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Types of y-ray emitting binaries

Gamma-ray binaries: pulsar wind colliding with stellar wind from a high-mass
star, powered by pulsar rotation;

Microquasars: powered by accretion onto a black hole or neutron star, y-ray
emission of either the accretion flow or a jet;

y-ray emitting pulsars in binaries, in particular recycled ms pulsars spun up by
accretion, but no longer accreting (powered by pulsar rotation);

— As above, but pulsar wind ablating the low-mass companion: black widows,
redbacks; some y-ray emission from pulsar wind interacting with the
companion (as in gamma-ray binaries);

Transitional sources switching between pulsar and accretion; strong y-ray
emission during accretion stages, possibly from a jet;

Colliding-wind binaries: collision of stellar winds from two massive stars;

Novae: thermonuclear runaway on a white dwarf, y-ray emission from the ejccta
(covered in the talk by Margarita).
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A past controversy on the nature of gamma-ray binaries:
Microquasars vs. pulsar/stellar wind collisions
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Alternative models for very energetic y-ray binaries. (Left) Microquasarsare  lar photons to the range of very energetic y-rays. (Right) Pulsar winds are pow-
powered by compact objects (neutron stars or stellar-mass black holes) via mass  ered by the rotation of neutron stars; the wind flows away to large distances in a
accretion from a companion star. This produces collimated jets that, if aligned  comet-shaped tail. Interaction of this wind with the companion-star outflow may

with our line of sight, appear as microblazars. The jets boost the energy of stel-  produce very energetic y-rays.
Mirabel 2006

Currently, most people agree on the pulsar+stellar wind collision model.



The pulsar + massive star model;
a pulsar wind nebula 1n a binary
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A comparison of three
gamma-ray binaries:

Their spectra look very similar to
each other: peak in the MeV-GeV
range, and PSR B1259-63 is a
48-ms radio pulsar with a Be
companion (3.4 yr orbit), in which
the wind of the pulsar interacts
with the wind of the Be star
around periastron, giving rise to
the broad-band emission. The
radio pulsation disappear at the
periastron passage.

o et w® " Dubus 2013
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Some outstanding 1ssues for gamma-ray binaries
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e Complex phenomenology requiring complex, multi-component models.
e Different electron populations for GeVs and TeVs; location?

e The peak in GeVs in PSR B1259-63 a month after the periastron
passage.

e MeV spectra known only from COMPTEL; e.g., a mismatch with the
Fermi spectrum in LS 5039.

e The virtually unknown MeV range: to be studied by e-Astrogam.



Microquasars
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The accretion flow can emit
soft y-rays, and the jet, high and
very high energy y-rays. So far,
unambiguous high-energy y-ray
detections of only Cyg X-3 and
Cyg X-1 (high-mass donors).



Cyg X-1, a black hole+OB supergiant binary
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High-energy tails extending to several MeVs in both the hard and soft states.

High-energy y-rays in the hard state only (Malyshev+2013, Zanin+2016, AAZ+2016);
emitted by the jet seen in the radio to mm.

AAZ+2016 found soft spectral components at <100 MeV, with the flux in the soft state
being higher than that in the hard state at a 5o significance. They match well the
extrapolations of the accretion models. To be tested by e-Astrogam.



The jet contribution to the hard-state broad-band
spectrum 1n the hard state of Cyg X-1

The shown broad-band spectrum is reproduced by a model with electron
acceleration, cooling, electron transport, all radiative processes. Compton
scattering of stellar blackbody and SSC dominate the y-ray emission.
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Very strong 0.2-2 MeV polarization claimed from
INTEGRAL Compton-mode data in the hard state
of Cyg X-1

e Laurent+ 2011 (Science) and Rodriguez+ 2015 (ApJ) claim
linear polarization of ~70% above 400 keV.

e Ifitisreal, it 1s likely to be synchrotron jet emission.

e A revision of the results of Laurent+ 2011 given by Laurent
(2016, INTEGRAL conference presentation), no publication as
yet. In particular, the strong high-energy tails claimed before
appear to be spurious.



Polarization at the level of 67+30% 1n the hard state in the
0.4-2 MeV band of Cyg X-1- Laurent+ (2011), Science.
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but note that only the 0°—180° bins are
independent. It appears that the
statistical significance is not very strong.



Strong polarization in the hard state at £ >
230 keV claimed by Jourdain+ 2012

From the INTEGRAL SPI data.

Average over 230-850 keV: linear polarization
fraction 76£15%, position angle 42+3°.

This polarization level agreed with
Laurent+2011 but it is higher than that of
Laurent 2016.

No polarization at £ < 230 keV.

The 370-850 keV data best-fitted with the
polarization fraction >100%.

Ay? = 15 at = 41500. PF>100% is unphysical,
and Ay? at PF = 70% is = 0.

Is it real?

This 1ssue was to be tested by the SGR detector
onboard Hitomi.

Should be studied by e-Astrogam.
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A jet model reproducing the MeV tail.

AAZ+ 2014
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The acceleration index p = 1.5 (very hard), B, = 5x10° G at the jet base of z, = 24()Rg,

extreme (B%/8m)/u

cas ~ 10°. Given the substantial variability of both the accretion flow

and the jet, strong fine-tuning is required. e-Astrogam observations crucial.



Cyg X-3: y-ray detection by Fermi in the soft state
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A model for the modulated GeV emission

Compton anisotropy:

The relativistic electrons in the jet Compton
upscatter stellar photons to GeV energies.

Highest scattering probability for electrons
moving towards the stellar photons.

Relativistic electrons emit along their direction of
motion.

Thus, most of the all emission is toward the star.
The maximum of the observed emission is when
the jet 1s behind the star.

Fits of the model determine the y-ray source
location, ~the binary separation.

Wolf-Rayet
star
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A spectral model of the broad-band spectrum:
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The MeV-range spectrum: transition from the spectrum dominated by
accretion to that jet-dominated; to be investigated by e-Astrogam



y-rays from SS 4337

Fermi LAT;
Bordas+2015

Declination

290.0 289.5 289.0 288.5 288.0 287.5 287.0 286.5 286.0 285.5

Right ascension

* High-energy y-rays are emitted from the direction of the
microquasar SS 433, but it 1s difficult to distinguish them
from those from the SNR W49,



Strong e* pair annihilation spectra claimed
from V404 Cyg
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Siebert, Diehl+ 2016, Nature

No detailed theoretical
model as yet.

e-Astrogam will measure e*
pair annihilation features in
microquasars in much more
detail.



Luminous BH LMXBs, e.g., GRS 1915+105

e No high-energy cutoff
seen 1n observations by
the CGRO OSSE; the
spectrum at higher
energies to be measured
by e-Astrogam.
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Transitional ms pulsars during accretion states

A few ms pulsars have recently been discovered to change between rotation-

powered pulsar states and accretion-powered X-ray pulsar states (e.g.,
Archibald+2009; Papitto+2013; De Martino+2010,2013,2015; Bassa+2014).

During their rotation-powered states, they show the usual pulsed
magnetospheric emission from radio to high-energy y-rays.

Two cases of transitions into sub-luminous states with accretion discs, with
Ly ~ 10°3 erg/s: PSR J1023+0038 (Stappers+2014) and PSR J1227-4853 (De
Martino+2010,2013).

Unexpectedly, these sources during the weak accretion states show large
increases of the high-energy y-ray luminosity, up to a factor of several.

Initially, the enhanced y-ray emission was attributed to the pulsar wind
interacting with the accretion disc.

However, a strong radio emission with the spectral index of @ = 0 was then
found in PSR J1023+4+0038 (Deller+2015). Such emission 1s characteristic to
radio jets 1n accreting systems.

This makes likely that the y-ray emission is from the jet, thus being the first
such case in an LMXB.



The ms pulsar transitions 1n y-rays
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Is this a manifestation of the low-luminosity accretion states being dominated
by jet emission?



The broad-band spectrum of PSR J1023+0038
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e-Astrogam will be able to study the transitionary region from X-rays to the
MeV range, and unambiguously determine the nature of the y-rays.



y-ray emission of low-mass vs.
high-mass X-ray binaries

Cyg X-1 and Cyg X-3 are high-mass X-ray binaries, and their
y-ray emission appears to be dominated by Compton up-
scattering of stellar blackbody by relativistic electrons.

Also, interaction of the stellar wind with the jet can enhance the
y-ray emission (Yoon, AAZ, Heinz 2016).

.M XBs lack these factors.

Still, relativistic electrons in the jets of LM XBs will emit SSC
and up-scattering of disc photons.

Low accretion-rate states may be jet-dominated and can have
substantial y-ray emission (see PSR J1023+0038).

ASTROGAM will, most likely, detect many LMXBs 1n y-rays.



Colliding-wind high-mass binaries

Only one colliding-wind binary has been detected in high-energy y-rays (by
AGILE and Fermi), Eta Car, a binary with a ~100M, LBV and an O or WR
star in a 5.5 year orbit. The y-ray luminosity = 0.2% of the available wind
kinetic power.

Why so few? Why 1s acceleration so inefficient?

e-Astrogam will be able to detect more sources in the range <100 MeV.
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Final remarks

Intersection of the accretion and jet components in the MeV region

in microquasars. e-ASTROGAM will disentangle those contributions
in particular in Cyg X-1, Cyg X-3 and PSR J1023+0038, already
detected in y-rays.

It will resolve the 1ssue of the origin of MeV tails, either from non-
thermal Comptonization or jet synchrotron emission.

It will measure the MeV polarization in Cyg X-1.

It will measure orbital modulation 1n y-rays in both microquasars
and gamma-ray binaries.

It will likely detect many LM XBs and collidign-wind binaries in -
rays.



