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Outline

• Crystal fiber R&D: recent developments 

– LuAG:Ce: attenuation length, radiation hardness, co-doping 

– YAG:Ce crystals: attenuation length, radiation hardness 

– The need for radiation resistance and fast response 

• Crystal fiber calorimeter prototypes for high-energy physics 

– the beam test at FNAL 

– the beam tests at CERN
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Crystal fiber R&D: 
recent developments



LuAG fibers grown with μ-PD technique

• A lot of effort was spent to improve             
the quality of the fibers 

– fiber growth parameters have been widely 
studied to improve the light attenuation and 
the homogeneity of the light output
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good optical quality and 
reproducibility of fibers 
can now be achieved



LuAG fibers grown with μ-PD technique

• A lot of effort was spent to improve             
the quality of the fibers 

– fiber growth parameters have been widely 
studied to improve the light attenuation and 
the homogeneity of the light output
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Ø ~ 2 mm 
 L ~ 22 cm

> 80 fibers produced: 
• ~ 60 LuAG:Ce 
• ~ 30 LuAG undp.

E. Auffray et al., NSS 2009 p2245

ρ = 6.73 g/cm3 
X0 = 1.41 cm 
λI = 23.3 cm

Lu3Al5O12

Ø = 300 μm - 3 mm

E. Auffray et al., TNS 2010 57 (3) p1454

large production achieved 
• originally produced by University 

Lyon (ILM) 
• technology transfer to commercial 

company (Fibercryst)



YAG fibers grown with Czochralski method

• Square, 1x1x140 mm3 crystal fibers cut and polished from standard 
Czochralski ingots by Crytur 

• Promising alternative: 

– very good optical quality from the central part of the ingot 

– expected to be rad-hard (more in slide 12) 
– production costs competitive with μ-PD
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The challenges for HL-HLC: 
fast response and radiation resistance
• The extension of the LHC physics program until 2035 has recently been 

approved 

– proton interaction rate up to 7 times larger than in 2012
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…will require major upgrades for the 
CMS forward calorimeters (~2022)

• The operating regime of the new  
High-Luminosity HLC…
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• The operating regime of the new  
High-Luminosity HLC…

…will require major upgrades for the 
CMS forward calorimeters (~2022)

high radiation levels: 
• ionizing radiation dose 

up to ~1 MGy 
• charged hadron fluences 

up to 2⋅1014cm-2

Radiation hardness

ECAL+HCAL 
endcaps



The challenges for HL-HLC: 
fast response and radiation resistance
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• The operating regime of the new  
High-Luminosity HLC…

…will require major upgrades for the 
CMS forward calorimeters (~2022)

event with ~80 reconstructed 
vertices (2012 data)

High pile-up

• fast time response                
to resolve different vertices 

• i.e. scintillator decay time        
≲ 25 ns



Promising radiation resistance in LuAG

• LuAG bulk material irradiated with gamma (1 kGy and 100 kGy)                    
and protons (3.5⋅1013 protons/cm2)  

– 0.8x0.8x4.2 cm3 samples 

• Transparency loss observed to saturate after 1 kGy
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Very good radiation resistance of YAG

• Bulk material and fibers from Crytur company measured in lab before and 
after irradiation with gamma rays 

• Transparency loss observed to saturate after 1 kGy
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fiber - proton irr.
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• Different ways to improve crystal response time investigated: 

– the usage of Praseodymium as dopant (one fast component ~ 22 ns) 

– the usage of co-dopants (Ca2+, Mg2+) that quench the slow component of LuAG:Ce 
see e.g.  

• Samples studied in the lab:

LuAG:Pr or :Ce co-doping 
to improve response time
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Nikl M. et al., Defect Engineering in Ce-Doped Aluminum Garnet Single Crystal Scintillators

http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5402064


Crystal fiber calorimeter prototypes 
for high-energy physics



A Crystal Fiber Calorimeter prototype

• This CFCal prototype was assembled and tested with an electron beam at 
FNAL (March and August 2014)
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• 56 scintillating Ce-doped fibers 
(green) 

• 8 Cherenkov undoped fibers (clear)
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Position reconstruction

• Position is well reconstructed for all fibers
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x

• fit energy profiles vs 
beam x/y coordinate 
using MC template

data 
MC



Position reconstruction

• Position is well reconstructed for all fibers
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Particle identification

• Granularity provide a powerful tool for e/π separation
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Electrons 
large energy deposits 
with ~30 fibers on

Pions 
small energy deposits 
with < 10 fibers on (mip)



Particle identification

• Granularity provide a powerful tool for e/π separation
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Efficient electron id 
with a simple cut, the electron 
fraction expected from beam 
parameters is matched



• Electron energy from 2 to 16 GeV  

• Clear observation of the electromagnetic 
shower profile 

• Shower maximum shifts proportionally to 
ln(Ebeam)

Longitudinal shower profile
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Energy reconstruction
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Shooting electrons ⊥ 
to fibers 
• beam spot selection to 

maximize fS (15×50 mm2) 
• nice energy peaks 

observed 
• non-linearity at 16 GeV 

expected (shower leakage)



Energy reconstruction
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Shooting electrons ⊥ 
to fibers: 
• beam spot selection to 

maximize fS (15×50 mm2) 
• nice energy peaks 

observed 
• non-linearity at 16 GeV 

expected (shower leakage)

Energy resolution: 
• roughly constant @ ~20% 

in 2-16 GeV range 
• dominated by  

– shower leakage 
– fiber attenuation length 
– limited precision of inter-

calibration



Energy reconstruction
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Shooting electrons ⊥ 
to fibers 
• beam spot selection to 

maximize fS (15×50 mm2) 
• nice energy peaks 

observed 
• non-linearity at 16 GeV 

expected (shower leakage)

Energy resolution in a 
full-size fiber detector: 
• estimated by means of MC 

simulation 
• similar fS of the tested 

prototype 

x

y
z

16 mm

fiber spacing: 4 mm 
fiber radius: 1 mm 
fiber length: 220 mm



Other fiber calorimeter prototypes
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pointing fibers in a SPAghetti 
CALorimeter configuration (ECAL up.)

– tested  beam at CERN scheduled          
for Sep. 2015 

– W-Cu absorber / YAG fibers 

– could be interesting for CMS forward 
ECAL upgrade

transverse fiber in Al-tile configuration 
(HCAL upgrade)

– tested on beam at CERN on Oct. 2014 

– Al absorber / LuAG:Ce-LuAG:Pr-YAG 
fibers 

– being considered for CMS forward 
HCAL upgrade



Conclusions

• A lot of improvements have been achieved in the quality of the growth of 
crystal fibers 

– historically, experience gained with LuAG grown with μ-PD technique 

– new interesting samples studied (e.g. YAG crystals) seem promising 

• Large production of fibers achieved as well 

– ~80 fibers tested on beam at FNAL and CERN 

– first physics results obtained 

• Crucial for application for future upgrades of LHC experiments is the fiber 
radiation resistance and response time 
– intensive R&D is in progress
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