First single-shot and non-intercepting longitudinal bunch diagnostics for comb-like beams by Electro-Optic Sampling

Riccardo Pompili Univ. Tor Vergata, Rome LNF-INFN, Frascati riccardo.pompili@Inf.infn.it

Electro-Optical Sampling

- PWFA: need to correlate incoming and outgoing beams from the plasma
 - non-intercepting & single-shot diagnostics for beams to be injected in **plasma**.
- Electro-Optical Sampling (EOS) to measure bunch longitudinal profile using nonlinear crystals (ZnTe, GaP)
- Benefits: single shot, non-intercepting, time resolution (~50 fs).
 Disadvantages: small signals (low SNR), complex layout, costs.

Electro-Optic Sampling

Experimental Apparatus

2-pulses COMB beam

Experimental Results

Electro-Optic Sampling

Experimental Apparatus

2-pulses COMB beam

Experimental Results

EOS Spatial Encoding Setup

- Laser crosses the crystal with an incident angle of $30^\circ \rightarrow$ one side of the laser pulse arrives earlier on the EO crystal than the other by a time difference Δt .
- · Coulomb field inducing birefringence is encoded in the spatial profile of laser pulse
- Benefits: simple, no high energy laser needed.
- Drawbacks: poor surface quality of EO crystals.

1st European Advanced Accelerator Concepts Workshop

SPARC_LAB Layout

Sampling Experimental

Electro-Optic

Apparatus

2-pulses COMB beam

Experimental Results

1st European Advanced Accelerator Concepts Workshop R. Pompili, LNF-INFN

> Electro-Optic Sampling

Experimental Apparatus

2-pulses COMB beam

Experimental Results

Laser-electrons synchronization

- EOS uses the SPARC_LAB ptc. laser
 - 800nm, 60fs (rms, **T.L.**), up to 500µJ pulse energy, 10Hz.
- Transfer Line of 34m installed.
- Benefits

_

- Simplified EOS layout setup
- Independent laser system
- High energy available
- Self-synchronized with e-beam
 - 1 laser pulse per 1 e- bunch
 - Intensified Fast Gated CCD

Synchronization laser-electrons

- Laser Time Arrival Monitor: 30ps risetime photodiode.

-	Item	Symbol	Conditi
	Spectral Response Range	λ	$V_b = 7$
	Peak Response Wavelength	λρ	$V_b = 7$
	Effective Sensitive Area	A	Para da Kar
G4176-03	Chip Size		

 Bunch Time Arrival Monitor: 4GHz Cavity-BPM.

1st European Advanced Accelerator Concepts Workshop

Value

450 to 870

850

 0.2×0.2 1×1

Unit

nm

nm mm²

mm²

EOS optical setup

6/14

1st European Advanced Accelerator Concepts Workshop

EOS diagnostics chamber

EAAC Workshop La Biodola, Isola d'Elba 04/06/13

> Electro-Optic Sampling

Experimental Apparatus

2-pulses COMB beam

Experimental Results

7/14

1st European Advanced Accelerator Concepts Workshop R. Po

• Bunch lengths:

(64±8) fs, (52±8) fs (rms)

1st European Advanced Accelerator Concepts Workshop

R. Pompili, LNF-INFN

electron gun

111

112

Michelson Interferometer results

EAAC Workshop La Biodola, Isola d'Elba 04/06/13

1st European Advanced Accelerator Concepts Workshop R. Po

10/14

1st European Advanced Accelerator Concepts Workshop

> Electro-Optic Sampling

Experimental Apparatus

2-pulses COMB beam

Experimental Results

EOS Current Parameters

- Ti:Sa SPARC_LAB photocathode laser
 - Pulse duration:
 - Energy:
 - Spot diameter:
- CCD resolution:

130 fs (rms)

- 200 nJ
- 5 mm (~10 ps time window)

1 pixel ≈ 17 fs

- Crystals 10x10 mm² (provided by IngCrys Ltd.)
 - ZnTe (400µm), GaP (500µm)
 - 140 fs (ZnTe), 250 fs (GaP) rms (THz laser velocity mismatch)

• Better resolution limit σ_{lim} with thinner crystals (but lower signals!)

1st European Advanced Accelerator Concepts Workshop R. Po

R. Pompili, LNF-INFN

11/14

> Electro-Optic Sampling

> Experimental Apparatus

2-pulses COMB beam

Experimental Results

Very preliminary EOS results

1st European Advanced Accelerator Concepts Workshop

13/14

1st European Advanced Accelerator Concepts Workshop R

> Electro-Optic Sampling

Experimental Apparatus

2-pulses COMB beam

Experimental Results

Conclusions & Outlooks

- EOS Monitor is a useful diagnostics to measure lengths and spacing of single and multi-bunch electron beams.
- It can be used as a time-stamp and/or to evaluate the RF time jitter.
- Bunch spacing is well reproduced.
- * As expected the bunch lengths were too short to be correctly measured \rightarrow improvements needed for sub-100fs bunches:
 - Shorter laser pulse → make a pulse compressor to achieve laser TF pulse length of 60 fs (rms).
 - Use thinner crystals → with 100um thicknesses we have ~110 fs (ZnTe) and ~50 fs (GaP) rms resolutions.
 - > Drawback: very low signals!
 - Exploring different EO crystals...

Thank you for your attention!

1st European Advanced Accelerator Concepts Workshop R. Pompili, LNF-INFN