ECLOUD'12

Novel Types of Anti-e Cloud Surfaces

<u>I. Montero¹</u>, V. Nistor², L.Aguilera¹, L.Galán², D. Raboso³, L.A. González², M.E. Dávila¹, P. Costa Pinto⁴, M.Taborelli⁴ and F.Caspers⁴

¹ICMM-CSIC ²UAM, ³ESA, ⁴CERN

Outline

- Main goals
- Basic Objectives and Concepts
- Critical Experimental Activities
- Anti-ecloud-Multipactor Coatings: SEY Research
- Summary and Conclusions

Main goals

2. The multipactor effect in space-related high-power RF hardware

Development of coatings with low secondary electron emission yield (SEY)

3

δ

Basic Objectives and Concepts

MAIN OBJECTIVES:

Very low SEYby surface material of low SEYby surface roughnessof high aspect ratio and density

Very low RF surface resistance

by optimization of depth

of surface roughness

Very slow aging in air

by stable surface material

Basic Objectives and Concepts

MAIN OBJECTIVES:

Very low SEY	like Au / roughAg σ _{max} < 1.5 E ₁ > 200 eV	
Very low RF surface resistance	close to Ag R _s < 3x Rsurf(Ag)	
Very slow aging in air	Stability one year	

Critical experimental activities MAIN CONCEPTS: Multilayer coating **Multilayer** coating **Iow-SEY** layer roughness layer conductive layer

MAIN CONCEPTS: Multilayer coating

Multilayer coating		Material	Thickness
	low-SEY layer	Au, Rh, Ir, TiN, BC,	5 – 50 nm
	roughness layer	Ag, Cu, Au	50 – 1000 nm
	conductive	Rh, TiN,,	50 – 500 nm
	layer	Ag, Cu	5 – 20 µm

SEY suppression increases with roughness shape (aspect ratio, density, profile) RF surface resistance increases with roughness size

MAIN CONCEPTS: Multilayer coating

Multilayer coa	ating	Material	Thickness
	low-SEY layer	Au, Rh, Ir, TiN, BC,	5 – 50 nm
	roughness layer conductive	Ag, Cu, Au Rh, TiN,,	50 – 1000 nm 50 – 500 nm
	layer	Ag, Cu	5 – 20 µm

SEY and Roughness to be optimized

Innovation Triangle Initiative Optimization of Surface Roughness of Anti-Multipactor Coatings for Low Insertion Losses and Secondary Emission Suppression for High Power RF Components in Satellite Systems

At sufficient high ω, the induced Is are confined by the skin effect to a surface region of poor σbecause of surface roughness

A Layered Model for RF Surface Resistance Calculation

A Layered Model for RF Surface Resistance Calculation

Using this function with three fitting parameters it is possible to fit the results of Filopovic or Matsushima

M V Lukic, D S Filipovic:; IEEE, 55, 518-525 (2007) A. Matsushima and K. Nakata: Elect. Commun. Jpn. 89 (1) 1 (2006).

Anti-ecloud Coatings Anti-Multipactor Coatings Deposition Methods

Gas (UHV) Physical Vapor Deposition

Evaporation

Ion implantation

Sputtering

Liquid

Chemical Bath Deposition

Chemical Etching

Anodization

Solid

Particle Deposition

UHV preparation chamber with RF ion gun for deposition of anti-multipactor coatings

Selected materials

- Silver
- Gold
- NEG
- Graphene like coatings
- Magnetic and dielectric/metal composites: particulated surfaces

Selected materials

SEY Characteristics of Mo-Masked, Ion-Textured Silver

Method for producing

- 1. uniform,
- 2. highly textured surface on high-conductivity Ag

SEY Characteristics of Mo-Masked, Ion-Textured Silver

Method for producing

- 1. uniform,
- 2. highly textured surface on high-conductivity Ag

SEM of Ag treated coating

mag | WD | HV | spot | det | Landing E | x: 6.2038 mm 12 000 x | 7.0 mm | 5.00 kV | 3.0 | vCD | 4.50 keV | y: -6.2204 mm

Surface roughness depends on

- 1. **Ion density**
- 2. lon energy
- 3. Time

SEY of Ag treated coating

SEY of Ag plating after treatment and exposure to the air. The purpose was to develop a basically Ag surface having very low-SEY characteristics.

CBD Chemical Bath Deposition Method Growing rough Ag coating

With and without Efield electrodes Electrical Contact HEATER

Preparation conditions Growth Temperature 50°C TEA AgNO₃ SnCl_x

Selected materials

Nanometric Au layer to prevent aging process to decrease SEY

Au coated CuO nanowires

SEY experimental measurements Au coated CuO nanowires

Selected materials

NEG Non-Evaporable Getter

Substrate: Rough Al

Correlation between SEY and Ra

Aluminium etched, HCI

Isabel Montero, ICMM-CSIC

profilometry measurements

Anti-Multipactor Coatings EDC curves for Al

Isabel Montero, ICIVIIVI-CSIC

Anti-ecloud Coatings NEG coated rough Al

AFM image NEG/flat Al

SEY of Rough NEG

Selected materials

Graphene like coatings

Introduction: a-C coated rough Al

Graphite and Graphene Oxide (GO)

The results reveal that the GO sheets are rough and the structure is predominantly amorphous due to distortions from the high fraction of sp³ C–O bonds.

SEY of graphene oxide

SEY of graphene oxide

Selected materials

Magnetic particulated
surfaces: ferrites

Critical experimental activities SEY OF MAGNETIC PARTICULATED SURFACES: ferrites

Reexamining the effects of magnetized surfaces on the SEY properties

the surface coating including a multitude of particles sized Isabel Montero, ICMM-CSIC

1.0 0,8 0,6 ЯŪ 0,4 È 0,2 Ferrita part- As coatis o ăbb Ferrita particulada Primara Becken Brenas (eV) 0,0 400 200 600 800 1000 Primary Electron Energy (eV)

Selected materials

Composites: dielectric/metal

New Insights into metal/dielectric particulated surfaces and their SEY properties

New Insights into metal/dielectric particulated surfaces and their SEY properties

Anti-eCloud coatings exposed to the air.

Summary and Conclusions Future work

Summary and Conclusions

This work is directed to providing surfaces having extremely low secondary electron emissions.

The molybdenum-masked, ion-textured silver surface will be a promising material for inhibiting multipactor.

Extremely reduction of SEY is observed in different particulated metal/dielectric systems.

As far as the achievement of low SEY coatings should rely heavily on surface morphologies with roughness of high aspect ratio, insertion losses due to surface resistance become a crucial issue.

It is necessary the optimization of surface roughness of anti-multipactor coatings for low insertion losses and secondary emission suppression for high power RF components in satellite systems

Thank you for your attention