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FIG. 35 The light hadron spectrum of QCD. Horizontal
lines and bands are the experimental values with their decay
widths. The lattice results are shown by solid circles. Vertical
error bars represent the combined statistical and systematic
error estimates. π, K, and Ξ masses input quantities.

The idea is to link, via the analytic properties, the
perturbative domain of QCD, where calculations can be
done exactly, and the non-perturbative domain, which
can be described in terms of a few basic constants. These
can be adjusted forming a few physical quantities, which
can be used to calculate other quantities.

i. Lattice QCD Here, QCD is reformulated as a field the-
ory in a discretized phase-space and solved using very
astute and powerful techniques which require, however,
expensive computing means. In the domain of hadron
spectroscopy, the best-known applications of lattice QCD
are those dealing with glueballs and hybrid mesons, and
also scalar mesons, but recently the physics of baryons
has also been studied. Figure 35 shows the remark-
able achievements of lattice QCD. Pion masses down to
190MeV were used to extrapolate to the physical point
and lattice sizes of up to 6 fm (Dürr et al., 2008).
Lattice techniques have also been applied to single-

charm baryons (Lewis et al., 2001) and even to double-
charm baryons (Brambilla et al., 2004; Flynn et al.,
2003).

C. Phenomenology of ground-state baryons

1. Missing states

Almost all ground-state baryons containing light or
strange quarks and at most one heavy quark are now
identified. Still missing are the isospin partners Σ0

b and
Ξ0
b and the spin excitations (S = 3/2) of the recently

discovered Ξb and Ωb.
The existence of Ξ+

cc(3519) is uncertain. Its predicted
mass (Fleck and Richard, 1989; Körner et al., 1994) is
about 100MeV larger and recent calculations give even
larger mass values. As compared to a naive equal-spacing
for p(940), Λ+

c (2286) and Ξcc, the first correction is that
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FIG. 36 Comparison of the excitation energy single-charm
and single-beauty baryons above the Λc (Λb mass. The
quantum numbers are deduced from the quark model (Wohl,
2008a). For the Ωb both DØ (top) and CDF (bottom) results
ares shown as dotted lines.

Ξcc is shifted down by the heavy–heavy interaction in the
chromoelectric sector, see Eq. (26). However, both p and
Λc are shifted down by the favorable chromomagnetic
interaction among light quarks.
As the (bc̄) meson has been observed, one should be

able to detect (bcq) baryons with charm and beauty, with
two S = 1/2 states in the ground state, and one S =
3/2 state. Next will come the double-beauty sector, and
ultimately, baryons with three heavy quarks.

2. Regularities

The masses exhibit a smooth behavior in flavor space,
which is compatible with the expectation based on po-
tential models incorporating flavor independence. More-
over, “heavy quark symmetry implies that all of the mass
splittings are independent of the heavy quark flavor”,
to quote (Isgur and Wise, 1991). A comparison is made
on Fig. 36 of the known single-charm and single-beauty
baryons. The comparison suffers from the small number
of beauty baryons but it is clearly seen that the cost of
single-strangeness excitation ΞQ − ΛQ is very similar for
Q = c and Q = b.
For the double-strangeness excitations, the Ωb(6165)

0

of DØ is problematic. Most models predict Ωb with
mass of about 6050MeV, 110–120MeV lower than the
observed mass. The measurement by CDF, 6054MeV, is
in better agreement with the expectations.

3. Hyperfine splittings

The hyperfine splitting is also varying smoothly from
one configuration to another. Again, this is compati-

QCD’s Green functions  ⟷   “Dyson-Schwinger approach”:
Nonperturbative, covariant, all momentum scales, light and heavy quarks. But: truncations!

Goal: compute hadron properties (ground state & excitations, form factors, 
scattering amplitudes, etc.) from quark-gluon substructure in QCD.
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Sketch of a generic electromagnetic form factor:

but not yet
em. gauge invariant!

How can we calculate this from the quark level?
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Fig. 1. Quark-photon vertex and the ρ−meson poles it contains.

conservation for electromagnetic form factors, the Goldberger-Treiman relation for
axial form factors and so on, so that no ’fine-tuning’ is necessary.

In order to calculate nucleon form factors and polarizabilities, we must couple
photons to nucleons in a symmetry-preserving way [17–19]. To this end, we should
first understand how a photon microscopically interacts with a quark. Two of the
relevant Green functions that encode this interaction are the quark-photon vertex
and the quark Compton vertex. Here I will discuss some of their properties, the
role of electromagnetic gauge invariance in determining their structure, and their
implications for hadron properties.

2. Quark-photon vertex

Several well-known characteristics of form factors are reflected in the nonper-
turbative structure of the dressed quark-photon vertex. The vertex is defined as the
γµ−contraction of the qq̄ four-point function, see Fig. 1. The four-point function
contains all intermediate hadronic states that can be formed by a valence quark and
antiquark. Therefore, its singularity structure in the vector channel will be inher-
ited by the quark-photon vertex, i.e., ’vector-meson dominance’ is implemented by
construction. On the other hand, the definition allows to derive an inhomogeneous
Bethe-Salpeter equation (BSE) for the vertex; it depends on the qq̄ kernel where
the truncation to rainbow-ladder is made. Its numerical solution has been first
achieved in Ref. [20] and nowadays become almost a routine task. However, even
before solving the vertex dynamically one can gain some insight based on general
properties alone.

Electromagnetic gauge invariance entails that the quark-photon vertex can be
separated into a ’gauge part’ and a purely transverse part:

Γµ(k,Q) =
[
iγµΣA + 2kµ(i/k∆A +∆B)

]
+

[
i

8∑

j=1

fj τ
µ
j (k,Q)

]
. (1)

Here, Q is the photon momentum and k = (k+ + k−)/2 the average momentum
of the quark legs, see Fig. 1. The gauge part in the first bracket is the Ball-Chiu
vertex [21] that satisfies the vector WTI. It is completely determined by the dressed
fermion propagator. At large Q2 it reproduces the tree-level structure, whereas the
nonperturbative dressing effects are contained in ΣA, ∆A and ΣB. These are sums
and difference quotients of the quark dressing functions A(p2) and B(p2):

ΣF (k,Q) =
F (k2+) + F (k2−)

2
, ∆F (k,Q) =

F (k2+)− F (k2−)
k2+ − k2−

, (2)

with F ∈ {A,B}. A(p2) approaches the quark wave-function renormalization con-
stant Z2 at large p2 and is nonperturbatively enhanced. The quark mass function

)B+∆A∆k/i(µk+ 2AΣ
µiγ

12

A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+)− S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) +B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A +∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) +A(k2−)

2
,

∆A(k,Q) :=
A(k2+)−A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+)−B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A+ [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γ
µ
T , /k]

+ g3
i
2 [γ

µ, /Q] + g4
1
6 [γ

µ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q+ g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γ
µ
T , /k]

+ f3
i
2 [γ

µ, /Q] + f4
1
6 [γ

µ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
12
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larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]
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(+) kµ/k
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To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A+ [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition
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where
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Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.
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truly kinematically independent is given by [53–55]
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f3 = g3 ,

f4 = g4 ,
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2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)

12

A. Fermion-photon vertex
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Fig. 1. Quark-photon vertex and the ρ−meson poles it contains.

conservation for electromagnetic form factors, the Goldberger-Treiman relation for
axial form factors and so on, so that no ’fine-tuning’ is necessary.

In order to calculate nucleon form factors and polarizabilities, we must couple
photons to nucleons in a symmetry-preserving way [17–19]. To this end, we should
first understand how a photon microscopically interacts with a quark. Two of the
relevant Green functions that encode this interaction are the quark-photon vertex
and the quark Compton vertex. Here I will discuss some of their properties, the
role of electromagnetic gauge invariance in determining their structure, and their
implications for hadron properties.

2. Quark-photon vertex

Several well-known characteristics of form factors are reflected in the nonper-
turbative structure of the dressed quark-photon vertex. The vertex is defined as the
γµ−contraction of the qq̄ four-point function, see Fig. 1. The four-point function
contains all intermediate hadronic states that can be formed by a valence quark and
antiquark. Therefore, its singularity structure in the vector channel will be inher-
ited by the quark-photon vertex, i.e., ’vector-meson dominance’ is implemented by
construction. On the other hand, the definition allows to derive an inhomogeneous
Bethe-Salpeter equation (BSE) for the vertex; it depends on the qq̄ kernel where
the truncation to rainbow-ladder is made. Its numerical solution has been first
achieved in Ref. [20] and nowadays become almost a routine task. However, even
before solving the vertex dynamically one can gain some insight based on general
properties alone.

Electromagnetic gauge invariance entails that the quark-photon vertex can be
separated into a ’gauge part’ and a purely transverse part:

Γµ(k,Q) =
[
iγµΣA + 2kµ(i/k∆A +∆B)

]
+

[
i

8∑

j=1

fj τ
µ
j (k,Q)

]
. (1)

Here, Q is the photon momentum and k = (k+ + k−)/2 the average momentum
of the quark legs, see Fig. 1. The gauge part in the first bracket is the Ball-Chiu
vertex [21] that satisfies the vector WTI. It is completely determined by the dressed
fermion propagator. At large Q2 it reproduces the tree-level structure, whereas the
nonperturbative dressing effects are contained in ΣA, ∆A and ΣB. These are sums
and difference quotients of the quark dressing functions A(p2) and B(p2):

ΣF (k,Q) =
F (k2+) + F (k2−)

2
, ∆F (k,Q) =

F (k2+)− F (k2−)
k2+ − k2−

, (2)

with F ∈ {A,B}. A(p2) approaches the quark wave-function renormalization con-
stant Z2 at large p2 and is nonperturbatively enhanced. The quark mass function

)B+∆A∆k/i(µk+ 2AΣ
µiγ
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+)− S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) +B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A +∆B), (72)

where the functions
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,
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B(k2+)−B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as
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To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A+ [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
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Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
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to the remaining elements from the first two columns of
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where
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We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
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must vanish with Q2 for Q2 → 0. Instead of the pro-
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Q which has
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We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+)− S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) +B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A +∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) +A(k2−)

2
,
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are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.
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vanish in the limit Qµ = 0, either via appropriate mo-
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dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.
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(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A+ [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γ
µ
T , /k]

+ g3
i
2 [γ

µ, /Q] + g4
1
6 [γ

µ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q+ g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γ
µ
T , /k]

+ f3
i
2 [γ

µ, /Q] + f4
1
6 [γ

µ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)

12

A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+)− S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) +B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A +∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) +A(k2−)

2
,

∆A(k,Q) :=
A(k2+)−A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+)−B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A+ [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γ
µ
T , /k]

+ g3
i
2 [γ

µ, /Q] + g4
1
6 [γ

µ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q+ g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γ
µ
T , /k]

+ f3
i
2 [γ

µ, /Q] + f4
1
6 [γ

µ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)

12

A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+)− S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) +B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A +∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) +A(k2−)

2
,

∆A(k,Q) :=
A(k2+)−A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+)−B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A+ [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γ
µ
T , /k]

+ g3
i
2 [γ

µ, /Q] + g4
1
6 [γ

µ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q+ g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γ
µ
T , /k]

+ f3
i
2 [γ

µ, /Q] + f4
1
6 [γ

µ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)

12

A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+)− S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) +B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A +∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) +A(k2−)

2
,

∆A(k,Q) :=
A(k2+)−A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+)−B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A+ [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γ
µ
T , /k]

+ g3
i
2 [γ

µ, /Q] + g4
1
6 [γ

µ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q+ g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γ
µ
T , /k]

+ f3
i
2 [γ

µ, /Q] + f4
1
6 [γ

µ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)

)2Q(F

𝜌

𝜌’
𝜌’’

2Q

charge,
magnetic moment,...

radius

timelike: spacelike:not 
accessibleN̄N→−e+e N−e→N−e

2M4− 0

Gernot Eichmann (Uni Giessen) Sep 30, 2014 2 / 23



Motivation

Sketch of a generic electromagnetic form factor:

but not yet
em. gauge invariant!

How can we calculate this from the quark level?

‘rainbow-ladder’

quark-photon vertex:

quark propagator:

Faddeev
amplitude: 
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Fig. 1. Quark-photon vertex and the ρ−meson poles it contains.

conservation for electromagnetic form factors, the Goldberger-Treiman relation for
axial form factors and so on, so that no ’fine-tuning’ is necessary.

In order to calculate nucleon form factors and polarizabilities, we must couple
photons to nucleons in a symmetry-preserving way [17–19]. To this end, we should
first understand how a photon microscopically interacts with a quark. Two of the
relevant Green functions that encode this interaction are the quark-photon vertex
and the quark Compton vertex. Here I will discuss some of their properties, the
role of electromagnetic gauge invariance in determining their structure, and their
implications for hadron properties.

2. Quark-photon vertex

Several well-known characteristics of form factors are reflected in the nonper-
turbative structure of the dressed quark-photon vertex. The vertex is defined as the
γµ−contraction of the qq̄ four-point function, see Fig. 1. The four-point function
contains all intermediate hadronic states that can be formed by a valence quark and
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]
+
[
i

8∑

j=1

fj τ
µ
j (k,Q)

]
. (1)

Here, Q is the photon momentum and k = (k+ + k−)/2 the average momentum
of the quark legs, see Fig. 1. The gauge part in the first bracket is the Ball-Chiu
vertex [21] that satisfies the vector WTI. It is completely determined by the dressed
fermion propagator. At large Q2 it reproduces the tree-level structure, whereas the
nonperturbative dressing effects are contained in ΣA, ∆A and ΣB. These are sums
and difference quotients of the quark dressing functions A(p2) and B(p2):

ΣF (k,Q) =
F (k2+) + F (k2−)

2
, ∆F (k,Q) =

F (k2+)− F (k2−)
k2+ − k2−

, (2)

with F ∈ {A,B}. A(p2) approaches the quark wave-function renormalization con-
stant Z2 at large p2 and is nonperturbatively enhanced. The quark mass function

)B+∆A∆k/i(µk+ 2AΣ
µiγ
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Qµ Γµ(k,Q) = S−1(k+)− S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) +B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A +∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) +A(k2−)

2
,

∆A(k,Q) :=
A(k2+)−A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+)−B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A+ [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γ
µ
T , /k]

+ g3
i
2 [γ

µ, /Q] + g4
1
6 [γ

µ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q+ g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γ
µ
T , /k]

+ f3
i
2 [γ

µ, /Q] + f4
1
6 [γ

µ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γ
µ
T , /k]

+ g3
i
2 [γ

µ, /Q] + g4
1
6 [γ

µ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q+ g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γ
µ
T , /k]

+ f3
i
2 [γ

µ, /Q] + f4
1
6 [γ

µ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)

12

A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+)− S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) +B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A +∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) +A(k2−)

2
,

∆A(k,Q) :=
A(k2+)−A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+)−B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A+ [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γ
µ
T , /k]

+ g3
i
2 [γ

µ, /Q] + g4
1
6 [γ

µ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q+ g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γ
µ
T , /k]

+ f3
i
2 [γ

µ, /Q] + f4
1
6 [γ

µ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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Motivation

⇒

)
− −

++= +

+ ++

in consistency with baryon’s Faddeev equation (2- and 3-body kernels):

Quark Dyson-Schwinger equation:

Meson Bethe-Salpeter equation: Kernels and quark propagator not independent 
(Or we would lose chiral symmetry!)

Deep underlying connection between 
quark-gluon and hadron level!

Em. gauge invariance requires

PCAC: massless pion in chiral limit, GMOR

vector current conservation, 
em. gauge invariance (quark-photon vertex!)

=

-1 = -1 +
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in consistency with baryon’s Faddeev equation (2- and 3-body kernels):

Quark Dyson-Schwinger equation:

Meson Bethe-Salpeter equation: Kernels and quark propagator not independent 
(Or we would lose chiral symmetry!)

Symmetries provide deep connection 
between quark-gluon and hadron level!

Em. gauge invariance requires

PCAC: massless pion in chiral limit, GMOR

vector current conservation, 
em. gauge invariance (quark-photon vertex!)
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Dyson-Schwinger approach

QCD Lagrangian:
quarks, gluons (+ ghosts)

Quark propagator:

Gluon propagator:

Quark-gluon vertex:

Gluon self-
interactions,
ghosts, . . . 

 

  ( )   + ( )  +   ( ) + ¼  

-1 = -1
+

= ++ + ++

-1 -1= ++

++ +

+

QCD & hadron properties are encoded in QCD’s Green functions.
Their quantum equations of motion are the Dyson-Schwinger equations (DSEs):

a
µνFµν

aF4
1−)x(ψ)M−A/g+∂/i) (x(ψ̄=L

Dyson-Schwinger equations
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QCD & hadron properties are encoded in QCD’s Green functions.
Their quantum equations of motion are the Dyson-Schwinger equations (DSEs):

a
µνFµν

aF4
1−)x(ψ)M−A/g+∂/i) (x(ψ̄=L

Dyson-Schwinger equations

Truncation ⇒ closed system, solveable.
Ansätze for Green functions that are 
not solved (based on pQCD, lattice, FRG, ...)

progress in determining elementary
propagators and vertices
Fischer, Maas, Pawlowski,  Annals. Phys. 324 (2009)
GE, Williams, Alkofer, Vujinovic,  PRD 89 (2014),  . . .

but: construction of consistent 
Bethe-Salpeter kernels difficult...
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Dynamical quark mass

350 MeV

3 MeV


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

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

Bottom
Charm
Strange
Up/down
Chiral limit

Quark mass 
function [GeV]:

𝑝� [𝐺𝑒𝑉�]

Fischer, J. Phys. G 32 (2006)

Dynamical chiral symmetry breaking:
generates “constituent-quark masses”

Mass generation for light hadrons!

Realized in quark Dyson-Schwinger eq:

-1 = -1 +

Dressed quark propagator 
has nonperturbatively enhanced
quark mass function (DSE, Lattice, ...)

2m+2p

m+p/i
) =p(0S

−
)2p(2M+2p

)2p(M+p/i

)2p(A

1) =p(S
−⟶
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Structure of the kernel

Most hadron studies so far in rainbow-ladder: 
tree-level vertex + effective coupling

�  DCSB, CVC, PCAC

⍨  No pion cloud, 
    no flavor dependence, 
    no 𝑈�(1) anomaly, no 
    dynamical decay widths

Ansatz for effective coupling:

Adjust infrared scale 𝛬 to 
physical observable, 
keep width 𝜂 as parameter

12

A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+)− S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) +B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A +∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) +A(k2−)

2
,

∆A(k,Q) :=
A(k2+)−A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+)−B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A+ [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γ
µ
T , /k]

+ g3
i
2 [γ

µ, /Q] + g4
1
6 [γ

µ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q+ g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γ
µ
T , /k]

+ f3
i
2 [γ

µ, /Q] + f4
1
6 [γ

µ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)

𝐾 𝛼 (𝑘  )2=
𝛼 (𝑘  )2

-1 -1 +

Maris,  Roberts, Tandy,  PRC 56 (1997), PRC 60 (1999)

𝛼 (𝑘  ) = 𝛼���        , 𝜂� + 𝛼��(𝑘²)  2 𝑘²
𝛬²
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Pion cloud:
need infinite summation 
of t-channel gluons

mass generation
Goldstone theorem,
massless pion in 𝜒L
em. current conservation
Goldberger-Treiman
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Pseudoscalar & vector mesons:
rainbow-ladder is good.
Masses, form factors, decays,
𝜋𝜋 scattering, PDFs 

Mesons

200

0
0 2 4 6 8 10

400

600

800

1000

𝑚� [𝑀𝑒𝑉]

𝑚� [𝑀𝑒𝑉]

𝑚� [𝑀𝑒𝑉]

Pion is Goldstone boson, 
satisfies GMOR:  𝑚�� ~ 𝑚�

Need to go beyond rainbow-ladder for 
excited, scalar, axialvector mesons, 𝜂-𝜂’, etc.

Heavy mesons 

Bottomonium

exp
calc

Charmonium

𝑀 [𝐺𝑒𝑉]
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3.8

0⁻⁺JPC 0⁺⁺ 1⁺⁺ 1⁺⁻ 2⁺⁺ 2⁻⁺ 2⁻⁻1⁻⁻

𝛶(1D)

𝛶(1S)

ℎ�(1P)

𝜂�(1S)

𝜒��(1P)𝜒��(1P)

𝜒��(1P)

𝐽/𝜓(1S)
ℎ�(1P)

𝜂�(1S)

𝜒��(1P)
𝜒��(1P)

𝜒��(1P)

Maris, Roberts, Tandy,  PRC 56 (1997), PRC 60 (1999); 
Bashir et al.,  Commun. Theor.  Phys. 58 (2012)

Blank,  Krassnigg, PRD 84 (2011),   Fischer et al., 1409.5076

Fischer,  Williams   &   Chang, Roberts,  PRL 103 (2009)
Alkofer et al.,  EPJ A38 (2008),   Bhagwat et al.,  PRC 76 (2007)
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Baryons

0.7

0.8

0.9

1.0

1.1

1.2
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1.4

1.5

1.6

1.7

1.8

1.9

0.10.0 0.2 0.3 0.4 0.5

𝑚�� [𝐺𝑒𝑉�]

[𝐺𝑒𝑉]

𝛺⁻

𝛷

GE, Alkofer, 
Krassnigg, Nicmorus,  
PRL 104 (2010);         

GE,  PRD 84 (2011)

Nucleon:

Maris &  Tandy,  
PRC 60 (1999)

𝜌–meson:

Sanchis-Alepuz 
et al., PRD 84 (2011)

Delta:

Baryons from covariant Faddeev equation:
full (64/128-dim.) tensor basis: s, p, d, f waves,
same kernel as for mesons, scale set by 𝑓�,
GE, Alkofer, Krassnigg, Nicmorus, PRL 104 (2010),   GE, PRD 84 (2011), 
Sanchis-Alepuz, Fischer, 1408.5577

Diquark clustering in baryons:
similar results in quark-diquark approach
Oettel,  Alkofer,  von Smekal,  EPJ A8 (2000)
GE, Cloet, Alkofer, Krassnigg, Roberts,  PRC 79 (2009)

Excited baryons: dominance of qq or qqq?

++= +

𝑁⁺  (1440):  1.26 GeV
𝑁⁻  (1535):  1.00 GeV

Sanchis-Alepuz et al.,
preliminary

½

½

Need to go beyond rainbow-ladder!
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Beyond rainbow-ladder?

)
− −

Gluonic corrections 
(e.g. from 3g vertex):

Rainbow-ladder:
“s waves” ok, but “p waves” too low,
excited states problematic

large repulsive shifts for p-wave mesons

Mesons

1 GeV

2 GeV

Baryons

Pion cloud, coupled-channel effects? 
Clearer signals expected for form factors

3-body forces? 3-gluon vertex
has zero crossing (DSE & lattice!)

also for baryons? Could be understood from
quark-diquark structure ⇒ N* level ordering!

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

(a) (b) (c) (d)

𝜋

𝑎�
𝑎�

𝑁(1535)

𝛥(1700) ?

𝜌

𝑃 � � 𝑃 � � 𝑃 � � 𝑃 � �

𝑁

𝛥

Fischer, Williams  &   Chang, Roberts, PRL 103 (2009)

Sanchis-Alepuz, Fischer, Kubrak,  PLB 733C (2014)

Huber, von Smekal,  JHEP 1304 (2013)
GE, Williams, Alkofer, Vujinovic,  PRD 89 (2014)

Chen et al., FBS 53 (2012)
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excited states problematic

large repulsive shifts for p-wave mesons

Mesons

1 GeV

2 GeV

Baryons

Pion cloud, coupled-channel effects? 
Clearer signals expected for form factors

3-body forces? 3-gluon vertex
has zero crossing (DSE & lattice!)

also for baryons? Could be understood from
quark-diquark structure ⇒ N* level ordering!
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Electromagnetic form factors

Nucleon magnetic moments: 
isovector (p-n), isoscalar (p+n)

[𝜇�]

[𝜇�]

!!
But: pion-cloud cancels in 𝜅�  ⟺ quark core 

       Exp:    𝜅� = –0.12   
Calc:   𝜅� = –0.12(1)
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in chiral region (⇒ divergence!), 
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larger quark masses.
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Large 

Electric proton form factor 
at large momenta  Eichmann,  PRD 84 (2011)

Difference likely due to
two-photon corrections

Rosenbluth method suggested 
/  = const., in agreement 

with perturbative scaling

Polarization experiments at JLAB 
showed falloff in / , 
with possible zero crossing 

Faddeev result consistent with data:
OAM in nucleon amplitude

Underway: investigate two-photon effects
via Compton scattering amplitude

Guichon, Vanderhaeghen, PRL 91 (2003) 

Warren

Plaster/Madey

Riordan

Glazier

0.0

1.0

1.2

0.4

0.2

0.0

0.4

0.2

0.3

0.1

0.0

0.4

0.5

0.3

0.1

0.2

0.6

0.0

2.0

1.0

1.5

0.5

-0.2

0.6

0.8

0 2 4 6 8

0 2 4 6 8 0 2 4 6 8

0 2 4 6 8

/

/

/

/

Crawford

Paolone

Zhan

Gayou/Puckett

Puckett

Punjabi

Ron

 /  /(    )     

  

GE, PRD 84 (2011)

Gernot Eichmann (Uni Giessen) Sep 30, 2014 11 / 23



Nucleon- -  transition  

*

Electric & Coulomb quadrupole transitions  
small & negative, encode deformation. 

Magnetic dipole transition (  ) dominant: 
quark spin flip (s wave).  “Core + 25% pion cloud”

Ratios reproduced without pion cloud:
OAM from relativistic p waves in the quark core!
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Quark model: need d waves or pion cloud.
Perturbative QCD:  1,  const.
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Ball-Chiu vertex,
depends only on 
quark propagator

necessary for 
electromagnetic
gauge invariance!

Transverse part: 
vanishes at 𝑄→0,  no kin. singularities;
contains ρ-meson poles &
anomalous magnetic momentBall, Chiu,  PRD 22 (1980)

Kizilersu et al, PRD 92 (1995);  
GE, Fischer,  PRD 87 (2013)  

)2
Q−k(1−S−)2

Q+k(1−S) =k,Q(µΓµQ

2 Excited-QCD printed on April 17, 2014

           
 

〉H|)2x(ψ̄)1x(T ψ|0〈) =2, x1x(χ

Fig. 1. Quark-photon vertex and the ρ−meson poles it contains.

conservation for electromagnetic form factors, the Goldberger-Treiman relation for
axial form factors and so on, so that no ’fine-tuning’ is necessary.

In order to calculate nucleon form factors and polarizabilities, we must couple
photons to nucleons in a symmetry-preserving way [17–19]. To this end, we should
first understand how a photon microscopically interacts with a quark. Two of the
relevant Green functions that encode this interaction are the quark-photon vertex
and the quark Compton vertex. Here I will discuss some of their properties, the
role of electromagnetic gauge invariance in determining their structure, and their
implications for hadron properties.

2. Quark-photon vertex

Several well-known characteristics of form factors are reflected in the nonper-
turbative structure of the dressed quark-photon vertex. The vertex is defined as the
γµ−contraction of the qq̄ four-point function, see Fig. 1. The four-point function
contains all intermediate hadronic states that can be formed by a valence quark and
antiquark. Therefore, its singularity structure in the vector channel will be inher-
ited by the quark-photon vertex, i.e., ’vector-meson dominance’ is implemented by
construction. On the other hand, the definition allows to derive an inhomogeneous
Bethe-Salpeter equation (BSE) for the vertex; it depends on the qq̄ kernel where
the truncation to rainbow-ladder is made. Its numerical solution has been first
achieved in Ref. [20] and nowadays become almost a routine task. However, even
before solving the vertex dynamically one can gain some insight based on general
properties alone.

Electromagnetic gauge invariance entails that the quark-photon vertex can be
separated into a ’gauge part’ and a purely transverse part:

Γµ(k,Q) =
[
iγµΣA + 2kµ(i/k∆A +∆B)

]
+
[
i

8∑

j=1

fj τ
µ
j (k,Q)

]
. (1)

Here, Q is the photon momentum and k = (k+ + k−)/2 the average momentum
of the quark legs, see Fig. 1. The gauge part in the first bracket is the Ball-Chiu
vertex [21] that satisfies the vector WTI. It is completely determined by the dressed
fermion propagator. At large Q2 it reproduces the tree-level structure, whereas the
nonperturbative dressing effects are contained in ΣA, ∆A and ΣB. These are sums
and difference quotients of the quark dressing functions A(p2) and B(p2):

ΣF (k,Q) =
F (k2+) + F (k2−)

2
, ∆F (k,Q) =

F (k2+)− F (k2−)
k2+ − k2−

, (2)

with F ∈ {A,B}. A(p2) approaches the quark wave-function renormalization con-
stant Z2 at large p2 and is nonperturbatively enhanced. The quark mass function

)B+∆A∆k/i(µk+ 2AΣ
µiγ

Quark-photon vertex

Structure of quark-photon vertex: 

Calculated from rainbow-ladder Bethe-Salpeter equation

𝑄�           −𝑚�
𝑄 

〉H|)2x(ψ̄)1x(T ψ|0〈) =2, x1x(χ 𝜒 𝜒𝐺

𝑘₋

𝑘₊
𝑓� Quark-photon vertex

has 𝜌-meson poles:
‘vector-meson dominance’

 

𝑘

𝑄
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+)− S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) +B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A +∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) +A(k2−)

2
,

∆A(k,Q) :=
A(k2+)−A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+)−B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A+ [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γ
µ
T , /k]

+ g3
i
2 [γ

µ, /Q] + g4
1
6 [γ

µ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q+ g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γ
µ
T , /k]

+ f3
i
2 [γ

µ, /Q] + f4
1
6 [γ

µ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+)− S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) +B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A +∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) +A(k2−)

2
,

∆A(k,Q) :=
A(k2+)−A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+)−B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A+ [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γ
µ
T , /k]

+ g3
i
2 [γ

µ, /Q] + g4
1
6 [γ

µ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q+ g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γ
µ
T , /k]

+ f3
i
2 [γ

µ, /Q] + f4
1
6 [γ

µ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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Apart from global factors k ·Q, the four tensor structures
corresponding to f3,4,7,8 are linear and the remaining four
are quadratic in the photon momentum.
The question remains whether Eq. (82) can be ob-

tained from a systematic construction principle. To this
end we define the quantities

tµνab := a · b δµν − bµaν ,

εµνab := γ5 ε
µναβaαbβ ,

(84)

with aµ, bµ ∈ {kµ, Qµ}. They are both regular in the
limits a → 0 or b → 0. tµνab is transverse to aµ and bν ,

aµ tµνab = 0 , tµνab bν = 0 , (85)

whereas εµνab is transverse to a and b in both Lorentz in-
dices. The usual transverse projectors can thus be writ-

ten as Tµν
Q = tµνQQ/Q

2 and Tµν
Q′ = tµνQ′Q′/Q′2.

With the help of these definitions one can generate the
basis (82) as follows. Take the four tensor structures that
are independent of the photon momentum:

γν , [γν , /k] , kν , kν/k . (86)

Contract them with tµνQQ, t
µν
Qk and εµνQk to generate eight

transverse basis elements that are kinematically indepen-
dent and linear or quadratic in the four-momentum Qµ:

tµνQQ





γν

[γν , /k]

kν

kν/k





= Q2





γµ
T

[γµ
T , /k]

kµT
kµT /k





,

tµνQk

{
γν

[γν , /k]

}
=

{
k ·Qγµ − kµ /Q

[k ·Qγµ − kµ /Q, /k]

}
,

εµνQk

{
γν

[γν , /k]

}
=

{
1
6 [γ

µ, /k, /Q]

tµνQk [γ
ν , /k]− k2 [γµ, /Q]

}
.

(87)

Instead of using tµνQk and εµνQk, one could contract the four

elements in Eq. (86) also with tµνQγ = /Q δµν − γµQν and
use commutators where necessary. However, this does
not generate any new elements:

1
2

[
tµνQγ , γ

ν
]
= − [γµ, /Q] ,

1
2

[
tµνQγ , γ

ν , /k
]
= [γµ, /k, /Q] ,

tµνQγ k
ν = −4 tµνQk γ

ν ,
[
tµνQγ k

ν , /k
]
= −tµνQk [γ

ν , /k] .

(88)

Finally, attach appropriate factors k ·Q to ensure charge-
conjugation invariance of the dressing functions.
We will henceforth use Eq. (82) as our reference basis

for the transverse part of the fermion-photon vertex. We
write it in a compact way:

τµ1 = tµνQQ γν ,

τµ2 = tµνQQ k ·Q i
2 [γ

ν , /k] ,

τµ3 = i
2 [γ

µ, /Q] ,

τµ4 = 1
6 [γ

µ, /k, /Q] ,

τµ5 = tµνQQ ikν ,

τµ6 = tµνQQ kν/k ,

τµ7 = tµνQk k ·Qγν ,

τµ8 = tµνQk
i
2 [γ

ν , /k] .

(89)

The full vertex is thus given by Eq. (74), with the trans-
verse part

− iΓµ
T (k,Q) =

8∑

i=1

fi(k
2, k ·Q,Q2) τµi (k,Q) . (90)

The dimensionful dressing functions fi(k
2, k ·Q, Q2) are

again even in k ·Q. They are kinematically independent
and can remain constant at vanishing photon momen-
tum. The basis (89) is essentially identical to Eq. (A.8)
in Ref. [53] and Eq. (A2) in Ref. [55]. The relations be-
tween our τµi and the transverse tensor structures Tµ

i in
those papers are

τ1 = −T3 ,

τ2 = − 1
2 k ·QT4 ,

τ3 = T5 ,

τ4 = T8 ,

τ5 = T1 ,

τ6 = 1
2 T2 ,

τ7 = − 1
2 k ·QT6 ,

τ8 = 1
2 T7 .

(91)

The dressing functions associated with τ3 and τ4 con-
tribute to the onshell anomalous magnetic moment,
cf. Ref. [48] and Eq. (96) below, and τ7 constitutes the
transverse part of the Curtis-Pennington vertex [56].
Finally, to obtain a connection with the nucleon’s on-

shell current, we investigate the limit where the incoming
and outgoing fermion lines are taken on the mass shell,
i.e., k2± = −m2 or

k2 = −m2 −Q2/4 , k ·Q = 0 . (92)

The onshell vertex

Jµ(k,Q) = Λf
+ Γµ(k,Q) Λi

+

∣∣∣
Eq. (92)

(93)

is sandwiched between Dirac spinors that are eigenvec-
tors of the positive-energy projectors

Λf
+ = Λ+(k+),

Λi
+ = Λ+(k−),

Λ+(p) =
1+ /̂p

2
. (94)

By virtue of the projectors, only two of the basis elements
in Eq. (89) remain independent, and the vertex can be
written in the standard form

Jµ(k,Q) = iΛf
+

(
F1 γ

µ +
iF2

4m
[γµ, /Q]

)
Λi
+ , (95)

where F1, F2 are dimensionless functions of Q2 only. Via
Eq. (74) they consist of Ball-Chiu parts and transverse
components which are related to the functions ΣA, ∆A,
∆B and fj in the onshell limit:

F1(Q
2) = A(−m2) + 2m

[
B′(−m2)−mA′(−m2)

]

+Q2

[
f1 −m (f5 +mf6)−

f4 −mf8
2

] ∣∣∣∣∣
Eq. (92)

,

F2(Q
2)

2m
= f3 −mf4 −

[
B′(−m2)−mA′(−m2)

]

+
Q2

2

[
f5 +mf6 −

f8
2

] ∣∣∣∣∣
Eq. (92)

.

(96)

Current matrix element: + ++χ
µ)1−Gχ̄=〉H|µJ|H〈
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+)− S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) +B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A +∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) +A(k2−)

2
,

∆A(k,Q) :=
A(k2+)−A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+)−B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A+ [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γ
µ
T , /k]

+ g3
i
2 [γ

µ, /Q] + g4
1
6 [γ

µ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q+ g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γ
µ
T , /k]

+ f3
i
2 [γ

µ, /Q] + f4
1
6 [γ

µ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+)− S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) +B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A +∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) +A(k2−)

2
,

∆A(k,Q) :=
A(k2+)−A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+)−B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A+ [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γ
µ
T , /k]

+ g3
i
2 [γ

µ, /Q] + g4
1
6 [γ

µ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q+ g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γ
µ
T , /k]

+ f3
i
2 [γ

µ, /Q] + f4
1
6 [γ

µ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,
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Quark-photon vertex

Structure of quark-photon vertex is reflected in form factors.
Experimentally (sketch):

BC + T BC + T

Calculated:
(Sketch)

Ball-Chiu part is dominant 
(em. gauge invariance):
charge, magnetic moments

Transverse part changes 
slope and charge radii. 
No pion cloud in RL ⇒ 
timelike 𝜌-meson poles
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+)− S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) +B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A +∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) +A(k2−)

2
,

∆A(k,Q) :=
A(k2+)−A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+)−B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k
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cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A+ [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν
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to the remaining elements from the first two columns of
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functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
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must vanish with Q2 for Q2 → 0. Instead of the pro-
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Q which has
no kinematic singularity; unfortunately this overcompen-
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truly kinematically independent is given by [53–55]
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tion of the fermion is given by M(k2) = B(k2)/A(k2).
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BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A +∆B), (72)
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to express Γµ
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photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
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T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as
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(+) Qµ /Q
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(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A+ [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γ
µ
T , /k]

+ g3
i
2 [γ

µ, /Q] + g4
1
6 [γ

µ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q+ g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i
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µ
T , /k]

+ f3
i
2 [γ

µ, /Q] + f4
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6 [γ

µ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].
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It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+)− S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) +B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A +∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) +A(k2−)

2
,

∆A(k,Q) :=
A(k2+)−A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+)−B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as
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To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination
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for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight
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The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
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projector

Tµν
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Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition
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T = g1γ

µ
T + g2 k ·Q i

2 [γ
µ
T , /k]

+ g3
i
2 [γ

µ, /Q] + g4
1
6 [γ

µ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q+ g8

i
2 [/k, /Q]

)
,

(79)

where
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We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]
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sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γ
µ
T , /k]

+ f3
i
2 [γ

µ, /Q] + f4
1
6 [γ

µ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)

12

A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k,Q) = S−1(k+)− S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) +B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k,Q) = iγµ ΣA + 2kµ(i/k∆A +∆B), (72)

where the functions

ΣA(k,Q) :=
A(k2+) +A(k2−)

2
,

∆A(k,Q) :=
A(k2+)−A(k2−)

k2+ − k2−
,

∆B(k,Q) :=
B(k2+)−B(k2−)

k2+ − k2−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k,Q) = Γµ
BC(k,Q) + Γµ

T(k,Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A,B,C] := [A,B]C + [B,C]A+ [C,A]B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k ·Q, the full vertex satisfies

Γµ(k,Q) = C Γµ(−k,−Q)TCT = −Γµ(k,−Q) (77)

with scalar dressing functions that are even in k ·Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γ
µ
T , /k]

+ g3
i
2 [γ

µ, /Q] + g4
1
6 [γ

µ, /k, /Q]

+ kµT
(
ig5 + g6 /k + g7 k ·Q /Q+ g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµT = Tµν
Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k ·Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q

2 γµ
T + f2 k ·QQ2 i

2 [γ
µ
T , /k]

+ f3
i
2 [γ

µ, /Q] + f4
1
6 [γ

µ, /k, /Q]

+ if5 Q
2 kµT + f6 Q

2 kµT /k

+ f7 k ·Q (k ·Qγµ − kµ /Q)

+ f8
i
2 [k ·Qγµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q
2 = g1 + (k ·Q)2g7 ,

f2 Q
2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q
2 = g5 ,

f6 Q
2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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Tetraquarks

Light scalar mesons (0⁺⁺) don’t fit into the conventional meson spectrum:

Why are 𝜎, 𝜅 so light compared to 𝑎₀, 𝑓₀?
Why are the masses of 𝑎₀, 𝑓₀ degenerate?

Why do they have so different decay widths?
     

Why do both 𝑓₀ and 𝑎₀ couple to KK?
(hidden strange-quark content of 𝑎₀?)

Scalar mesons ~ p-waves, should have 
masses similar to axial-vectors: 𝑎₁, 𝑓₁ ~ 1.3 GeV 

Increasing evidence for non-𝑞𝑞 nature 
from dispersive analyses, linear 𝜎 model, ...

𝜎

𝜅⁺𝜅⁰

𝜅⁰𝜅⁻
𝑓₀

𝑎⁺₀
₀𝑎⁰

₀𝑎⁻

𝜎
𝜅
𝑓₀

𝑎₀ ( 980 MeV )
( 500 MeV )

( 680 MeV )

( 980 MeV )
Pelaez, Mod. Phys. Lett. A19 (2004) & PoS CD12 (2013),
Parganlija et al.,  PRD 87 (2013), . . .

𝛤(𝜎, 𝜅) ≈ 550 MeV
𝛤(𝑎₀, 𝑓₀) ≈ 50‒100 MeV 

𝑢𝑢, 𝑑𝑑, 𝑢𝑑

𝑢𝑠, 𝑑𝑠
𝑠𝑠 

�
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Tetraquarks

Could these be light tetraquark (diquark-antidiquark) states?

Explains mass ordering: 
𝑓₀ and 𝑎₀ have same strangeness content

Explains decay widths: 
𝑓₀ and 𝑎₀ decay into KK ; 
“OZI-superallowed” mechanism 
leads to large widths for 𝜎, 𝜅 :
     

Actual scalar 𝑞𝑞 ground states would be
“1st radially excited” nonet  ~ 1.3‒1.5 GeV

𝜎

𝜅⁺𝜅⁰

𝜅⁰𝜅⁻

𝑓₀
𝑎⁺₀

₀𝑎⁰
₀𝑎⁻

𝜎
𝜅
𝑓₀
𝑎₀ ( 980 MeV )

( 500 MeV )

( 680 MeV )

( 980 MeV )
𝑢𝑠𝑢𝑠, ...

𝑢𝑠𝑢𝑑, ...
𝑢𝑑𝑢𝑑 

�

𝜋⁻

𝜎

𝜋⁺

Ja�e  ‘77
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Tetraquarks

Start from four-quark bound-state equation:

Keep only ,  interactions with separable T-matrix.
Obtain coupled diquark-antidiquark / meson-meson equations:

So far: 

Heupel, GE, Fischer,  PLB 718 (2012)

+

⇒  meson molecule with diquark-antidiquark admixture 

0⁺⁺,  isoscalar,  4 identical quarks:  nnnn, ssss, cccc, ....
     

keep only pseudoscalar meson and scalar diquark    
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Tetraquarks

Tetraquark masses:
Heupel, GE, Fischer,  PLB 718 (2012)

Heupel, GE, Fischer,  in preparation

       ⇔ exp.  /  (500)?
      

up/down: 

strange: 

charm: 

          [ ]Quark     [ ]PS

                 [ ]Tetraquark

Mesons only
Full

                 [ ]Tetraquark

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.6 0.80.40.2
0

1

2

3

4

5

6

0

1

2

3

4

5

6

 ~ 400 MeV
Light tetraquark because
it carries traces of the pion!

 ~ 1.2 GeV

 ~ 5.3 GeV

First results from genuine four-body equation
(rainbow-ladder & s waves only)

No mixing with 𝑞𝑞 yet: “pure” tetraquark

No explicit pions and diquarks here,
but results almost identical! 

 

𝜎: 400 MeV,  𝜅: 601 MeV,  𝑎₀, 𝑓₀: 785 MeV     

Fit
Mesons only
Full
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Tetraquarks

Tetraquark masses:
Heupel, GE, Fischer,  PLB 718 (2012)

Heupel, GE, Fischer,  in preparation

       ⇔ exp.  /  (500)?
      

up/down: 

strange: 

charm: 

          [ ]Quark     [ ]PS

                 [ ]Tetraquark

Mesons only
Full

                 [ ]Tetraquark

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 0.0 0.6 0.80.40.2
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0
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3
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5

6

 ~ 400 MeV
Light tetraquark because
it carries traces of the pion!

 ~ 1.2 GeV

 ~ 5.3 GeV

First results from genuine four-body equation
(rainbow-ladder & s waves only)

No mixing with 𝑞𝑞 yet: “pure” tetraquark

No explicit pions and diquarks here,
but results almost identical! 

 

2-body eqs.

4-body eq.

𝜎: 400 MeV,  𝜅: 601 MeV,  𝑎₀, 𝑓₀: 785 MeV     
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Hadron scattering

Compton scattering, 
DVCS, 2𝛾 physics

Meson photo- and
electroproduction 

Nucleon-pion
scattering 

Meson production Pion Compton 
scattering

𝑝𝑝 → 𝛾𝛾*
annihilation 

⇒  Nonperturbative description of hadron-photon and hadron-meson scattering

Can we extend this to four-body scattering processes?
GE, Fischer,  PRD 85 (2012)
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Compton scattering

Polarizabilities

Z = +1

Z = -1

∆2

4M2
= t

Σ2

M2
=

Z = +1

Z = -1

∆2

4M2

Polarizabilities

Z = +1

Z = -1

∆2

4M2
= t

Σ2

M2
= σ

Z = +1

Z = -1

∆2

4M2
=

Nucleon Compton scattering Gernot Eichmann

RCS
1

s
channel

u
channel

VCS

TCS

'  0

 0

 '

1

'  0

+1

-1

+1-1

VVCS

s=0 u=0

s>0 u>0

Figure 2: Left panel: {Q2,Q′2} plane in the variables X and Z. The abbreviations RCS, VCS, VVCS and
TCS denote real, virtual, doubly virtual and timelike Compton scattering. The colored area describes the
spacelike region. Right panel: Mandelstam plane for real Compton scattering in the variables t and Y . The
physical s−channel region corresponds to Y ≥ 1. The inserted lines visualize the resonance locations: the
t−channel scalar and pion poles (dashed), s− and u−channel nucleon poles from the Born terms (solid),
and nucleon resonances (dotted). Our Mandelstam variables s and u are shifted by −M2 compared to their
usual definition, so that s = 0 and u = 0 correspond to the nucleon pole locations.

Direct experimental information is available in the kinematic limits of real (RCS), virtual
(VCS) and doubly-virtual forward Compton scattering (VVCS), where one or several Lorentz-
invariant combinations of the photon momenta vanish, cf. Fig. 2. The structure of the scattering
amplitude in these limits is closely tied to electromagnetic gauge invariance which entails that
J̃µν = Jµν

B + Jµν is transverse with respect to the incoming and outgoing photon momenta. In
general, Jµν

B and Jµν are not individually transverse since the intermediate nucleon in Eq. (2.1)
is offshell, and the separation into a Born term and a structure part is in principle arbitrary as the
former contains also an offshell nucleon-photon vertex. In that respect it is useful to employ the
onshell Dirac form for the vertex with Dirac and Pauli form factors F1 and F2,

−iΓµ
N(Q) = F1(Q2)γµ +

iF2(Q2)

4M
[γµ , /Q] , (2.2)

since it guarantees that the Born term, and hence also the structure part, are transverse on their own
even in offshell kinematics. This is usually not true for other onshell-equivalent forms of Eq. (2.2).
Transversality and analyticity then imply that Jµν is at least linear in both photon four-momenta Q
and Q′, whereas the Born term and its irregular low-energy limit is determined by experimentally
known nucleon properties. This is the essence of the low-energy theorem for Compton scattering,
see Ref. [16] for a detailed discussion.

The structure part can now be decomposed in terms of 18 transverse tensor structures:

Jµν(P,Σ,∆) =
18

∑
i=1

Fi(t,X ,Y,Z)Tµν
i (P,Σ,∆), (2.3)

3
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Forward limit: structure functions in DIS    

Timelike region: 

Spacelike region: two-photon corrections 
to nucleon form factors, proton radius puzzle? 

pp annhihilation at PANDA

RCS, VCS: nucleon polarizabilities    

DVCS: handbag dominance, GPDs 
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 +βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS =−4αem φ 2

n (0)
∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r/(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp+m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’

Krupina & Pascalutsa,
PRL 110 (2013)
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Compton scattering
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Figure 3: Tensor basis for nucleon Compton scattering.

E+(P,P) (++)

F+(P,P) (++)

G+(P,P) (++)

G−(P,P) (−−)

Ẽ+(P,P) (−+)

F̃+(P,P) (−+)

G̃+(P,P) (−−)

G̃−(P,P) (++)

F+(P,Q) (−+)

G+(P,Q) (−+)

F−(P,Q) (+−)

G−(P,Q) (+−)

F+(Q,Q) (++)

F̃+(P,Q) (++)

G̃+(P,Q) (+−)

F̃−(P,Q) (−−)

G̃−(P,Q) (−+)

F̃+(Q,Q) (−+)

Table 1: Transverse, orthonormal tensor basis for the onshell nucleon Compton amplitude, together with the
photon-crossing and charge-conjugation symmetries for each element. The tensor structures Yi correspond
to the dressing functions Fi in Eq. (??) and the structures Yi /s to the functions Gi.

RCS: The same argument in RCS leaves only 8 independent tensor structures, of which 2
are now additionally forbidden by CC invariance (Z=0 in RCS and the antisymmetric dressing
functions must vanish). The remaining six structures can be related to those of Prange [?] or
L’vov [?]. E+(p, p) encodes the magnetic polarizability β and F+(p, p) the electric polarizability
α .

E+(p, p),
Ẽ+(p, p),

F+(p, p),
F̃+(p, p),

G+(p, p),
G̃−(p, p).

(1.12)

Forward VVCS: only four structures survive; the remaining ones are not all zero but are lin-
early dependent.

E+(p, p),
Ẽ+(p, p),

F+(p, p),
F̃+(p, p).

(1.13)

They encode the nucleon structure functions...
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Ẽ+(p, p),

F+(p, p),
F̃+(p, p),

G+(p, p),
G̃−(p, p).

(1.12)

Forward VVCS: only four structures survive; the remaining ones are not all zero but are lin-
early dependent.

E+(p, p),
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Ẽ+(p, p),

F+(p, p),
F̃+(p, p).

(1.13)

They encode the nucleon structure functions...

5

Table 1: 18-dimensional, regular tensor basis for nucleon Compton scattering as defined in Eq. (2.8); we
suppressed the Lorentz indices µν for better readability. To ensure that all dressing functions are even
in the variables Y and Z, the elements with (−+), (−−) or (+−) must be multiplied with (P · Σ) ∼ Y ,
(Σ ·∆) ∼ Z, or (P ·Σ)(Σ ·∆) ∼ Y Z, respectively. The colored boxes show which elements survive in the
various kinematic limits of RCS, VCS and forward VVCS; we also highlighted the five elements that remain
for a scalar Compton vertex.

where primed momenta are obtained from a = P, Q, Q′ ↔ a′ = P, Q′, Q. These tensors are now
symmetric or antisymmetric under photon crossing and charge conjugation, transverse with respect
to Q′µ and Qν , at least linear in both momenta, and free of kinematic singularities. They also have
a simple Dirac structure as they are either proportional to 1 or γ5. We finally define the contractions

E
µν
± (a,b) = Λ f

+E
µα,αν
± (a,b)Λi

+ ,

Ẽ
µν
± (a,b) = Λ f

+E
µα,βν
± (a,b) 1

6

[
γα ,γβ , /P

]
Λi
+ ,

(2.8)

with analogous expressions for F and G, where we have used the totally antisymmetric combination
of three γ−matrices, [A, B,C] := [A, B]C+[B,C] A+[C, A] B.

A complete, linearly independent tensor basis free of kinematic singularities is then given
by the 18 elements in Table 1. Each basis element is symmetric or antisymmetric under pho-
ton crossing and/or charge conjugation which is indicated by the signs in the brackets (the first
sign corresponds to photon crossing and the second to charge conjugation). Since the variable Y
from Eq. (2.5) is proportional to the crossing variable, it switches sign under photon crossing; the
skewness variable Z ∼ τ − τ ′ flips its sign under both operations. By attaching appropriate combi-
nations of Y and Z to the basis elements one ensures that all Lorentz-invariant dressing functions
Fi(t,X ,Y,Z) are even in both Y and Z.

A real photon has only two physical polarizations, so that a contraction with the photon polar-
ization vectors in the limits of VCS (Q′2 = 0) and RCS (Q2 = Q′2 = 0) eliminates certain tensor
structures, or makes them linearly dependent upon each other, due to the prefactors Q2 or Q′2 that
appear in the quantities tµν

QQ and tµν
Q′Q′ of Eq. (2.6). In the forward limit: Qµ = Q′µ , so that several

basis elements vanish or become redundant as well. In addition, the structures that are odd under
charge conjugation disappear in RCS and forward VVCS as they are multiplied with a factor Z = 0.
This leaves 12 independent structures for VCS, six elements for RCS, and four independent ele-
ments in the case of forward VVCS, in agreement with previous analyses. Eµν

+ (P,P) encodes the
magnetic polarizability β and F

µν
+ (P,P) the electric polarizability α . Table 1 also contains the five

spin-independent structures that appear in the Compton amplitude of a scalar particle.

5

Born terms: 
determined
by nucleon 
form factors

Polarizabilities: 
structure information 

  

  

𝑄𝑄’
= + +

𝑇

cat‘s ears diagrams

�   crossing symmetry 
�   em. gauge invariance
�   perturbative processes 
     included
�   s, t, u channel poles 
    generated in QCD

GE, Fischer,  PRD 85 (2012)and at quark level (rainbow-ladder, modulo crossing & permutation):
 

Nucleon Compton scattering amplitude at hadron level:
 

s- and u-channel
nucleon resonances: handbag diagrams +

t-channel meson poles

, , , . . .

Quark Compton vertex:

GPD
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Compton scattering
(b) (c)(a)

(b) (c)(a)

Quark Compton vertex: 

 

 

not em. gauge invariant, but comparable to ‚structure part‘ 
at nucleon level? Need tensor basis free of kin. singularities!

nucleon polarizabilities
(‘naive‘ extraction):

𝛼 � 𝛽:   dominated by handbag

𝛽:          cancellation between 
           handbag and t-channel poles?

 

GE & Fischer,  PRD 87 (2013)   -   Direct rainbow-ladder calculation: Maris, Tandy,  PRC 65 (2002)

Tarrach, Nuovo Cim. 28 (1975),    GE & Fischer,  PRD 87 (2013)  &  PoS. Conf. X (2012)

handbag diagrams + all t-channel poles (scalar, pion, ... ).
𝜋𝛾𝛾 transition form factor from residue at pion pole:
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Muon g-2

Theory uncertainty dominated by QCD:
Is QCD contribution under control? 

Hadronic 
light-by-light 
scattering

Exp: 

SM: 

QED:

Diff:

EW:
Hadronic:

VP (LO+HO)
LBL

11 659 208.9

11 658 

11 659 182.8

15.3

685.1
10.5

26.1

(6.3)

(0.0)
(0.2)

(4.3)
(2.6)    ?

(4.9)
(8.0)

471.9

]10−[10µa

Hadronic 
vacuum 
polarization

LbL amplitude: ENJL & MD model results
Bijnens 1995,  Hakayawa 1995,  Knecht 2002,  Melnikov 2004,  Prades 2009,  Jegerlehner 2009,  Pauk 2014

Jegerlehner, Ny�eler,  
Phys. Rept.  477 (2009)

=

22 8 ... 11

scalar
exchange

pseudoscalar
exchange

Quark loop axialvector
exchange

𝜋, 𝐾 loop

++ + + + . . .

−1 −2 )10−10×(

13

Apart from global factors k ·Q, the four tensor structures
corresponding to f3,4,7,8 are linear and the remaining four
are quadratic in the photon momentum.
The question remains whether Eq. (82) can be ob-

tained from a systematic construction principle. To this
end we define the quantities

tµνab := a · b δµν − bµaν ,

εµνab := γ5 ε
µναβaαbβ ,

(84)

with aµ, bµ ∈ {kµ, Qµ}. They are both regular in the
limits a → 0 or b → 0. tµνab is transverse to aµ and bν ,

aµ tµνab = 0 , tµνab bν = 0 , (85)

whereas εµνab is transverse to a and b in both Lorentz in-
dices. The usual transverse projectors can thus be writ-

ten as Tµν
Q = tµνQQ/Q

2 and Tµν
Q′ = tµνQ′Q′/Q′2.

With the help of these definitions one can generate the
basis (82) as follows. Take the four tensor structures that
are independent of the photon momentum:

γν , [γν , /k] , kν , kν/k . (86)

Contract them with tµνQQ, t
µν
Qk and εµνQk to generate eight

transverse basis elements that are kinematically indepen-
dent and linear or quadratic in the four-momentum Qµ:

tµνQQ





γν

[γν , /k]

kν

kν/k





= Q2





γµ
T

[γµ
T , /k]

kµT
kµT /k





,

tµνQk

{
γν

[γν , /k]

}
=

{
k ·Qγµ − kµ /Q

[k ·Qγµ − kµ /Q, /k]

}
,

εµνQk

{
γν

[γν , /k]

}
=

{
1
6 [γ

µ, /k, /Q]

tµνQk [γ
ν , /k]− k2 [γµ, /Q]

}
.

(87)

Instead of using tµνQk and εµνQk, one could contract the four

elements in Eq. (86) also with tµνQγ = /Q δµν − γµQν and
use commutators where necessary. However, this does
not generate any new elements:

1
2

[
tµνQγ , γ

ν
]
= − [γµ, /Q] ,

1
2

[
tµνQγ , γ

ν , /k
]
= [γµ, /k, /Q] ,

tµνQγ k
ν = −4 tµνQk γ

ν ,
[
tµνQγ k

ν , /k
]
= −tµνQk [γ

ν , /k] .

(88)

Finally, attach appropriate factors k ·Q to ensure charge-
conjugation invariance of the dressing functions.
We will henceforth use Eq. (82) as our reference basis

for the transverse part of the fermion-photon vertex. We
write it in a compact way:

τµ1 = tµνQQ γν ,

τµ2 = tµνQQ k ·Q i
2 [γ

ν , /k] ,

τµ3 = i
2 [γ

µ, /Q] ,

τµ4 = 1
6 [γ

µ, /k, /Q] ,

τµ5 = tµνQQ ikν ,

τµ6 = tµνQQ kν/k ,

τµ7 = tµνQk k ·Qγν ,

τµ8 = tµνQk
i
2 [γ

ν , /k] .

(89)

The full vertex is thus given by Eq. (74), with the trans-
verse part

− iΓµ
T (k,Q) =

8∑

i=1

fi(k
2, k ·Q,Q2) τµi (k,Q) . (90)

The dimensionful dressing functions fi(k
2, k ·Q, Q2) are

again even in k ·Q. They are kinematically independent
and can remain constant at vanishing photon momen-
tum. The basis (89) is essentially identical to Eq. (A.8)
in Ref. [53] and Eq. (A2) in Ref. [55]. The relations be-
tween our τµi and the transverse tensor structures Tµ

i in
those papers are

τ1 = −T3 ,

τ2 = − 1
2 k ·QT4 ,

τ3 = T5 ,

τ4 = T8 ,

τ5 = T1 ,

τ6 = 1
2 T2 ,

τ7 = − 1
2 k ·QT6 ,

τ8 = 1
2 T7 .

(91)

The dressing functions associated with τ3 and τ4 con-
tribute to the onshell anomalous magnetic moment,
cf. Ref. [48] and Eq. (96) below, and τ7 constitutes the
transverse part of the Curtis-Pennington vertex [56].
Finally, to obtain a connection with the nucleon’s on-

shell current, we investigate the limit where the incoming
and outgoing fermion lines are taken on the mass shell,
i.e., k2± = −m2 or

k2 = −m2 −Q2/4 , k ·Q = 0 . (92)

The onshell vertex

Jµ(k,Q) = Λf
+ Γµ(k,Q) Λi

+

∣∣∣
Eq. (92)

(93)

is sandwiched between Dirac spinors that are eigenvec-
tors of the positive-energy projectors

Λf
+ = Λ+(k+),

Λi
+ = Λ+(k−),

Λ+(p) =
1+ /̂p

2
. (94)

By virtue of the projectors, only two of the basis elements
in Eq. (89) remain independent, and the vertex can be
written in the standard form

Jµ(k,Q) = iΛf
+

(
F1 γ

µ +
iF2

4m
[γµ, /Q]

)
Λi
+ , (95)

where F1, F2 are dimensionless functions of Q2 only. Via
Eq. (74) they consist of Ball-Chiu parts and transverse
components which are related to the functions ΣA, ∆A,
∆B and fj in the onshell limit:

F1(Q
2) = A(−m2) + 2m

[
B′(−m2)−mA′(−m2)

]

+Q2

[
f1 −m (f5 +mf6)−

f4 −mf8
2

] ∣∣∣∣∣
Eq. (92)

,

F2(Q
2)

2m
= f3 −mf4 −

[
B′(−m2)−mA′(−m2)

]

+
Q2

2

[
f5 +mf6 −

f8
2

] ∣∣∣∣∣
Eq. (92)

.

(96)

Muon anomalous magnetic moment: 

)p(u
]

m2
νq

µνσ
)2q(2F–µγ)2q(1F

[
)′p(ūie

𝑞
〉H|)2x(ψ̄)1x(T ψ|0〈) =2, x1x(χ

𝑝’ 𝑝

total SM prediction deviates from exp. by ~3σ
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LbL amplitude at quark level, derived from gauge invariance:
GE, Fischer,  PRD 85 (2012),   Goecke, Fischer, Williams, PRD 87 (2013)

need to understand
structure of amplitude

no double-counting, 
gauge invariant!

Jegerlehner, Ny�eler,  
Phys. Rept.  477 (2009)

= + 𝑇 =

quark 
Compton vertex

Born terms GE et al.,  in preparation
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Apart from global factors k ·Q, the four tensor structures
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are quadratic in the photon momentum.
The question remains whether Eq. (82) can be ob-

tained from a systematic construction principle. To this
end we define the quantities

tµνab := a · b δµν − bµaν ,

εµνab := γ5 ε
µναβaαbβ ,

(84)

with aµ, bµ ∈ {kµ, Qµ}. They are both regular in the
limits a → 0 or b → 0. tµνab is transverse to aµ and bν ,

aµ tµνab = 0 , tµνab bν = 0 , (85)

whereas εµνab is transverse to a and b in both Lorentz in-
dices. The usual transverse projectors can thus be writ-

ten as Tµν
Q = tµνQQ/Q

2 and Tµν
Q′ = tµνQ′Q′/Q′2.

With the help of these definitions one can generate the
basis (82) as follows. Take the four tensor structures that
are independent of the photon momentum:

γν , [γν , /k] , kν , kν/k . (86)

Contract them with tµνQQ, t
µν
Qk and εµνQk to generate eight

transverse basis elements that are kinematically indepen-
dent and linear or quadratic in the four-momentum Qµ:

tµνQQ





γν

[γν , /k]

kν

kν/k





= Q2





γµ
T

[γµ
T , /k]

kµT
kµT /k





,

tµνQk

{
γν

[γν , /k]

}
=

{
k ·Qγµ − kµ /Q

[k ·Qγµ − kµ /Q, /k]

}
,

εµνQk

{
γν

[γν , /k]

}
=

{
1
6 [γ

µ, /k, /Q]

tµνQk [γ
ν , /k]− k2 [γµ, /Q]

}
.

(87)

Instead of using tµνQk and εµνQk, one could contract the four

elements in Eq. (86) also with tµνQγ = /Q δµν − γµQν and
use commutators where necessary. However, this does
not generate any new elements:

1
2

[
tµνQγ , γ

ν
]
= − [γµ, /Q] ,

1
2

[
tµνQγ , γ

ν , /k
]
= [γµ, /k, /Q] ,

tµνQγ k
ν = −4 tµνQk γ

ν ,
[
tµνQγ k

ν , /k
]
= −tµνQk [γ

ν , /k] .

(88)

Finally, attach appropriate factors k ·Q to ensure charge-
conjugation invariance of the dressing functions.
We will henceforth use Eq. (82) as our reference basis

for the transverse part of the fermion-photon vertex. We
write it in a compact way:

τµ1 = tµνQQ γν ,

τµ2 = tµνQQ k ·Q i
2 [γ

ν , /k] ,

τµ3 = i
2 [γ

µ, /Q] ,

τµ4 = 1
6 [γ

µ, /k, /Q] ,

τµ5 = tµνQQ ikν ,

τµ6 = tµνQQ kν/k ,

τµ7 = tµνQk k ·Qγν ,

τµ8 = tµνQk
i
2 [γ

ν , /k] .

(89)

The full vertex is thus given by Eq. (74), with the trans-
verse part

− iΓµ
T (k,Q) =

8∑

i=1

fi(k
2, k ·Q,Q2) τµi (k,Q) . (90)

The dimensionful dressing functions fi(k
2, k ·Q, Q2) are

again even in k ·Q. They are kinematically independent
and can remain constant at vanishing photon momen-
tum. The basis (89) is essentially identical to Eq. (A.8)
in Ref. [53] and Eq. (A2) in Ref. [55]. The relations be-
tween our τµi and the transverse tensor structures Tµ

i in
those papers are

τ1 = −T3 ,

τ2 = − 1
2 k ·QT4 ,

τ3 = T5 ,

τ4 = T8 ,

τ5 = T1 ,

τ6 = 1
2 T2 ,

τ7 = − 1
2 k ·QT6 ,

τ8 = 1
2 T7 .

(91)

The dressing functions associated with τ3 and τ4 con-
tribute to the onshell anomalous magnetic moment,
cf. Ref. [48] and Eq. (96) below, and τ7 constitutes the
transverse part of the Curtis-Pennington vertex [56].
Finally, to obtain a connection with the nucleon’s on-

shell current, we investigate the limit where the incoming
and outgoing fermion lines are taken on the mass shell,
i.e., k2± = −m2 or

k2 = −m2 −Q2/4 , k ·Q = 0 . (92)

The onshell vertex

Jµ(k,Q) = Λf
+ Γµ(k,Q) Λi

+

∣∣∣
Eq. (92)

(93)

is sandwiched between Dirac spinors that are eigenvec-
tors of the positive-energy projectors

Λf
+ = Λ+(k+),

Λi
+ = Λ+(k−),

Λ+(p) =
1+ /̂p

2
. (94)

By virtue of the projectors, only two of the basis elements
in Eq. (89) remain independent, and the vertex can be
written in the standard form

Jµ(k,Q) = iΛf
+

(
F1 γ

µ +
iF2

4m
[γµ, /Q]

)
Λi
+ , (95)

where F1, F2 are dimensionless functions of Q2 only. Via
Eq. (74) they consist of Ball-Chiu parts and transverse
components which are related to the functions ΣA, ∆A,
∆B and fj in the onshell limit:

F1(Q
2) = A(−m2) + 2m

[
B′(−m2)−mA′(−m2)

]

+Q2

[
f1 −m (f5 +mf6)−

f4 −mf8
2

] ∣∣∣∣∣
Eq. (92)

,

F2(Q
2)

2m
= f3 −mf4 −

[
B′(−m2)−mA′(−m2)

]

+
Q2

2

[
f5 +mf6 −

f8
2

] ∣∣∣∣∣
Eq. (92)

.

(96)

Muon anomalous magnetic moment: 

)p(u
]

m2
νq

µνσ
)2q(2F–µγ)2q(1F

[
)′p(ūie

𝑞
〉H|)2x(ψ̄)1x(T ψ|0〈) =2, x1x(χ

𝑝’ 𝑝

total SM prediction deviates from exp. by ~3σ
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Summary  

Interplay between experiment and theory:

Progress in calculating hadron properties from the quark-gluon level

Progress in going beyond rainbow-ladder 
(necessary for ‘p waves’, excited states, etc.)

Rainbow-ladder ok for meson (0-, 1-, ...) and baryon (1/2+, 3/2+) ground states: 
masses, electromagnetic properties

Hadron masses, wave functions, form factors and 
scattering amplitudes from QCD

Refined tools for understanding fundamental
properties of QCD from experiment

PANDA will play important role.

Interesting physics encoded in higher n-point functions:
Compton scattering, light-by-light amplitude, ...

Gernot Eichmann (Uni Giessen) Sep 30, 2014 23 / 23
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