e_{14}	0.58 ± 0.11	0.75 ± 0.10	0.52 ± 0.10	0.35 ± 0.15	1.30 ± 0.13	0.59 ± 0.12
e_{15}	-4.84 ± 0.71	0.41 ± 0.71	-3.05 ± 0.63	-1.60 ± 0.48	1.23 ± 0.48	-0.84 ± 0.37
e_{16}	2.48 ± 1.91	-1.32 ± 2.78	1.13 ± 1.38	-0.64 ± 0.82	-1.60 ± 0.83	-1.07 ± 0.51
e_{17}	-0.42 ± 0.11	-0.50 ± 0.11	-0.52 ± 0.11	-0.10 ± 0.09	-0.56 ± 0.09	-0.40 ± 0.10
e_{18}	1.37 ± 0.50	-1.22 ± 0.40	0.13 ± 0.64	-0.22 ± 0.28	-1.33 ± 0.22	-0.59 ± 0.36
e_{34}	-0.94 ± 4.82	1.51 ± 4.95	-0.85 ± 4.82	0.62 ± 4.83	0.75 ± 4.79	0.73 ± 4.83
	$130+69$	$78+74$	$9+80$	$129+6$	$69+47$	$3+38$
$\chi_{\pi \pi N}^{2}$	179	174	180	177	177	175

$$
\left|c_{i}\right| \sim 1.0<3.0<5.5 \quad\left|d_{i}\right| \sim 1.5<4.0<7.0, \quad\left|e_{i}\right| \sim 2.0<5.5<9.0
$$

Predictions

Partial Waves

Partial Waves

Cross Sections

Cross Sections

Summary

Good description of the phase shifts in $\pi N \rightarrow \pi N$

- Fits in $q^{3} \& q^{4}$ comparable \Longrightarrow convergency
- $\chi \mathrm{PT} \sim \mathrm{HB} \chi \mathrm{PT} \Longrightarrow 1 / \mathrm{m}_{\mathrm{N}}$ contributions not that important
- higher energy predictions for $\mathrm{P}_{11}(\mathrm{R})$ and $\mathrm{P}_{33}(\Delta)$ problematic

Fair description of the cross sections in $\pi N \rightarrow \pi \pi N$

- $q^{3}>q^{4} \Longrightarrow$ bad convergency (too large LECs from $\pi N \rightarrow \pi N$)
- $\chi \mathrm{PT} \gtrsim \mathrm{HB} \chi \mathrm{PT} \Longrightarrow 1 / \mathrm{m}_{\mathrm{N}}$ contributions important
- role of Δ and R underestimated?

Future extensions of the combined fit

- $q^{3} \& q^{4}+\Delta N L O+R N L O$
- $\varepsilon^{3}+\mathrm{RNLO}$

Summary

Good description of the phase shifts in $\pi N \rightarrow \pi N$

- Fits in $q^{3} \& q^{4}$ comparable \Longrightarrow convergency
- $\chi \mathrm{PT} \sim \mathrm{HB} \chi \mathrm{PT} \Longrightarrow 1 / \mathrm{m}_{\mathrm{N}}$ contributions not that important
- higher energy predictions for $\mathrm{P}_{11}(\mathrm{R})$ and $\mathrm{P}_{33}(\Delta)$ problematic

Fair description of the cross sections in $\pi N \rightarrow \pi \pi N$

- $q^{3}>q^{4} \Longrightarrow$ bad convergency (too large LECs from $\pi N \rightarrow \pi N$)
- $\chi \mathrm{PT} \gtrsim \mathrm{HB} \chi \mathrm{PT} \Longrightarrow 1 / \mathrm{m}_{\mathrm{N}}$ contributions important
- role of Δ and R underestimated?

Future extensions of the combined fit

- $q^{3} \& q^{4}+\Delta N L O+R N L O$
- $\varepsilon^{3}+$ RNLO

Backup

LECs	HB						Cov					
	no D waves			with D waves			no D waves			with D waves		
c_{1}	-0.93	\pm	0.08	-0.94	\pm	0.08	-1.00	\pm	0.10	-1.02	\pm	0.09
c_{2}	2.93	\pm	0.27	2.84	\pm	0.27	3.28	\pm	0.32	3.35	\pm	0.23
c_{3}	-4.25	\pm	0.11	-4.06	\pm	0.11	-5.17	\pm	0.16	-5.23	\pm	0.11
c_{4}	3.08	\pm	0.12	2.90	\pm	0.12	3.53	\pm	0.12	3.47	\pm	0.10
$d_{1}+d_{2}$	4.94	\pm	0.08	4.76	\pm	0.08	5.08	\pm	0.08	5.09	\pm	0.07
d_{3}	-3.93	\pm	0.08	-3.82	\pm	0.08	-5.01	\pm	0.12	-5.01	\pm	0.12
d_{4}	0.32	\pm	1.81	0.61	\pm	1.88	-2.33	\pm	1.88	-2.32	\pm	1.88
d_{5}	-0.42	\pm	0.05	-0.37	\pm	0.05	0.08	\pm	0.06	0.07	\pm	0.06
d_{10}	-6.36	\pm	1.64	-6.08	\pm	1.66	-6.11	\pm	1.81	-6.22	\pm	1.79
d_{11}	-2.46	\pm	1.93	-2.43	\pm	1.95	-2.13	\pm	2.00	-2.14	\pm	1.99
d_{12}	6.67	\pm	1.62	6.32	\pm	1.64	7.50	\pm	1.74	7.75	\pm	1.70
d_{13}	-2.23	\pm	2.00	-2.32	\pm	2.02	-1.19	\pm	1.93	-1.30	\pm	1.92
$d_{14}-d_{15}$	-8.50	\pm	0.13	-8.23	\pm	0.12	-8.86	\pm	0.13	-8.93	\pm	0.12
d_{16}	6.71	\pm	0.69	6.45	\pm	0.69	-0.78	\pm	0.65	-0.72	\pm	0.64
e_{10}	-4.91	\pm	4.48	-4.21	\pm	4.52	-3.69	\pm	4.43	-3.69	\pm	4.42
e_{11}	1.10	\pm	4.57	0.68	\pm	4.65	2.66	\pm	4.08	2.65	\pm	4.09
e_{12}	2.04	\pm	3.60	1.85	\pm	3.66	1.69	\pm	3.52	1.70	\pm	3.51
e_{13}	-1.78	\pm	3.70	-1.43	\pm	3.75	-2.54	\pm	3.34	-2.50	\pm	3.34
e_{14}	-3.26	\pm	1.97	1.18	\pm	0.10	-2.30	\pm	2.25	0.40	\pm	0.12
e_{15}	-3.88	\pm	3.88	-13.55	\pm	0.61	-0.58	\pm	3.80	-5.50	\pm	0.34
e_{16}	3.63	\pm	1.82	8.29	\pm	1.10	-0.62	\pm	1.22	1.28	\pm	0.47
e_{17}	2.34	\pm	3.50	-0.46	\pm	0.11	1.09	\pm	2.31	0.32	\pm	0.10
e_{18}	2.44	\pm	3.50	6.10	\pm	0.61	0.61	\pm	1.93	1.57	\pm	0.35
e_{34}	0.62	\pm	4.81	0.51	\pm	4.82	0.96	\pm	4.77	0.95	\pm	4.77
$\chi_{\pi N}^{2}$	24			$41+200$			31			$31+34$		
$\chi_{\pi \pi N}^{2}$	270			257			227			228		

$$
\left|c_{i}\right| \sim 1.0<3.0<5.5 \quad\left|d_{i}\right| \sim 1.5<4.0<7.0: \quad\left|e_{i}\right| \sim 2.0<5.5<9.0
$$

LECs	HB						Cov					
	no D waves			with D waves			no D waves			with D waves		
c_{1}	-1.33	\pm	0.13	-1.28	\pm	0.11	-1.10	\pm	0.12	-1.14	\pm	0.11
c_{2}	1.22	\pm	0.42	1.36	\pm	0.36	1.58	\pm	0.34	1.44	\pm	0.24
c_{3}	-2.05	\pm	0.12	-1.95	\pm	0.12	-2.58	\pm	0.17	-2.55	\pm	0.12
c_{4}	2.21	\pm	0.12	2.12	\pm	0.12	2.31	\pm	0.13	2.19	\pm	0.10
$d_{1}+d_{2}$	1.32	\pm	0.09	1.21	\pm	0.09	1.04	\pm	0.08	1.07	\pm	0.07
d_{3}	-1.45	\pm	0.08	-1.39	\pm	0.08	-1.77	\pm	0.13	-1.79	\pm	0.13
d_{4}	-0.18	\pm	4.10	-0.41	\pm	3.60	0.05	\pm	2.11	0.24	\pm	2.12
	0.16	\pm	0.05	0.18	\pm	0.05	0.41	\pm	0.06	0.41	\pm	0.06
d_{10}	-1.28	\pm	2.24	-1.00	\pm	2.22	-1.06	\pm	2.26	-1.15	\pm	2.26
d_{11}	-0.79	\pm	2.19	-0.91	\pm	2.18	-1.03	\pm	2.18	-0.95	\pm	2.19
d_{12}	-0.80	\pm	2.04	-0.61	\pm	2.02	-0.27	\pm	2.02	-0.39	\pm	2.02
d_{13}	-4.33	\pm	2.48	-4.84	\pm	2.38	-1.10	\pm	2.17	-0.95	\pm	2.16
$d_{14}-d_{15}$	-2.00	\pm	0.13	-1.84	\pm	0.13	-1.99	\pm	0.14	-2.00	\pm	0.13
d_{16}	6.12	\pm	0.77	6.06	\pm	0.75	0.44	\pm	0.72	0.54	\pm	0.72
e_{10}	-0.44	\pm	5.13	-0.35	\pm	5.10	0.91	\pm	5.15	0.97	\pm	5.17
e_{11}	0.54	\pm	5.22	0.75	\pm	5.13	-0.35	\pm	4.79	-0.45	\pm	4.82
e_{12}	0.39	\pm	3.95	0.78	\pm	3.84	-1.75	\pm	3.86	-1.71	\pm	3.87
e_{13}	1.99	\pm	3.80	2.18	\pm	3.73	-1.84	\pm	3.57	-1.72	\pm	3.58
e_{14}	-1.83	\pm	2.12	0.52	\pm	0.10	0.55	\pm	2.33	0.59	\pm	0.12
e_{15}	1.91	\pm	4.12	-3.05	\pm	0.63	-0.57	\pm	3.96	-0.84	\pm	0.37
e_{16}	-0.63	\pm	1.88	1.13	\pm	1.38	-1.54	\pm	1.23	-1.07	\pm	0.51
e_{17}	-0.43	\pm	3.56	-0.52	\pm	0.11	-1.50	\pm	2.51	-0.40	\pm	0.10
e_{18}	-0.42	\pm	3.56	0.13	\pm	0.64	-0.05	\pm	2.07	-0.59	\pm	0.36
e_{34}	-0.78	\pm	4.83	-0.85	\pm	4.82	0.78	\pm	4.82	0.73	\pm	4.83
$\chi_{\pi N}^{2}$		7			$9+80$			1			$3+38$	
$\chi_{\pi \pi N}^{2}$		179			180			175			175	

$$
\left|c_{i}\right| \sim 1.0<3.0<5.5 \quad\left|d_{i}\right| \sim 1.5<4.0<7.0: \quad\left|e_{i}\right| \sim 2.0<5.5<9.0
$$

D-waves

