Rencontres de Physique de la Vallée d'Aoste La Thuile, Aosta Valley, Italy February 27th, 2013

Recent Highlights from

Sandrine Emery-Schrenk On behalf of the BABAR collaboration

Institut de recherche sur les lois fondamentales de l'Univers

BABAR.

Outline

Introduction

Time dependent studies:

- First direct observation of Time Reversal Violation PRL 109, 211801 (2012)
- CP Violation in $B^0 \rightarrow D^{*+}D^{*-}$ decays PRD 86, 112006 (2012)
- Search for CP Violation in $B^0 \overline{B}{}^0$ mixing **Preliminary.**

Time-independent studies:

- Search for $B \rightarrow K^{(*)} \nu \overline{\nu}$ decay **New, preliminary.**
- Search for $B \rightarrow \pi/\eta \, \ell^+ \ell^-$ decay **New, preliminary.**
- Study of B \rightarrow D^(*) τ v decay PRL 109, 101802 (2012) & New preliminary extra studies.

BABAR Experiment

Analyses methods

Time dependent measurement

Kinematical identification with

• $m_{ES} = \sqrt{E_{beam}^{*2} - p_{B}^{*2}}$ (Beam energy substituted mass)

'Spherical'

• $\Delta E = E_B^* - E_{beam}^*$ (Energy difference)

•Event-shape variables combined in a neural network or Fisher discriminant to suppress jet-like continuum events

BB

Jet-like

Sandrine Emery-Schrenk La Thuile 2013

Direct observation of time reversal violation (1)

PRL 109, 211801 (2012)

First direct observation of Time Reversal Violation, in any system.

If CPT holds : T violation since CP violation observed in the interference between decay with/without B⁰ mixing.

Never measured before. First direct observation of T violation ! with also CP and CPT measurements.

Sandrine Emery-Schrenk La Thuile 2013

Direct observation of time reversal violation (2)

EPR entanglement from Y(4S)

$$|i\rangle = \frac{1}{\sqrt{2}} \left[B^{0}(t_{1}) \overline{B}^{0}(t_{2}) - \overline{B}^{0}(t_{1}) B^{0}(t_{2}) \right]$$
$$= \frac{1}{\sqrt{2}} \left[B_{+}(t_{1}) B_{-}(t_{2}) - B_{-}(t_{1}) B_{+}(t_{2}) \right]$$

Semileptonic decay projects: B^0 to l^+ , \overline{B}^0 to l^- J/ ΨK_L projects CP even B_+ J/ ΨK_S projects CP odd B_-

> 4 independent T comparisons (as 4 CP and 4 CPT comparisons)

T implies comparison of :

- 1. Opposite $\Delta \tau$ sign $\Delta \tau = t_{CP} - t_{flav}$
- 2. Different CP reco states $(J/\Psi K_s vs. J/\Psi K_L)$.
- 3. Opposite flavor tag states (B^0 vs \overline{B}^0).

Direct observation of time reversal violation (3)

Signal model

Assumes $\Delta \Gamma_d$ =0 but does NOT assume CPT

(for perfect time reconstruction: corrections needed to include time resolution)

 $\frac{\text{8 sets of S, C}}{\pm} \text{ parameters : } 2 \Delta \tau (\Delta \tau > 0, \Delta \tau < 0) \times 2 \text{ flavor } (B^0, \overline{B}^0) \times 2 \text{ CP } (K_S, K_L) \\ \pm \alpha \beta$

Extracted from simultaneous ML fit to B^0 , \overline{B}^0 , $c\overline{c}K_S$, and $J/\psi K_L$ for $\Delta\tau > 0$ and $\Delta\tau < 0$ events.

In usual CPV studies, one single set S, C Assumes $\Delta \Gamma_d = 0$ and CPT SM and CKM formalism: S ~ sin 2 β and C ~ 0

Direct observation of time reversal violation (4)

Sandrine Emery-Schrenk La Thuile 2013

Direct observation of time reversal violation (5)

First direct observation of T violation in any system! (with 14 σ significance)

due to CP violation in the interference between the decay with/wo B mixing ($\Delta S \neq 0$), but not directly in the decay (ΔC consistent with 0).

CP violation seen with 16.6 σ significance

No CPT violation seen: 0.33 σ significance

Time dependent CP asymmetry of partially reconstructed $B^0 \rightarrow D^{*+}D^{*-}$ decays (1) PRD 86, 112006 (2012)

 $b \rightarrow c \bar{c} d$ transition: neglecting penguins TD asymmetry is a measurement of sin(2 β).

 $f_{CP} = D^{*+}D^{*-}$

 B^0

Mixing

 R^0

A few % in SM but possible new physics

Need angular analysis to separate CP eigenstates (with fully reco events).

BABAR and Belle full reco. analyses measured CP even component CP parameters S_+ and C_+ , and the fraction R_+ of CP-odd amplitude.

Here with Partial reco. measure average S and C related to C_+ and S_+ : $C=C_+$; $S=S_+(1-2R_\perp)$

Sandrine Emery-Schrenk La Thuile 2013

$B^0 \rightarrow D^{*+}D^{*-}$ decays (2)

Fit uses reco. recoiling D⁰ mass, Fisher discriminant (event shape), and time. PRD 86, 112006 (2012)

 $C = +0.15 \pm 0.09 \text{ (stat)} \pm 0.04 \text{ (syst)}$ $S = -0.34 \pm 0.12 \text{ (stat)} \pm 0.05 \text{ (syst)}$

Neglect penguin : $S_+ = -S_-$; $C = C_+$; $S = S_+ (1 - 2R_\perp)$ Use $R_\perp = 0.158 \pm 0.029$ - BABAR PRD 79, 032002 (2009)

 $C_{+} = +0.15 \pm 0.09 \text{ (stat)} \pm 0.04 \text{ (syst)}$ $S_{+} = -0.49 \pm 0.18 \text{ (stat)} \pm 0.07 \text{ (syst)} \pm 0.04 \text{ (from R}_{\perp})$

Result consistent with the latest (fully reco) BaBar and Belle results, and with SM predictions.

Decreases BABAR uncertainties by ~20% by combining with fully reco. analysis.

Ex: kaon to tag B flavor

PRD 86, 112006 (2012)

Search for CP Violation in $B^0 \overline{B}{}^0$ Mixing using $B^0 \rightarrow D^* \ell \nu$ Partial Reconstruction (1) – New, preliminary. Assume CPT

$$\frac{\overline{b}}{t} \xrightarrow{W^+} \overline{q} \qquad \overline{b} \xrightarrow{\overline{t}} \overline{q} \qquad |I|$$

$$\frac{q}{t} \xrightarrow{W^-} t \xrightarrow{\overline{b}} q \qquad \overline{b} \xrightarrow{\overline{t}} \overline{q} \qquad |I|$$

$$\frac{q}{q} \xrightarrow{t} \xrightarrow{W^-} t \xrightarrow{\overline{b}} q \qquad \overline{q} \xrightarrow{\overline{b}} \xrightarrow{\overline{t}} \underbrace{W}_{\overline{b}} \qquad |I|$$

$$|B_q^{L,H}
angle = rac{1}{\sqrt{1 + |(q/p)_q|^2}} \left(|B_q
angle \pm (q/p)_q |\overline{B}_q
angle
ight)$$

CP violation in mixing : $P(B^0 \rightarrow \overline{B}^0) \neq P(\overline{B}^0 \rightarrow B^0)$

Or
$$A_{CP} = \frac{N(B^0 B^0) - N(\bar{B}^0 \bar{B}^0)}{N(B^0 B^0) + N(\bar{B}^0 \bar{B}^0)} \neq 0$$
 $A_{CP} = \frac{1 - \left|\frac{q}{p}\right|^4}{1 + \left|\frac{q}{p}\right|^4}$
 $A_{CP} \neq 0 \iff \Delta_{CP} = 1 - \left|\frac{q}{p}\right| \neq 0$

Time independent O(10⁻⁴) in SM Large value indicates new physics

Δz

Btag

A_{CP} was previously measured with dilepton New approach : partial D* reco (lepton, soft pion) and kaon tag

$$A_{CP} = \frac{N(B^{\circ}B^{\circ}) - N(\overline{B^{\circ}}\overline{B^{\circ}})}{N(B^{\circ}B^{\circ}) + N(\overline{B^{\circ}}\overline{B^{\circ}})} = \frac{N(\ell^{\neq}K^{\neq}) - N(\ell^{=}K^{=})}{N(\ell^{\neq}K^{\neq}) + N(\ell^{=}K^{=})}$$

D_{tag} K

Search for CP Violation in $B^0 \overline{B}^0$ Mixing (2)

4D binned fit to : M_v^2 , $\cos\theta_{IK}$, Δz , p_K

Time : discriminating variable

CP violation in mixing : time independent.

Time analysis constrains nuisance parameters : backgrounds & detector charge asymmetries...

13

Search for CP Violation in $B^0 \overline{B}^0$ Mixing (3)

Continuum subtracted data

4D binned fit to : Δz , $\cos\theta_{IK}$, M_v^2 , p_K ℓ K opposite signs also used to gain sensitivity

BABAR Preliminary

$$\Delta_{\rm CP} = 1 - \left| \frac{q}{p} \right| = [0.29 \pm 0.84 \text{ (stat)} - 1.61 \text{ (syst)}] \times 10^{-3} + 0.36 \\ A_{\rm CP} = [0.06 \pm 0.17 \text{ (stat)} - 0.32 \text{ (syst)}]\%.$$

Main systematics on Δ_{CP} : uncertainty in composition of M_v^2 peaking sample: $\delta \Delta_{CP}^{+1.50} = -1.17 \times 10^{-3}$

Search for CP Violation in $B^0 \overline{B}^0$ Mixing (4)

- Consistent and more accurate than previous Y(4s) HFAG average.
- Consistent with SM and other results.
- (tension between D0 dimuons & SM)

Search for $B \rightarrow K^{(*)} \nu \overline{\nu}$ and invisible charmonium decays

New physics : Non standard Z couplings, MSSM chargino or Higgs+, ...

ũ. ĉ. t

SM : BR($B \rightarrow Kvv$) = (3.6 to 5.2) ×10⁻⁶ BR($B \rightarrow K^*vv$)= (6.8 to 13) ×10⁻⁶

Theoretical prediction more accurate than for $B \rightarrow K^{(*)} \ell^+ \ell^-$

Several previous upper limits on $B \rightarrow K^{(*)} \nu \bar{\nu}$:

- BaBar (2005): Hadronic & Semileptonic $B \rightarrow K^+ \nu \bar{\nu}$ [PRL 94, 101801]
- BELLE (2007): Hadronic $B \rightarrow K^{(*)} \nu \bar{\nu}$ [PRL 99, 221802]
- BaBar (2008): Hadronic & SL $B \rightarrow K^* \nu \overline{\nu}$ [PRD 78, 072007]
- BaBar (2010): Semileptonic $B \rightarrow K \nu \bar{\nu}$ [PRD 82, 112002]

Invisible charmonium decay

Same final state with: $B \rightarrow K^{(*)}(c\bar{c}), \ c\bar{c} \rightarrow \nu\bar{\nu}$ Search also for rare decay: $c\bar{c} \rightarrow \nu\bar{\nu}, \ c\bar{c}=J/\Psi \text{ or } \Psi(2s)$

New BABAR measurement with exclusively reco hadronic B_{tag}. Reconstruct 6 Kaon modes for B_{sig}:

- $B^+ \rightarrow K^+ \nu \overline{\nu}$
- $B^0 \rightarrow K_s^0 \nu \bar{\nu}$
- $B^+ \rightarrow [K^{*+} \rightarrow K^+ \pi^0] \nu \overline{\nu}$
- $B^+ \rightarrow [K^{*+} \rightarrow K_s^0 \pi^+] \nu \overline{\nu}$
- $B^0 \rightarrow [K^{*0} \rightarrow K^+\pi^-] \nu \overline{\nu}$
- $B^0 \rightarrow [K^{*0} \rightarrow K_s^0 \pi^0] \nu \overline{\nu}$

Normalized invariant $\nu \bar{\nu}$ mass

$B \rightarrow K^{(*)} \nu \bar{\nu}$ decays (2)

Expected combinatoric : grey shades mES peaking background : solid lines

No significant signal **Consistent with SM**

- First lower limit for $B^+ \rightarrow K^+ \nu \bar{\nu}$
- Most stringent upper limits using the hadronic-tag reco for: $B^0 \rightarrow K^0 \nu \bar{\nu}$, $B^+ \rightarrow K^{*+} \nu \bar{\nu}$ and $B^0 \rightarrow K^{*0} \nu \bar{\nu}$ decays
 - First upper limit for $\Psi(2S) \rightarrow \nu \bar{\nu}$.

Invariant $\nu \overline{\nu}$ mass

е

Channel BABAR Prel	BF x 10 ⁻⁵ iminary	90% CL Limit this meas. x 10 ⁻⁵	Combined with S.Lept. X 10 ⁻⁵		BABAR Prelim Search for in	iinary nvisible cha	armonium
$B^+ \rightarrow K^+ \nu \bar{\nu}$	+ 1.7+0.4 1.5 - 0.8-0.2	> 0.4 < 3.7	< 1.6	Channel	BF x 10 ⁻³	Limit : this meas. x 10 ⁻³	$B(c\bar{c} \to \nu\bar{\nu}) / B(c\bar{c} \to e^+ e^-)$
$B^0 \rightarrow K^0 \nu \bar{\nu}$	$^{+ 6.0+ 1.7}_{- 1.9-0.9}$	< 8.1	< 4.9	$J/\Psi \rightarrow \nu \bar{\nu}$	0.2 +2.7 + 0.5 -0.9 - 0.4	< 3.9	< 6.6 x 10 ⁻²
$B^+ \rightarrow K^{*+} \nu \bar{\nu}$	+ 6.2+ 1.7 3.3 - 3.6- 1.3	< 11.6	< 6.4	Ψ(2S) →νν <u>¯</u>	5.6 +7.4 + 1.6	< 15.5	< 2.0
$B^0 \rightarrow K^{*0} \nu \bar{\nu}$	+ 5.2+2.0 2.0 - 4.3 - 1.7	< 9.3	< 12		-4.6 - 1.4		
$B \rightarrow K \nu \bar{\nu}$	+ 1.4+0.3 1.4 - 0.9-0.2	> 0.2 < 3.2	< 1.7				
$B \rightarrow K^* \nu \bar{\nu}$	+ 3.8 + 1.2 2 7 - 29 - 10	< 7.9	< 7.6				17

Search for $B \rightarrow K^{(*)} \nu \bar{\nu}$ decay (3)

Search for $B \rightarrow \pi/\eta \,\ell^+\ell^-$ decay (1) New, preliminary

Search for new physics : $b \rightarrow d \ \ell^+ \ell^-$ similar to $b \rightarrow s \ \ell^+ \ell^-$ but Rate suppressed by $|V_{td}/V_{ts}|^2 \approx 0.04$ SM prediction for BF $\approx 10^{-8}$

- Only $B^+ \rightarrow \pi^+ \mu^+ \mu^-$ observed with LHCb
- Smallest upper limits from the B factories within an order of magnitude of the SM predictions.

In this analysis:

- Search for $B^+ \rightarrow \pi^+ \ell^+ \ell^-$, $B^0 \rightarrow \pi^0 \ell^+ \ell^-$ and $B^0 \rightarrow \eta \ell^+ \ell^-$ (first search) with $\ell^+ \ell^- = e^+ e^-$ or $\mu^+ \mu^-$
- η reconstructed into 3π or 2γ
- Lepton-flavor averages assume equal BF for e^+e^- and $\mu^+\mu^-$
- Isospin average assumes $BF(B^+ \rightarrow \pi^+ \ell^+ \ell^-) = 2 \times BF(B^0 \rightarrow \pi^0 \ell^+ \ell^-)$

Unbinned maximum likelihood fit to kinematic variables mES and ΔE to extract branching fractions.

Sandrine Emery-Schrenk La Thuile 2013

Search for $B \rightarrow \pi/\eta \,\ell^+\ell^-$ decay (3)

No significant signal found

BABAR Preliminary

Mode	ε	Yield	$\mathcal{B}(10^{-8})$	Upper Limit (10^{-8})	
$B^+ \to \pi^+ e^+ e^-$	0.199	$4.2^{+5.7}_{-4.6}$	$4.3^{+5.9}_{-4.7}\pm2.0$	12.5	
$B^0 \rightarrow \pi^0 e^+ e^-$	0.163	$1.0^{+3.2}_{-1.1}$	$1.2^{+5.4}_{-4.0}\pm0.2$	8.4	
$B^0 ightarrow \eta e^+ e^-$					
$B^0 \to \eta_{\gamma\gamma} e^+ e^-$	0.164	$-1.2^{+3.1}_{-2.4}$	$-4.0^{+10.0} \pm 0.6$	10.8 hen-ex/1210 2645	
$B^0 \rightarrow \eta_{3\pi} e^+ e^-$	0.115	$-0.5^{+1.2}_{-1.0}$	4.0 _{-8.0} ± 0.0		<u>(-</u>)
$B^+ \rightarrow \pi^+ \mu^+ \mu^-$	0.140	$-0.5^{+3.1}_{-2.3}$	$-0.6^{+4.4}_{-3.2}\pm0.9$	$5.5 = (2.4 \pm 0.6 \pm 0.2) \times 10$	-8
$B^0 \to \pi^0 \mu^+ \mu^-$	0.115	$-0.2^{+2.0}_{-0.7}$	$-1.0^{+5.0}_{-3.4}\pm0.6$	6.9	
$B^0 o \eta \mu^+ \mu^-$				But most of other	
$B^0 \to \eta_{\gamma\gamma} \mu^+ \mu^-$	0.102	$-0.4^{+1.7}_{-1.3}$	0.0+9.7 1.0.4	modes hard to stud	yc
$B^0 ightarrow \eta_{3\pi} \mu^+ \mu^-$	0.063	$-0.1\substack{+0.7\\-0.4}$	$-2.0_{-6.6} \pm 0.4$	at LHC	
$B \to \pi e^+ e^-$			$4.0^{+5.1}_{-4.2}\pm1.6$	11.0	
$B \rightarrow \pi \mu^+ \mu^-$			$-0.9^{+3.9}_{-3.0}\pm1.2$	5.0 Ling	
$B^+ \to \pi^+ \ell^+ \ell^-$			$2.5^{+3.9}_{-3.3}\pm1.2$	a So Sp 6.6	
$B^0 \to \pi^0 \ell^+ \ell^-$			$1.2^{+3.9}_{-3.3}\pm0.2$	2.3 If n fine	
$B^0 \to \eta \ell^+ \ell^-$			$-2.8^{+6.6}_{-5.2}\pm0.3$		
$B \to \pi \ell^+ \ell^-$			$2.5^{+3.3}_{-3.0} \pm 1.0$		

X-check : measure $BF(B^+ \rightarrow K^+ \ell^+ \ell^-)$ found consistent with current world averages.

Lowest upper limits to date on the $B^0 \rightarrow \pi^0 e^+e^-$, $B^0 \rightarrow \pi^0 \mu^+\mu^-$, and $B^0 \rightarrow \pi^0 \ell^+\ell^-$ branching fractions.

- Sensitive to additional amplitudes.
 - Charged Higgs (entering through the scalar amplitude).

Study of $B \rightarrow D^{(*)} \tau \nu$ decay (2)

PRL 109, 101802 (2012)

PRL: Combination of R(D^(*)) excludes 2HDM type II (@>99.8%)

New, preliminary : 2HDM type III model is constrained (but not excluded) using both $R(D^{(*)})$ and q^2 distributions.

Other more general charged Higgs models of New Physics contributions with nonzero spin also compatible with measurements ... Sandrine Emery-Schrenk La Thuile 2013

Conclusion

Time and CP violation measurements

First direct observation of Time Reversal Violation - PRL 109, 211801 (2012) In any system! Expected from SM but observed for the first time.

CP Violation in $B^0 \rightarrow D^{*+}D^{*-}$ decays - PRD 86, 112006 (2012) Results consistent with SM. BABAR global accuracy on S_{CP} and C_{CP} improved by ~20%

Search for CP Violation in $B^0\overline{B}^0$ mixing - **Preliminary**. Improvement of the average Y(4s) result on |q/p| for the B^0_d mixing.

Search for new physics in rare decays

Search for $B \rightarrow K^{(*)} \nu \overline{\nu}$ decay New, Preliminary. Search for $B \rightarrow \pi/\eta \ell^+ \ell^-$ decay New, Preliminary. No significant signal found – New upper limits and improvement of existing limits on BF.

Study of $B \rightarrow D^{(*)} \tau \nu$ decay **PRL 109, 101802 (2012) New, Preliminary** studies of q² distributions to test new physics models.

Direct observation of time reversal violation

EPR entanglement from Y(4S)	Semileptonic decay projects:		
$ i\rangle = \frac{1}{\sqrt{2}} \left[B^{0}(t_{1}) \overline{B}^{0}(t_{2}) - \overline{B}^{0}(t_{1}) B^{0}(t_{2}) \right]$ = $\frac{1}{\sqrt{2}} \left[B_{+}(t_{1}) B_{-}(t_{2}) - B_{-}(t_{1}) B_{+}(t_{2}) \right]$	$B^{0} \text{ with } l^{+}, \overline{B}^{0} \text{ with } l^{-}$ $J/\Psi K_{L} \text{ projects } CP \text{ even } B_{+} = \frac{1}{\sqrt{2}} [B^{0} + \overline{B}^{0}]$ $J/\Psi K_{S} \text{ projects } CP \text{ odd } B_{-} = \frac{1}{\sqrt{2}} [B^{0} - \overline{B}^{0}]$		
	VZ		

Final state (X, Y), one $B^0 or \overline{B}^0$, and one CP state $B_+ or B_-$, with decay time $t_X < t_Y$

Physical proces Reference (X,Y)	s / Reco Final state	Physical proc T transformed	ess / Reco Final state d (X,Y)
$B^0 \rightarrow B_+$	Γ, J/Ψ K _L	$B_+ \rightarrow B^0$	J/ Ψ K $_{\rm S}$, I $^+$
$B^0 \rightarrow B$	I⁻, J/Ψ K _s	$B \rightarrow B^0$	J/ Ψ K $_{L}$, I+
$\overline{B}{}^{0} \rightarrow B_{+}$	Ι+, J/Ψ K $_{\rm L}$	$B_+ ightarrow \overline{B}{}^0$	J/ΨК _s , ⊢
$\overline{B}^0 \to B$	Ι+, J/Ψ K _s	$B \rightarrow \overline{B}{}^0$	J/ΨK _L , ⊢

4 independent T comparisons (as 4 CP and 4 CPT comparisons) T implies comparison of :

- 1. Opposite ∆t sign.
- 2. Different reco states $(J/\Psi K_s vs. J/\Psi K_L)$.
- 3. Opposite tag states $(B^0 v s \overline{B}^0)$ in Emery-Schrenk La Thuile 2013

Time reversal violation Assumes $\Delta \Gamma_d = 0$ • Define $\Delta \tau = t(flavor) - t(CP)$ $\alpha = B^0 / \overline{B^0}$ Consider eight combinations (flavor x CP x sign of $\Delta \tau$) $\beta = K_L/K_S$ Does NOT assume CPT Fit each with EPR-motivated function $g_{\alpha,\beta}^{\pm}(\Delta\tau) \propto e^{-\Gamma|\Delta\tau|} \mathcal{H}(\pm\Delta\tau) \left[1 + S_{\alpha,\beta}^{\pm} \sin(\Delta m_{d} \Delta \tau) + C_{\alpha,\beta}^{\pm} \cos(\Delta m_{d} \Delta \tau)\right]$ Heavyside step function • $S^+_{\alpha\beta}$, $C^+_{\alpha\beta}$: fit parameters • T-Violation: $\Delta S_{T}^{\pm} = S_{\overline{B^{0}},K_{1}}^{\pm} - S_{\overline{B^{0}},K_{5}}^{\pm} \neq 0$ **CP-Violation:** $\Delta S_{CP}^{-} = S_{B^{\circ},K}^{\pm} - S_{B^{\circ},K}^{\mp} \neq 0$ • CPT-Violation: $\Delta S_{CPT}^{-} = S_{B^{\circ},K_{e}}^{\pm} - S_{\overline{B^{\circ}},K_{e}}^{\pm} \neq 0$ $= \pm \sin(2\beta)$ $= 2\sin(2\beta)$ Assuming CPT & CP fit results, expect :

Direct observation of time reversal violation

Illustrative : 4 independent T violating asymmetries Include experimental reconstruction effects.

Neglecting reconstruction effects : $A_T \approx \frac{1}{2} \left[\Delta S_T^{\pm} \sin(\Delta m |\Delta t|) + \Delta C_T^{\pm} \cos(\Delta m |\Delta t|) \right]$

Direct observation of time reversal violation

The T –invariance point is obtained applying these eight restrictions : $\Delta S_{T}^{\pm} = 0$ $\Delta C_{T}^{\pm} = 0$

$$\Delta S^{\pm}_{CP} = \Delta S^{\pm}_{CPT}$$
$$\Delta C^{\pm}_{CP} = \Delta C^{\pm}_{CPT}$$

Parameter	Result
$\Delta S_{\mathrm{T}}^{+} = S_{\ell^{-}X,J/\psi K_{L}^{0}}^{-} - S_{\ell^{+}X,c\overline{c}K_{g}^{0}}^{+}$	$-1.37 \pm 0.14 \pm 0.06$
$\Delta S_{\mathrm{T}}^{-} = S_{\ell^{-}X, J/\psi K_{L}^{0}}^{+} - S_{\ell^{+}X, c\overline{c}K_{S}^{0}}^{-}$	$1.17 \pm 0.18 \pm 0.11$
$\Delta C_{\rm T}^{+} = C_{\ell^{-}X, J/\psi K_{L}^{0}}^{-} - C_{\ell^{+}X, c\overline{c}K_{S}^{0}}^{+}$	$0.10 \pm 0.16 \pm 0.08$
$\Delta C_{\mathrm{T}}^{-} = C_{\ell^{-}X, J/\psi K_{L}^{0}}^{+} - C_{\ell^{+}X, c\overline{c}K_{S}^{0}}^{-}$	$0.04 \pm 0.16 \pm 0.08$
$\Delta S^+_{\rm CP} = S^+_{\ell^- X, c\overline{c}K^0_S} - S^+_{\ell^+ X, c\overline{c}K^0_S}$	$-1.30 \pm 0.10 \pm 0.07$
$\Delta S^{\rm CP} = S^{\ell^- X, c\overline{c}K^0_S} - S^{\ell^+ X, c\overline{c}K^0_S}$	$1.33 \pm 0.12 \pm 0.06$
$\Delta C_{\rm CP}^+ = C_{\ell^- X, c\overline{c}K_S^0}^+ - C_{\ell^+ X, c\overline{c}K_S^0}^+$	$0.07 \pm 0.09 \pm 0.03$
$\Delta C^{\rm CP} = C^{\ell^- X, c\overline{c}K^0_S} - C^{\ell^+ X, c\overline{c}K^0_S}$	$0.08 \pm 0.10 \pm 0.04$
$\Delta S^+_{\rm CPT} = S^{\ell^+ X, J/\psi K^0_L} - S^+_{\ell^+ X, c\overline{c}K^0_S}$	$0.16 \pm 0.20 \pm 0.09$
$\Delta S^{\rm CPT} = S^+_{\ell^+ X, J/\psi K^0_L} - S^{\ell^+ X, c\overline{c}K^0_S}$	$-0.03 \pm 0.13 \pm 0.06$
$\Delta C^+_{\rm CPT} = C^{\ell^+ X, J/\psi K^0_L} - C^+_{\ell^+ X, c\overline{c}K^0_L}$	$0.15 \pm 0.17 \pm 0.07$
$\Delta C^{\rm CPT} = C^+_{\ell^+ X, J/\psi K^0_L} - C^{\ell^+ X, c\overline{c}K^0_L}$	$0.03 \pm 0.14 \pm 0.08$
$S^+_{\ell^+ X, c\overline{c}K^0_S}$	$0.55 \pm 0.08 \pm 0.06$
$S^{\ell^+ X, c\overline{c}K^0_S}$	$-0.66 \pm 0.06 \pm 0.04$
$C^+_{\ell^+ X, c\overline{c} K^0_S}$	$0.11 \pm 0.06 \pm 0.05$
$C^{\ell^+X,c\overline{c}K^0_S}$	$-0.05 \pm 0.06 \pm 0.03$

Search for CP Violation in $B^0 \overline{B}{}^0$ Mixing using $B^0 \rightarrow D^* |_V$ Partial Reconstruction

$$\mathcal{F}_{signal}(\Delta t, s_t, s_m) = \frac{\Gamma}{2(1+r'^2)} e^{-\Gamma|\Delta t|} \left|\frac{p}{q}\right|^2 \left[\left(1+\left|\frac{q}{p}\right|^2 r'^2\right) \cosh(\Delta\Gamma\Delta t/2) - \left(1-\left|\frac{q}{p}\right|^2 r'^2\right) \cos(\Delta m_d \Delta t) + \left|\frac{q}{p}\right|(b+c) \sin(\Delta m_d \Delta t)\right]$$

$$egin{aligned} r' &= \left| \overline{\mathcal{A}}_{DCS} / \mathcal{A}_{CF}
ight| \ b &= 2r' \sin(2eta + \gamma) \cos{\delta'} \ c &= -2r' \cos(2eta + \gamma) \sin{\delta} \ \delta' &= & ext{Strong phase} \end{aligned}$$

r', b, c: parameters resulting from interference between Cabibbo-Favoured and Doubly Cabibbo-Suppressed decays on the tag side

Assumptions:

•**∆**Γ=0

•b, c are treated as effective parameters due to strong correlation with resolution function
→ Only |q/p| is measured

Search for $B \rightarrow K^{(*)} \nu \bar{\nu}$ decay (backup)

 $B \rightarrow K^{(*)} \nu \bar{\nu}$ sensitive to short distance Wilson coefficients $|C_{L,R}^{\nu}|$ for weak current ($|C_{R}^{\nu}|=0$ in SM).

Constraints from $B \rightarrow K \nu \bar{\nu}$ (striped) & $B \rightarrow K^* \nu \bar{\nu}$ (grey shaded), from this analysis (solid line) and semileptonic-tag analyses (dashed).

Consistent with SM

