

Dmitrij Siemens

Combined analysis of $\pi N \rightarrow \pi N$ and $\pi N \rightarrow \pi \pi N$ in chiral effective field theory at one-loop level

0000

RUB

0000

Formal Aspects

Combined Fit

Predictions

Motivation and Methodology

Why?

Aim	Theoretical description of $\pi N \rightarrow \pi N$ and $\pi N \rightarrow \pi \pi N$ above threshold	1. P 2. D	
Problem	QCD is non-perturbative for low energies	3. D 4. C	
Solution	Effective Field Theory ⇒ Chiral Perturbation Theory	dec 5. C	
Problem	II Resonances play an important role	elen 6. C	
Solution	Inclusion of the most dominant resonance $\Delta(1232)$ as an explicit degree of freedom	sect	

1. Pick Lagrangian
2. Derive Feynman rules
3. Draw all graphs up to specified order
4. Calculate amplitudes in specified
decomposition
5. Calculate T-matrix and matrix
element squared
6. Calculate observables like cross
sections and phase shifts

2 Chiral Approaches

- EFT of Standard Model
- Relies upon chiral symmetry of QCD
- DOF are mesons and baryons instead of quarks
- Breakdown scale of theory: $\Lambda_\chi~pprox~1~{
 m GeV}$

ΗΒχΡΤ

- Non-relativistic limit of χPT
- Inclusion of $1/m_N$ expansion into power counting
- Original motivation: Allows calculations beyond tree level

Formal Aspects

Effective Lagrangian

Linear Combinations

$$c_{1} \rightarrow c_{1} + 2M_{\pi}^{2}(e_{22} - 4e_{38})$$

$$c_{2} \rightarrow c_{2} - 8M_{\pi}^{2}(e_{20} + e_{35})$$

$$c_{3} \rightarrow c_{3} - 4M_{\pi}^{2}(2e_{19} - e_{22} - e_{36})$$

$$c_{4} \rightarrow c_{4} - 4M_{\pi}^{2}(2e_{21} - e_{37})$$

Transition from LO loops to NLO loops

+

Transition from LO loops to NLO loops

LO A graphs

Transition from LO loops to NLO loops

Transition from LO loops to NLO loops

Transition from $\pi N \rightarrow \pi \pi N$ graphs to $\pi N \rightarrow \pi N$ graphs

Renormalization II

Meson Sector

$$l_i = \frac{\beta_{l_i}}{32\pi^2} \bar{l}_i + \beta_{l_i} \left(\bar{\lambda} + \frac{1}{32\pi^2} \log\left(\frac{M_\pi^2}{\mu^2}\right) \right)$$
$$\bar{\lambda} = \frac{1}{16\pi^2} \left(\frac{1}{d-4} + \frac{1}{2}(\gamma_E - 1 - \ln 4\pi) \right)$$

$$d_i = \bar{d}_i + \frac{\beta_{d_i}}{F_\pi^2} \left(\bar{\lambda} + \frac{1}{32\pi^2} \log\left(\frac{M_\pi^2}{\mu^2}\right) \right)$$
$$e_i = \bar{e}_i + \frac{\beta_{e_i}}{F_\pi^2} \left(\bar{\lambda} + \frac{1}{32\pi^2} \log\left(\frac{M_\pi^2}{\mu^2}\right) \right)$$

Covariant "Modified" EOMS

$$c_{i} = \bar{c}_{i} + \delta c_{i}^{(3)} + \delta c_{i}^{(4)}$$

$$d_{i} = \bar{d}_{i} + \delta d_{i}^{(3)} + \delta d_{i}^{(4)}$$

$$e_{i} = \bar{e}_{i} + \delta e_{i}^{(4)}$$

$$x \in \{c, d, e\}$$

$$\delta x_{i}^{(n)} = \bar{x}_{i,f}^{(n)} + \frac{\beta_{x_{i},B}^{(n)}}{F_{\pi}^{2}} \left(\bar{\lambda} + \frac{1}{32\pi^{2}} \log\left(\frac{m_{N}^{2}}{\mu^{2}}\right)\right) + \frac{\beta_{x_{i},M}^{(n)}}{F_{\pi}^{2}} \left(\bar{\lambda} + \frac{1}{32\pi^{2}} \log\left(\frac{M_{\pi}^{2}}{\mu^{2}}\right)\right)$$

$$T^{ba} = \chi^{\dagger}_{N'} \left(\delta^{ab} T^+ + i \epsilon^{bac} \tau_c T^- \right) \chi_N$$

$$T^{ba} = \chi^{\dagger}_{N'} \left(\delta^{ab} T^+ + i \epsilon^{bac} \tau_c T^- \right) \chi_N$$

$$T^{\pm} = \bar{u}^{(s')} \left(A^{\pm} + \not \!\!\!/ B^{\pm} \right) u^{(s)}$$
$$f^{I}_{l\pm}(s) = \frac{1}{16\pi\sqrt{s}} \left((E + m_N) \left(A^{I}_{l}(s) + (\sqrt{s} - m_N) B^{I}_{l}(s) \right) + (E - m_N) \left(-A^{I}_{l\pm}(s) + (\sqrt{s} + m_N) B^{I}_{l\pm} \right) \right)$$
$$X^{I}_{l}(s) = \int_{-1}^{1} \mathrm{d}z \, X^{I}(s, t) P_{l}(z)$$

 $X \in \{A, B\}$

χΡΤ

$$T^{ba} = \chi^{\dagger}_{N'} \left(\delta^{ab} T^+ + i \epsilon^{bac} \tau_c T^- \right) \chi_N$$

$$T^{\pm} = \bar{u}^{(s')} \left(A^{\pm} + \not q B^{\pm} \right) u^{(s)}$$
$$f^{I}_{l\pm}(s) = \frac{1}{16\pi\sqrt{s}} \left((E + m_N) \left(A^{I}_{l}(s) + (\sqrt{s} - m_N) B^{I}_{l}(s) \right) + (E - m_N) \left(-A^{I}_{l\pm}(s) + (\sqrt{s} + m_N) B^{I}_{l\pm} \right) \right)$$
$$X^{I}_{l}(s) = \int_{-1}^{1} \mathrm{d}z \, X^{I}(s, t) P_{l}(z)$$

 $X \in \{A, B\}$

$$T^{\pm} = \bar{u}_{v}^{(s')} \left(g^{\pm} + 2i S \cdot q \times q' h^{\pm} \right) u_{v}^{(s)}$$
$$f_{l\pm}^{I}(s) = \frac{E + m_{N}}{16\pi\sqrt{s}} \int_{-1}^{1} dz \left(g^{I} P_{l}(z) + q^{2} h^{I} (P_{l\pm}(z) - z P_{l}(z)) \right)$$

χΡΤ

ΗΒχΡΤ

$$T^{ba} = \chi^{\dagger}_{N'} \left(\delta^{ab} T^+ + i \epsilon^{bac} \tau_c T^- \right) \chi_N$$

$$T^{\pm} = \bar{u}^{(s')} \left(A^{\pm} + \not \!\!\!/ B^{\pm} \right) u^{(s)}$$
$$f_{l\pm}^{I}(s) = \frac{1}{16\pi\sqrt{s}} \left((E + m_N) \left(A_l^{I}(s) + (\sqrt{s} - m_N) B_l^{I}(s) \right) + (E - m_N) \left(-A_{l\pm}^{I}(s) + (\sqrt{s} + m_N) B_{l\pm}^{I} \right) \right)$$
$$X_l^{I}(s) = \int_{-1}^{1} \mathrm{d}z \, X^{I}(s, t) P_l(z)$$

 $X \in \{A, B\}$

$$T^{\pm} = \bar{u}_{v}^{(s')} \left(g^{\pm} + 2i S \cdot q \times q' h^{\pm} \right) u_{v}^{(s)}$$
$$f_{l\pm}^{I}(s) = \frac{E + m_{N}}{16\pi\sqrt{s}} \int_{-1}^{1} dz \left(g^{I} P_{l}(z) + q^{2} h^{I} (P_{l\pm}(z) - z P_{l}(z)) \right)$$

Isospin basis

ΗΒχΡΤ

 χPT

$$X^{I=1/2} = X^+ + 2X^-, \quad X^{I=3/2} = X^+ - X^-$$

$$T^{ba} = \chi_{N'}^{\dagger} \left(\delta^{ab} T^+ + i \epsilon^{bac} \tau_c T^- \right) \chi_N$$

$$T^{\pm} = \bar{u}^{(s')} \left(A^{\pm} + \not \!\!\!\!/ B^{\pm} \right) u^{(s)}$$
$$f^{I}_{l\pm}(s) = \frac{1}{16\pi\sqrt{s}} \left((E + m_N) \left(A^{I}_{l}(s) + (\sqrt{s} - m_N) B^{I}_{l}(s) \right) + (E - m_N) \left(-A^{I}_{l\pm}(s) + (\sqrt{s} + m_N) B^{I}_{l\pm} \right) \right)$$
$$X^{I}_{l}(s) = \int_{-1}^{1} \mathrm{d}z \, X^{I}(s, t) P_{l}(z)$$

χΡΤ

 $X \in \{A, B\}$

$$T^{\pm} = \bar{u}_{v}^{(s')} \left(g^{\pm} + 2i S \cdot q \times q' h^{\pm} \right) u_{v}^{(s)}$$
$$f_{l\pm}^{I}(s) = \frac{E + m_{N}}{16\pi\sqrt{s}} \int_{-1}^{1} dz \left(g^{I} P_{l}(z) + q^{2} h^{I} (P_{l\pm}(z) - z P_{l}(z)) \right)$$

ΗΒχΡΤ

Isospin basis

Unitarization prescription

$$X^{I=1/2} = X^+ + 2X^-, \quad X^{I=3/2} = X^+ - X^-$$

 $\delta_{l\pm}^{I}(s) = \arctan(|\boldsymbol{q}| \Re f_{l\pm}^{I}(s))$

Fitting Procedure

Fitting Procedure

Fitting Procedure

Fits

Input

	m_N	M_{π}	F_{π}	g_A	1	l_1			l_2				l_4			
	938.27	139.57	92.4	1.2	$27 \parallel -$	0.4	± 0.6	4.3 ±	0.1	1 2.9	9 ± 2.4	4	$.4\pm0$.2		
								Bijr	nens	s, Ecke	er 2014					
LECs			HB								(Cov				
	KH		GW			RS]	KH		(GW	r]	RS	
c_1	-1.27 ± 0	0.08 -1.6	± 0	0.07	-1.39	\pm	0.02	-1.12	\pm	0.08	-1.43	\pm	0.07	-1.25	\pm	0.02
c_2	$3.56~\pm~0$	0.12 3.3	$5\pm$	0.11	3.42	\pm	0.04	3.49	\pm	0.11	3.38	\pm	0.10	3.57	\pm	0.04
c_3	-6.29 ± 0	0.08 -6.4	$3 \pm$	0.07	-6.19	\pm	0.03	-5.94	\pm	0.08	-6.15	\pm	0.07	-6.08	\pm	0.03
c_4	3.60 ± 0	0.04 3.6	$4 \pm$	0.04	3.61	\pm	0.02	3.35	\pm	0.04	3.44	\pm	0.04	3.48	\pm	0.02
$d_1 + d_2$	$3.67~\pm~0$	0.15 3.3	$4 \pm$	0.13	3.30	\pm	0.06	3.06	\pm	0.12	2.98	\pm	0.11	3.15	\pm	0.05
d_3	-4.14 ± 0	0.29 -3.10	± 0	0.28	-3.30	\pm	0.10	-2.46	\pm	0.18	-1.97	\pm	0.17	-2.48	\pm	0.06
d_4	-0.86 ± 2	2.15 -1.0	$1 \pm$	2.14	-0.97	\pm	2.18	4.44	\pm	1.70	4.43	\pm	1.70	4.48	\pm	1.67
d_5	$0.66~\pm~0$	0.18 -0.0	$2 \pm$	0.17	0.11	\pm	0.05	0.00	\pm	0.15	-0.49	\pm	0.14	-0.26	\pm	0.05
d_{10}	-0.62 ± 1		$6 \pm$	1.86	-0.44	\pm	1.86	-1.80	\pm	1.91	-1.17	\pm	1.93	-1.98	\pm	1.88
d_{11}	-2.65 ± 1		± 0	2.00	-2.46	\pm	2.00	-2.24	\pm	2.07	-1.99	\pm	2.07	-2.41	\pm	2.07
d_{12}	$3.85~\pm~1$		± 0	1.99	3.38	\pm	1.98	5.41	\pm	1.80	4.73	\pm	1.82	5.62	\pm	1.77
d_{13}	1.21 ± 2	2.06 1.0	$8 \pm$	2.06	1.02	\pm	2.07	-0.78	\pm	2.02	-0.81	\pm	2.02	-0.69	\pm	2.02
$d_{14} - d_{15}$	-6.92 ± 0	0.28 -5.9	$5 \pm$	0.25	-5.88	\pm	0.12	-5.02	\pm	0.21	-4.50	\pm	0.19	-4.92	\pm	0.10
d_{16}	1.62 ± 0	0.74 1.3	$4 \pm$	0.74	1.55	\pm	0.73	1.76	\pm	0.70	1.64	\pm	0.71	1.73	\pm	0.69
$\chi^2_{\pi N}$	170		131			159		6 2	242			98]	.66	
$\begin{array}{c} \chi^2_{\pi N} \\ \chi^2_{\pi\pi N} \end{array}$	172		169			167		-	176		-	171		1	76	

 $|c_i| \sim 1.0 < 3.0 < 5.5$ $|d_i| \sim 1.5 < 4.0 < 7.0$

Ô

Fits

Input

						Inp	ut							large Nc
	m_N	M_{π}	F_{π}	g_A		l_1		l_2		l_3	l_4		$g_{\pi N\Delta}$ g_1	1 arge
	938.27	139.57	92.4	1.2	7 -($0.4 \pm$	0.6	4.3 ± 0.1	2.9	0 ± 2.4	4.4 ± 0	4 ± 0.2 1.35 2.2		
	Bijnens, Ecker 2014													
LECs			HB							С	OV			
	KH		GW]	RS		KH		G	W		RS	
c_1	-1.29 \pm	0.08 -1.6	$51 \pm$	0.07	-1.35	± 0	0.02	-0.93 \pm	0.08	-1.26	± 0.07	-0.98	8 ± 0.02	
c_2	$1.50 \pm$	0.12 1.3	$4 \pm$	0.11	1.29	± 0	0.04	$1.44 \pm$	0.11	1.39	± 0.10	1.34	4 ± 0.04	
C ₃	$-2.52 \pm$	0.08 -2.7	$0 \pm$	0.08	-2.25	± 0	0.03	$-2.34 \pm$	0.08	-2.65	± 0.08	-2.10	6 ± 0.03	
c_4	$1.84 \pm$	0.04 1.9	$0 \pm$	0.04	1.77	± 0	0.02	$1.62 \pm$	0.04	1.74	± 0.04	1.6	1 ± 0.02	
$d_1 + d_2$	$0.57~\pm$		$52 \pm$		-0.13	± 0	0.06	0.42 \pm	0.13	0.46	± 0.12	0.0!	5 ± 0.05	
d_3	$-1.64 \pm$		$4 \pm$					$-1.16 \pm$				-0.60	6 ± 0.06	
d_4	-1.16 ± 2				-0.97				2.21		± 2.12	0.28	8 ± 2.15	
d_5			$26 \pm$		0.55				0.15		± 0.14		2 ± 0.05	
d_{10}		1.93 -0.3							2.09		± 2.08		2 ± 2.08	
d_{11}		2.00 -2.8								-0.09				
d_{12}			57 ±		0.51			$0.66 \pm$			± 1.94		5 ± 1.94	
d_{13}													9 ± 1.99	
$d_{14} - d_{15}$	-1.66 ± 0.00												1 ± 0.10	
$\frac{d_{16}}{2}$	$-0.32 \pm$	0.70 -0.4		0.71			0.68					0.88	8 ± 0.69	
$\chi^2_{\pi N}$	123		205			19		126			54		12	
$\chi^2_{\pi\pi N}$	183		180			188		189		1	86		187	

 $|c_i| \sim 1.0 < 3.0 < 5.5$ $|d_i| \sim 1.5 < 4.0 < 7.0$

03+81

	LECs		HB			Cov	
		KH	GW	RS	KH	GW	RS
	c_1	-0.77 ± 0.11	-0.96 ± 0.11	-0.94 ± 0.08	-0.90 ± 0.14	-1.18 ± 0.13	-1.02 ± 0.09
	c_2	$2.96~\pm~0.32$	$3.96~\pm~0.31$	$2.84~\pm~0.27$	$3.52~\pm~0.32$	$3.73~\pm~0.31$	$3.35~\pm~0.23$
	c_3	-3.97 ± 0.10	$\left -4.89\ \pm\ 0.08\right $	$-4.06~\pm~0.11$	$-5.26~\pm~0.12$	$-6.00~\pm~0.11$	-5.23 ± 0.11
	c_4	$2.87~\pm~0.09$	$3.39~\pm~0.07$	$2.90~\pm~0.12$	$3.48~\pm~0.08$	$3.83~\pm~0.06$	$3.47~\pm~0.10$
	$d_1 + d_2$	$4.46~\pm~0.14$	$4.23~\pm~0.13$	$4.76~\pm~0.08$	$5.18~\pm~0.15$	$4.94~\pm~0.14$	$5.09~\pm~0.07$
	d_3	-4.00 ± 0.21	$\left -2.98 ~\pm~ 0.20 \right $	-3.82 ± 0.08	-5.65 ± 0.28	-5.13 ± 0.25	-5.01 ± 0.12
	d_4	$0.71~\pm~2.04$	$0.17~\pm~1.97$	$0.61~\pm~1.88$	-2.26 ± 1.88	-2.87 ± 1.76	-2.32 ± 1.88
N	d_5	$0.18~\pm~0.16$	-0.57 ± 0.15	-0.37 ± 0.05	$0.69~\pm~0.18$	$0.24~\pm~0.16$	$0.07~\pm~0.06$
O	d_{10}	-5.94 ± 1.72	-4.17 ± 1.76	-6.08 ± 1.66	-7.19 ± 1.79	-5.65 ± 1.81	-6.22 ± 1.79
	d_{11}	-2.39 ± 1.97	-2.50 ± 1.97	-2.43 ± 1.95	-2.47 ± 2.00	-1.34 ± 1.99	-2.14 ± 1.99
	d_{12}	6.10 ± 1.71	6.20 ± 1.73	6.32 ± 1.64	8.82 ± 1.78	$7.28~\pm~1.76$	7.75 ± 1.70
	d_{13}	-2.27 ± 2.07	-3.69 ± 2.07	-2.32 ± 2.02	-1.14 ± 1.97	-1.32 ± 1.92	-1.30 ± 1.92
	$d_{14} - d_{15}$	-8.00 ± 0.24	-6.89 ± 0.23	-8.23 ± 0.12	-9.54 ± 0.26	-8.77 ± 0.24	-8.93 ± 0.12
	d_{16}	$6.33~\pm~0.70$	7.55 ± 0.71	6.45 ± 0.69	-0.70 ± 0.65	-0.89 ± 0.63	-0.72 ± 0.64
	e_{10}	-3.54 ± 4.58	-4.18 ± 4.54	-4.21 ± 4.52	-3.73 ± 4.42	-4.91 ± 4.33	-3.69 ± 4.42
	e_{11}	0.36 ± 4.74					
	e_{12}	1.62 ± 3.73					
	e_{13}	-0.87 ± 3.80	-1.19 ± 3.85		-2.21 ± 3.36		-2.50 ± 3.34
	e_{14}	1.41 ± 0.11					
	e_{15}	-12.73 ± 0.64		-13.55 ± 0.61			
	e_{16}	6.77 ± 1.27				-1.48 ± 0.55	
	e_{17}	-0.48 ± 0.11		-0.46 ± 0.11			
	e_{18}	5.05 ± 0.49					
	<i>e</i> ₃₄	0.29 ± 4.84	0.43 ± 4.85	0.51 ± 4.82	0.86 ± 4.77	1.22 ± 4.75	0.95 ± 4.77
	$\chi^2_{\pi N}$	187 + 160	125 + 169	41 + 200	147 + 6	79 + 56	31 + 34
	$\chi^2_{\pi\pi N}$	244	250	257	234	238	228

 $|d_i| \sim 1.5 < 4.0 < 7.0$ $|e_i| \sim 2.0 < 5.5 < 9.0$

LECs KH GW RS	KH		
		GW	RS
c_1 -1.12 ± 0.17 -1.60 ± 0.24 -1.28 ± 0.11 -	-1.00 ± 0.20	-1.67 ± 0.21	-1.14 ± 0.11
c_2 1.30 ± 0.50 1.30 ± 0.76 1.36 ± 0.36	1.58 ± 0.42	$1.07~\pm~0.40$	$1.44~\pm~0.24$
c_3 -1.70 ± 0.11 -2.62 ± 0.10 -1.95 ± 0.12 -	-2.51 ± 0.16	-3.48 ± 0.15	$-2.55~\pm~0.12$
c_4 1.81 ± 0.09 2.25 ± 0.07 2.12 ± 0.12	2.08 ± 0.08	$2.41~\pm~0.06$	$2.19~\pm~0.10$
$d_1 + d_2$ 1.29 ± 0.15 1.01 ± 0.14 1.21 ± 0.09	1.48 ± 0.16	$1.27~\pm~0.15$	$1.07~\pm~0.07$
d_3 -1.82 ± 0.23 -0.80 ± 0.21 -1.39 ± 0.08 -	-2.42 ± 0.32	-2.10 ± 0.28	$-1.79~\pm~0.13$
d_4 -0.19 ± 3.65 2.54 ± 2.64 -0.41 ± 3.60	0.56 ± 2.11	-1.29 ± 2.20	$0.24~\pm~2.12$
$\checkmark d_5 0.65 \pm 0.17 -0.07 \pm 0.16 0.18 \pm 0.05 $	0.81 ± 0.19	$0.44~\pm~0.17$	$0.41~\pm~0.06$
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	-1.68 ± 2.27	-1.18 ± 2.23	-1.15 ± 2.26
$\bigcirc \qquad d_{11} \ -1.07 \ \pm \ 2.19 \ -0.50 \ \pm \ 2.24 \ -0.91 \ \pm \ 2.18 \ -$	-1.36 ± 2.20	$0.38~\pm~2.20$	-0.95 ± 2.19
d_{12} -0.19 ± 2.06 -1.73 ± 2.18 -0.61 ± 2.02	0.48 ± 2.06	-0.91 ± 2.04	-0.39 ± 2.02
d_{13} -4.58 ± 2.51 -3.98 ± 2.82 -4.84 ± 2.38 -	-1.08 ± 2.30	-0.22 ± 2.09	-0.95 ± 2.16
$d_{14} - d_{15} $ -2.45 \pm 0.27 -1.30 \pm 0.25 -1.84 \pm 0.13 -	-3.11 ± 0.28	-2.31 ± 0.26	-2.00 ± 0.13
d_{16} 5.76 ± 0.74 6.40 ± 0.80 6.06 ± 0.75	0.69 ± 0.72	-0.34 ± 0.75	$0.54~\pm~0.72$
e_{10} -0.32 ± 5.11 0.92 ± 4.90 -0.35 ± 5.10	0.98 ± 5.17	$0.28~\pm~5.02$	$0.97~\pm~5.17$
e_{11} 0.86 ± 5.12 -1.66 ± 5.06 0.75 ± 5.13 -	-0.64 ± 4.87	0.79 ± 4.54	-0.45 ± 4.82
e_{12} 1.02 ± 3.84 -3.54 ± 3.97 0.78 ± 3.84 -	-1.59 ± 3.88	-0.69 ± 3.82	-1.71 ± 3.87
e_{13} 2.49 ± 3.73 -3.47 ± 4.46 2.18 ± 3.73 -	-1.48 ± 3.65	-1.49 ± 3.45	-1.72 ± 3.58
e_{14} 0.58 ± 0.11 0.75 ± 0.10 0.52 ± 0.10	0.35 ± 0.15	1.30 ± 0.13	$0.59~\pm~0.12$
e_{15} -4.84 ± 0.71 0.41 ± 0.71 -3.05 ± 0.63 -	-1.60 ± 0.48	1.23 ± 0.48	-0.84 ± 0.37
e_{16} 2.48 ± 1.91 -1.32 ± 2.78 1.13 ± 1.38 -	-0.64 ± 0.82	-1.60 ± 0.83	-1.07 ± 0.51
e_{17} -0.42 ± 0.11 -0.50 ± 0.11 -0.52 ± 0.11 -	-0.10 ± 0.09	-0.56 ± 0.09	-0.40 ± 0.10
e_{18} 1.37 ± 0.50 -1.22 ± 0.40 0.13 ± 0.64 -	-0.22 ± 0.28	-1.33 ± 0.22	-0.59 ± 0.36
$e_{34} \ -0.94 \ \pm \ 4.82 \ 1.51 \ \pm \ 4.95 \ -0.85 \ \pm \ 4.82 $	0.62 ± 4.83	0.75 ± 4.79	0.73 ± 4.83
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	129 + 6	69 + 47	3 + 38
$\chi^2_{\pi\pi N}$ 179 174 180	177	177	175

 $|d_i| \sim 1.5 < 4.0 < 7.0$ $|e_i| \sim 2.0 < 5.5 < 9.0$

Predictions

Partial Waves

Partial Waves

Cross Sections

Cross Sections

Summary

Good description of the phase shifts in $\pi N \rightarrow \pi N$

- Fits in $q^3 \& q^4$ comparable \implies convergency
- $\chi PT \sim HB\chi PT \implies 1/m_N$ contributions not that important
- higher energy predictions for P_{11} (R) and P_{33} (Δ) problematic

Fair description of the cross sections in $\pi N{\rightarrow}\pi\pi N$

- $q^3 > q^4 \implies bad convergency (too large LECs from <math>\pi N \rightarrow \pi N$)
- $\chi PT \ge HB\chi PT \implies 1/m_N$ contributions important
- role of Δ and R underestimated?

Future extensions of the combined fit

- q³ & q⁴ + ∆NLO + RNLO
- ϵ^3 + RNLO

Summary

Good description of the phase shifts in $\pi N \rightarrow \pi N$

- Fits in $q^3 \& q^4$ comparable \implies convergency
- $\chi PT \sim HB\chi PT \implies 1/m_N$ contributions not that important
- higher energy predictions for P_{11} (R) and P_{33} (Δ) problematic

Fair description of the cross sections in $\pi N \rightarrow \pi \pi N$

- $q^3 > q^4 \implies$ bad convergency (too large LECs from $\pi N \rightarrow \pi N$)
- $\chi PT \ge HB\chi PT \implies 1/m_N$ contributions important
- role of Δ and R underestimated?

manks!! Future extensions of the combined fit

- $q^3 \& q^4 + \Delta NLO + RNLO$
- ϵ^3 + RNLO

LECs			$\begin{array}{c c c c c c c c c c c c c c c c c c c $	HB			Cov							
	no	D wa	ves	with	D wa	aves	no	D wa	ves	with	with D waves			
c_1	-0.93	±	0.08	-0.94	±	0.08	-1.00	±	0.10	-1.02	±	0.09		
c_2	2.93	\pm	0.27	2.84	\pm	0.27	3.28	\pm	0.32	3.35	\pm	0.23		
c_3	-4.25	\pm	0.11	-4.06	\pm	0.11	-5.17	\pm	0.16	-5.23	\pm	0.11		
c_4	3.08	\pm	0.12	2.90	\pm	0.12	3.53	\pm	0.12	3.47	\pm	0.10		
$d_1 + d_2$	4.94	\pm	0.08	4.76	\pm	0.08	5.08	\pm	0.08	5.09	\pm	0.07		
d_3	-3.93	\pm	0.08	-3.82	\pm	0.08	-5.01	\pm	0.12	-5.01	\pm	0.12		
d_4	0.32	\pm	1.81	0.61	\pm	1.88	-2.33	\pm	1.88	-2.32	\pm	1.88		
d_5	-0.42	\pm	0.05	-0.37	\pm	0.05	0.08	\pm	0.06	0.07	\pm	0.06		
d_{10}	-6.36	\pm	1.64	-6.08	\pm	1.66	-6.11	\pm	1.81	-6.22	\pm	1.79		
d_{11}	-2.46	\pm	1.93	-2.43	\pm	1.95	-2.13	\pm	2.00	-2.14	\pm	1.99		
d_{12}	6.67	\pm	1.62	6.32	\pm	1.64	7.50	\pm	1.74	7.75	\pm	1.70		
d_{13}	-2.23	\pm	2.00	-2.32	\pm	2.02	-1.19	\pm	1.93	-1.30	\pm	1.92		
$d_{14} - d_{15}$	-8.50	\pm	0.13	-8.23	\pm	0.12	-8.86	\pm	0.13	-8.93	\pm	0.12		
d_{16}	6.71	\pm	0.69	6.45	\pm	0.69	-0.78	\pm	0.65	-0.72	\pm	0.64		
e_{10}	-4.91	\pm	4.48	-4.21	\pm	4.52	-3.69	\pm	4.43	-3.69	\pm	4.42		
e_{11}	1.10	\pm	4.57	0.68	\pm	4.65	2.66	\pm	4.08	2.65	\pm	4.09		
e_{12}	2.04	\pm	3.60	1.85	\pm	3.66	1.69	\pm	3.52	1.70	\pm	3.51		
e_{13}	-1.78	\pm	3.70	-1.43	\pm	3.75	-2.54	\pm	3.34	-2.50	\pm	3.34		
e_{14}	-3.26	\pm	1.97	1.18	\pm	0.10	-2.30	\pm	2.25	0.40	\pm	0.12		
e_{15}	-3.88	\pm	3.88	-13.55	\pm	0.61	-0.58	\pm	3.80	-5.50	\pm	0.34		
e_{16}	3.63	\pm	1.82	8.29	\pm	1.10	-0.62	\pm	1.22	1.28	\pm	0.47		
e_{17}	2.34	\pm	3.50	-0.46	\pm	0.11	1.09	\pm	2.31	0.32	\pm	0.10		
e_{18}	2.44	\pm	3.50	6.10	\pm	0.61	0.61	\pm	1.93	1.57	\pm	0.35		
e_{34}	0.62	\pm	4.81	0.51	\pm	4.82	0.96	\pm	4.77	0.95	\pm	4.77		
$\chi^2_{\pi N}$		24		41	1+200)		31			31 + 3	4		
$\chi^2_{\pi\pi N}$		270			257			227			228			

 $|d_i| \sim 1.5 < 4.0 < 7.0$ $|e_i| \sim 2.0 < 5.5 < 9.0$

O^k

				Ι	ΗB		Cov							
	LECs	no	D wa	ves	with	D wa	aves	no	D wa	ves	with	D w	vaves	
	c_1	-1.33	±	0.13	-1.28	±	0.11	-1.10	±	0.12	-1.14	±	0.11	
	c_2	1.22	\pm	0.42	1.36	\pm	0.36	1.58	\pm	0.34	1.44	\pm	0.24	
	c_3	-2.05	\pm	0.12	-1.95	\pm	0.12	-2.58	\pm	0.17	-2.55	\pm	0.12	
	c_4	2.21	\pm	0.12	2.12	\pm	0.12	2.31	\pm	0.13	2.19	\pm	0.10	
	$d_1 + d_2$	1.32	\pm	0.09	1.21	\pm	0.09	1.04	\pm	0.08	1.07	\pm	0.07	
	d_3	-1.45	\pm	0.08	-1.39	\pm	0.08	-1.77	\pm	0.13	-1.79	\pm	0.13	
	d_4	-0.18	\pm	4.10	-0.41	\pm	3.60	0.05	\pm	2.11	0.24	\pm	2.12	
04+8	d_5	0.16	\pm	0.05	0.18	\pm	0.05	0.41	\pm	0.06	0.41	\pm	0.06	
AXO	d_{10}	-1.28	\pm	2.24	-1.00	\pm	2.22	-1.06	\pm	2.26	-1.15	\pm	2.26	
0	d_{11}	-0.79	\pm	2.19	-0.91	\pm	2.18	-1.03	\pm	2.18	-0.95	\pm	2.19	
	d_{12}	-0.80	\pm	2.04	-0.61	\pm	2.02	-0.27	\pm	2.02	-0.39	\pm	2.02	
	d_{13}	-4.33	\pm	2.48	-4.84	\pm	2.38	-1.10	\pm	2.17	-0.95	\pm	2.16	
	$d_{14} - d_{15}$	-2.00	\pm	0.13	-1.84	\pm	0.13	-1.99	\pm	0.14	-2.00	\pm	0.13	
	d_{16}	6.12	\pm	0.77	6.06	\pm	0.75	0.44	\pm	0.72	0.54	\pm	0.72	
	e_{10}	-0.44	\pm	5.13	-0.35	\pm	5.10	0.91	\pm	5.15	0.97	\pm	5.17	
	e_{11}	0.54	\pm	5.22	0.75	\pm	5.13	-0.35	\pm	4.79	-0.45	\pm	4.82	
	e_{12}	0.39	\pm	3.95	0.78	\pm	3.84	-1.75	\pm	3.86	-1.71	\pm	3.87	
	e_{13}	1.99	\pm	3.80	2.18	\pm	3.73	-1.84	\pm	3.57	-1.72	\pm	3.58	
	e_{14}	-1.83	\pm	2.12	0.52	\pm	0.10	0.55	\pm	2.33	0.59	\pm	0.12	
	e_{15}	1.91	\pm	4.12	-3.05	\pm	0.63	-0.57	\pm	3.96	-0.84	\pm	0.37	
	e_{16}	-0.63	\pm	1.88	1.13	\pm	1.38	-1.54	\pm	1.23	-1.07	\pm	0.51	
	e_{17}	-0.43	\pm	3.56	-0.52	\pm	0.11	-1.50	\pm	2.51	-0.40	\pm	0.10	
	e_{18}	-0.42	\pm	3.56	0.13	\pm	0.64	-0.05	\pm	2.07	-0.59	\pm	0.36	
	e_{34}	-0.78	±	4.83	-0.85	±	4.82	0.78	±	4.82	0.73	±	4.83	
	$\chi^2_{\pi N}$		7		(9+80			1		3+38			
	$\chi^2_{\pi\pi N}$		179			180			175			175		

 $|d_i| \sim 1.5 < 4.0 < 7.0$ $|e_i| \sim 2.0 < 5.5 < 9.0$

D-waves

