

Global fits and impact of TMD evolution: DISCUSSION Alexei Prokudin

they.

न के का CD Evolution Workshop

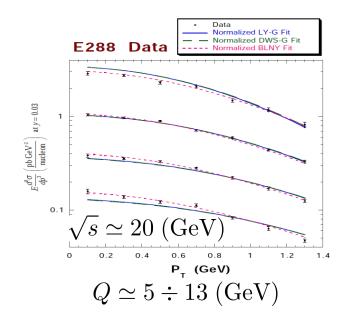
Santa Fe, May 12 – 16, 2014

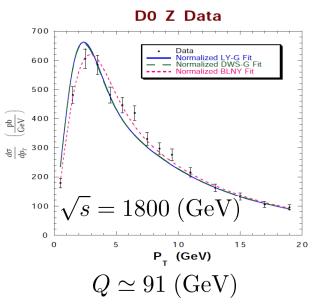
Next year QCD Evolution 2015, May 2015!

Talks

Talks related to TMD evolution up to Tuesday:

- Mauro Anselmino
- Stefano Melis
- John Collins
- Werner Vogelsang
- Leonard Gamberg
- Ignazio Scimemmi
- Frederik Van der Veken
- Miguel Echevarria
- Marc Schlegel
- Dennis Sivers
- Oleg Teryaev
- ... many more talks later this week


TMD evolution: promise


TMD evolution connects both different values of Q^2 and different values of energy.

TMD evolution = CSS evolution and is well developed since 80s.

TMD formalism smoothly matches to collinear formalism.

Part of evolution is universal in all processes.

Landry, Brock, Nadolsky, Yuan (2002)

Jefferson Lab

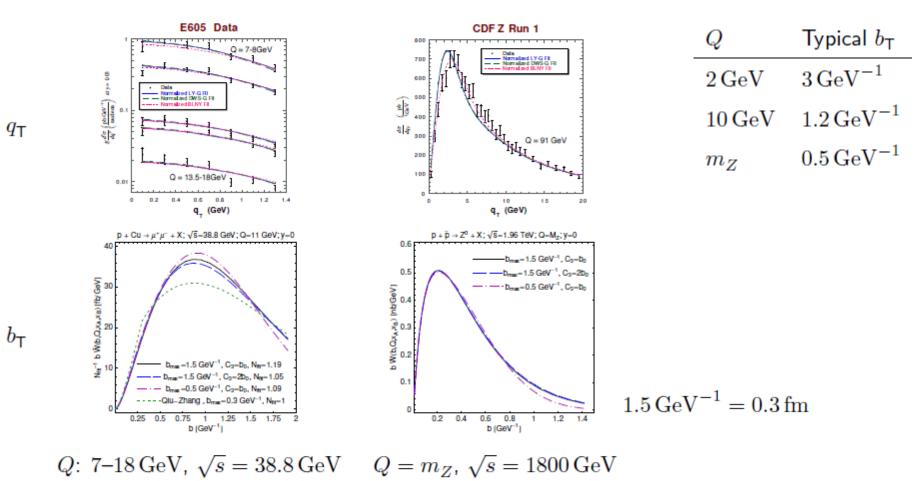
TMD evolution details CSS evolution **Stefano Melis** $\frac{1}{\sigma_0} \frac{d\sigma}{dQ^2 dy dq_T^2} = \int \frac{d^2 \boldsymbol{b}_T e^{i\boldsymbol{q}_T \cdot \boldsymbol{b}_T}}{(2\pi)^2} \sum_j e_j^2 W_j(x_1, x_2, b_T, Q) + Y(x_1, x_2, q_T, Q)$ Soft gluon emissions resummed in b-space Matching to LO, NLO QCD $W_j(x_1, x_2, b_T, Q) = \exp\left[S_j(b_T, Q)\right] \sum C_{ji} \otimes f_i(x_1, C_1^2/b_T^2) \ C_{\bar{j}k} \otimes f_k(x_2, C_1^2/b_T^2)$ Sudakov factor $S_j(b_T, Q) = \int_{C^2/b^2}^{Q^2} \frac{d\kappa^2}{\kappa^2} \left[A_j(\alpha_s(\kappa)) \ln\left(\frac{Q^2}{\kappa^2}\right) + B_j(\alpha_s(\kappa)) \right]$ $C_1 = 2\exp(-\gamma_E)$ (1)

$$A_{j}(\alpha(\mu)) = \sum_{n=1}^{\infty} \left(\frac{\alpha_{s}}{2\pi}\right)^{n} A_{j}^{(n)} \qquad \text{Leading Log (LL) : } A^{(1)};$$

$$A_{j}(\alpha(\mu)) = \sum_{n=1}^{\infty} \left(\frac{\alpha_{s}}{2\pi}\right)^{n} B_{j}^{(n)} \qquad \text{Next to LL (NLL) : } A^{(2)}, B^{(1)}, C^{(1)};$$

$$Next \text{ to NLL (NNLL) : } A^{(3)}, B^{(2)}, C^{(2)};$$

Fixed order $\alpha_{s}(FXO)$: $A^{(1)}, B^{(1)}, C^{(1)};$



TMD evolution details

Geography of evolution of cross section

John Collins

(Adapted from Landry et al., PRD 67,073016 (2003), Konychev & Nadolsky, PLB 633, 710 (2006))

TMD evolution non-perturbative input

Non-perturbative Sudakov form factor

 $F_{NP}(x_1, x_2, b_T, Q)$ Brock-Landry-Nadolsky-Yuan (BLNY)

$$\exp\left[-g_{1}-g_{2}\ln\left(\frac{Q}{2Q_{0}}\right)-g_{1}g_{3}\ln(100x_{1}x_{2})\right]b^{2}$$

 $\exp\left\{\left[-g_{1}-g_{2}\ln\left(\frac{Q}{2Q_{0}}\right)\right]b^{2}-\left[g_{1}g_{3}\ln(100x_{1}x_{2})\right]b\right\};$

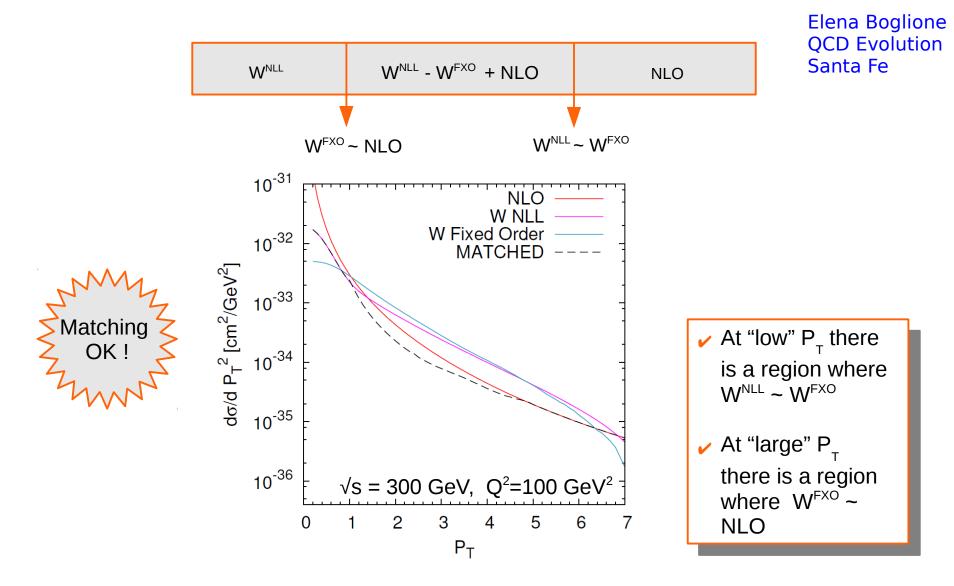
$$g_K(b_T; b_{\max}) = \frac{g_2(b_{\max})b_{\rm NP}^2}{2}\ln\left(1 + \frac{b_T^2}{b_{\rm NP}^2}\right)$$

$$g_2 \ln(b_T/b^*)$$

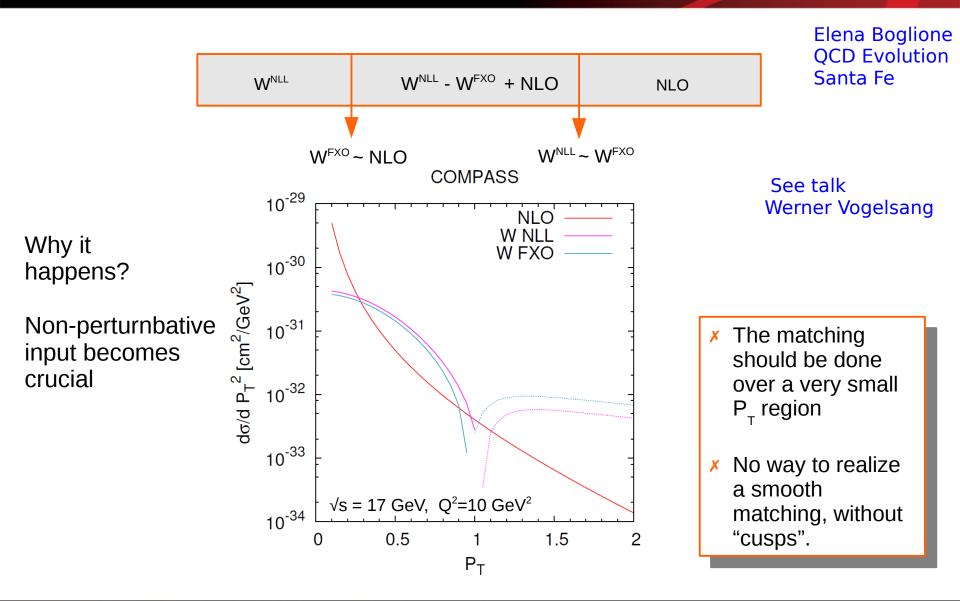
Non-perturbative input for TMDs

$$F_{NP}(b_T, Q)^{\text{pdf}} = \exp\left[-b_T^2 \left(g_1^{\text{pdf}} + \frac{g_2}{2}\ln(Q/Q_0)\right)\right]$$
$$F_{NP}(b_T, Q)^{\text{ff}} = \exp\left[-b_T^2 \left(g_1^{\text{ff}} + \frac{g_2}{2}\ln(Q/Q_0)\right)\right]$$

Gaussian ansatz works very well. Justified theoretically?



CSS


Stefano Melis

A case when matching works ...

COMPASS ... a case matching does not work

Phenomenology

	SIDIS	Stefano Melis DY
≻Anselmino et al: Gaussian	Yes	
≻SBRS*: Gaussian	Yes	
≻Sun-Yuan: TMD EVO I/O+ Modified Sudakov	Yes	Yes
EIKV**: TMD Evo a la CSS+ C at LO	Yes	Yes
>AEMS***: TMD Evo a la CSS		Yes
≻AFGR****: TMD Evo	Yes?	

*Signori-Bacchetta-Radici-Schnell **Echivarria-Idilbi-Kang-Vitev

D'Alesio-Echevarria-Melis-Scimemi *Aidala-Field-Gamberg-Rogers

Unpolarized phenomenology Sivers

	Can describe SIDIS	Stefano Melis unpolarized DY
>Aybat-Roger-Prokudin: TMD EVO I/O	No	No
Anselmino-Boglione-Melis: Gaussian	Maybe	Maybe No High energy
>Anselmino-Boglione-Melis: TMD EVO I/O	No	No
≻Sun-Yuan: TMD EVO IO+ Modified Sudako	V No Hermes YES/Maybe Co	Yes low energy OMPASS No High energy
EIKV*: TMD Evo a la CSS+ C at LO	No Hermes YES/Maybe Co	YES OMPASS

TMD evolution: some open questions

... for phenomenology

What is the optimal shape for non-perturbative input?

What is the shape of non-perturbative Sudakov form factor?

What is the best way to avoid Landau pole? b*, complex b, etc

What about matching?

What data can we actually use in our analysis?

...etc

Conclusions

