

Low-energy kaon-nucleon/nuclei interactions studies at $DA\Phi NE$

Johann Zmeskal, SMI - Vienna

What next LNF: Perspectives of fundamental physics at the Frascati Laboratory

INFN - Laboratori Nazionali di Frascati November 10-11, 2014

LNF Nov. 10, 2014

$DA\Phi NE - study of low-energy QCD$

- operates at the centre-of-mass energy of the Φ meson mass m = 1019.413 ± .008 MeV width Γ = 4.43 ± .06 MeV
- Φ produced via e⁺e⁻ collision with $\sigma(e^+e^- \rightarrow \Phi) \sim 5 \ \mu b$

 e^+

 e^+

 e^+

 e^+

e+

e+

 e^+

 e^+

→ integrated luminosity per month: ~ 150 pb⁻¹ → monochromatic kaon beam (127 MeV/c)

e

e

e-

e

e

e

e

LNF Nov. 10, 2014

Low-energy QCD with strangeness – available machines

- DAONE @ LNF (unique in the world) SIDDHARTA, FINUDA, AMADEUS/KLOE
- GSI Helmholtzzentrum, Germany FOPI, HADES
- > J-PARC, Japan
- ➢ Jlab, USA
- LEPS/SPring-8, Japan
- > CERN
- FAIR, Germany PANDA, FLAIR

Kaonic atoms K⁻d, K⁻p K⁻³He, K⁻⁴He

K⁻d at DAΦNE - SIDDHARTA-2

Target cooling: 1 Leybold – 16 W @ 20 K Liquid hydrogen cooling lines, new target cell

SDD cooling: 4 CryoTiger – 60 W @ 120 K Liquid argon cooling lines: SDD cooling to 100 – 120 K

SDDs with charge particle veto

SDDs - new development

JFET integrated on the SDD

lowest total anode capacitance

limited by JFET performances

sophisticated SDD+JFET technology

EU-FP6 HadronPhysics

external CUBE preamplifier (**MOSFET input transistor**) larger total anode capacitance better FET performances

standard SDD technology

$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$ radiation entrance window

Anode

n Si

Entrance window

Ring #1

n-JFET Metal

Strip

Clear

last Ring

path of electrons

144 cm²

ready

to go

LNF Nov. 10, 2014

Development of new SDDs at FBK

Monolithic array of 3x3 SDDs

Kaonic deuterium X-ray spectrum

SIDDHARTA-2 with 246 cm² new SDDs from FBK

S/B= 10:3 = sum(K_x) / sum(bg in FWHM of signal) precision: σ (shift) ~ 10 eV, σ (width) ~ 21 eV

Kaonic atoms K⁻d, K⁻p K^{- 3}He, K^{- 4}He

Kaonic helium results - SIDDHARTA

with new SDDs + CZT measurement of the 1s state
 with cryogenic detector (high resolution) 2p state

LNF Nov. 10, 2014

16 Sept, 2014 EXA14 @ Vienna

High-resolution hadronic-atom x-ray spectroscopy with cryogenic detectors

Shinji OKADA (RIKEN)

The HEATES collaboration
- High-resolution Exotic Atom x-ray spectroscopy with TES microcalorimeter -

S. Okada¹, D.A. Bennett², C. Curceanu³, W.B. Doriese², J.W. Fowler², T. Hashimoto¹, R.S. Hayano⁴, M. Iliescu³, S. Ishimoto⁵, K. Itahashi¹, M. Iwasaki¹, J. Marton⁶, G.C. O'Neil², H. Outa¹, M. Sato¹, D.R. Schmidt², D.S. Swetz², H. Tatsuno^{2,6}, J.N. Ullom², E. Widmann⁶, S. Yamada⁷, J. Zmeskal⁶

RIKEN¹, NIST², INFN-LNF³, Univ. of Tokyo⁴, KEK⁶, Stefan Meyer Institut⁶, Tokyo Metropolitan Univ.⁷

two orders of magnitude improved resolution compared with the conventional semiconductor detector

SIDDHARTA-2 for kaonic helium 1s

K⁻d setup +

CZT

CZT-based detector development at IMEM-CNR

Andrea Zappettini IMEM-CNR

Advanced studies in the low-energy QCD in the strangeness sector and possible implications in astrophysics. *Dedicated to the memory of Paul Kienle* FRASCATI, 20-06-2013

K⁻d setup +

for 400 pb⁻¹ ~ 500 He-K α for an assumed Yield ~10⁻⁴

CZT

Kaon scattering

R&D – advanced setup

active target TPC with GEM technology, with 6000 pads
 ➢ R&D work within EU-FP7 HadronPhysics3

TPC prototype for PANDA

²²Ne beam on Al target

"active" TPC-GEM test setup at LNF

Tests at PSI

M.Poli Lener

Low-energy kaon nucleon interaction studies

LNF Nov. 10, 2014

First studies of the KLOE data have shown the excellent capability of the KLOE detector to perform AMADEUS like physics

Experimental programme of AMADEUS

Studies of the low-energy charged kaons interactions with nuclear matter with *gaseous targets* (p, d, ³He, ⁴He) in order to obtain unique quality information about:

- A(1405)
- Low-energy charged kaon cross sections for momentum lower than 100 MeV/c (missing today)
- Interaction of K⁻ with one and two nucleons
- Kaon nuclear clusters

Kaon nucleon interactions

"pre" AMADEUS status

- Analyses of the 2002 2005 KLOE data
- •Analyses of the dedicated 2012 data with pure carbon target
 - $-\Lambda p$ from 1NA or 2NA
 - $-\Lambda d$ and Λt channels

$$-\Lambda(1405) \rightarrow \Sigma^0 \pi^0$$

$$- \Lambda(1405) \rightarrow \Sigma^{+} \pi^{-} (\Sigma^{-} \pi^{+})$$

 $-\Sigma N \rightarrow \Lambda N$

Pure carbon target inserted end of August 2012

AMADEUS @ KLOE

LNF Nov. 10, 2014

KLOE electromagnetic calorimeter

density ~ 5.0 g/cm³ total length of fibres ~ 15000 km read out by ~ 5000 mesh PM

Neutron detection efficiency

LNF Nov. 10, 2014

AMADEUS - cryogenic target

AMADEUS - cryogenic target

Gaseous/liquid targets: H2 - D2 - 3He - 4He

vacuum chamber

> cryogenic target cell

KLOE - CDC

CONCLUSIONS

DA Φ **NE** e⁺e⁻ collider \rightarrow worldwide unique machine

- monochromatic kaons 127 MeV/c;
- $L^{int} = 150 \text{ pb}^{-1}/\text{month}$
 - ideal suited for

kaonic atom studies low-energy kaon scattering low-energy kaon-nucleon interaction

Kaonic atoms / nuclei

- setup for K⁻d ready,
- upgrade with new SDDs under development
- TES detector successfully tested at PSI (S. Okada)
- CZT prototype tests at LNF and SMI
- cryogenic target system ready to be built
- R&D work on active TPC within EU-HP3

strong international collaboration