XXVII Rencontres de Physique de la Vallée d'Aoste

Heavy-flavor production and spectroscopy at CMS

Nicola Pozzobon

on behalf of the CMS Collaboration

introduction

- measurements of heavy-flavor (HF) production provide a testing ground for QCD calculations in a new energy regime
 - NLO contributions dominate at LHC, large uncertainties remain due to factorization and renormalization scales
- b-flavor identification is crucial in many searches
 - SM backgrounds must be understood
 - measurements of *b*-hadron properties provide important tests of the SM: any deviation would be indirect indication of New Physics
- this contribution will report on the most recent results in the field of HF measurements with the CMS experiment
 - measurement of X(3872) production cross section
 - measurement of Λ_b lifetime
 - observation of $B^+_c \rightarrow J/\psi \ \pi^+$ and $B^+_c \rightarrow J/\psi \ \pi^+ \ \pi^- \ \pi^+$
 - observation of structures in $B^+ \rightarrow J/\psi \phi K^+$
 - observation of a new Ξ_b baryon

The Large Hadron Collider

proton-proton collisions

- 2009: $\sqrt{s} = 0.9$, 2.76 TeV
- 2010, 2011: $\sqrt{s} = 7 \text{ TeV}$
- 2012: Vs = 8 TeV

dedicated Pb-Pb and p-Pb runs

http://lpc.web.cern.ch/lpc/

The CMS Experiment

- 1. Pixel Detector
- 2. Silicon Strip Tracker
- 3. Electromagnetic Calorimeters $|\eta| < 3$
- 4. Hadronic Calorimeters $|\eta| < 5$
- 5. 3.8 T Superconducting Solenoid

6. Muon Detectors $|\eta|$ < 2.4

Muon + Track
p_T resolution < 1.5 %
(p_T < 100 GeV)

submitted to JINST arXiv:1206.4071

CMS-PAS-TRK-10-005

https://twiki.cern.ch/twiki/bin/view/ CMSPublic/DPGResultsTRK

7. Return Yoke

in data taking and reconstruction

recorded 21.79 fb⁻¹ out of 23.3 fb⁻¹ delivered

in 2012

4

JINST 3 (2008) S08004

X(3872) production cross section

introduction and previous studies

- first observation in 2003 at Belle
 - the first spectroscopy puzzle: unexpected charmonium candidate, picture still unclear about its nature
 - observed in several decay channels also at BaBar, CDF, D0 and LHC experiments
- angular analysis favors J^{PC} = 1⁺⁺ or 2⁻⁺
- produced promptly and in *B*-decays, quantitative predictions in NRQCD *in the hypothesis that X(3872) is standard charmonium*

submitted to JHEP arXiv:1302.3968

data sample

- 4.8 fb⁻¹ of 2011 pp collision data at $\sqrt{s} = 7$ TeV
 - prompt J/ψ dimuon triggers

event selection

- X(3872) → J/ψ $π^+π^-$
 - $J/\psi \rightarrow \mu^+ \mu^$
 - opposite-sign muon-pair with central rapidity, consistent with J/ψ mass
 - track selection: stringent quality criteria
 - $p_T(J/\psi \pi^+\pi^-)$ in (10, 50) GeV range, $|\eta(J/\psi \pi^+\pi^-)| < 1.2$
 - 4-track vertex refit with common vertex and dimuon mass constraints

X(3872) production cross section

analysis

- signal yield from unbinned maximum-likelihood fit for each resonance (Gaussian signal + polynomial background) in 5 different $p_T(J/\psi \pi^+\pi^-)$ bins
- cross section × BR measured by comparison with analogous $\psi(2S)$ decay: $R = N_{X(3872)} A_{\psi(2S)} \epsilon_{\psi(2S)} / N_{\psi(2S)} A_{X(3872)} \epsilon_{X(3872)}$
 - corrections and efficiency factors calculated from MC assuming unpolarized resonance and J^{PC} = 1⁺⁺

backgrounds

- random track combinatorial background is reduced with $\Delta R(J/\psi, \pi) < 0.55$
- good primary vertex selection → result is not sensitive to pileup

major systematics

- pion-pair efficiency: taken from different yields in $\psi(2S) \rightarrow J/\psi \ \pi^+\pi^-$ and $\psi(2S) \rightarrow \pi^+\pi^-$, 1 % to 5 % with decreasing pion-pair p_T
- X(3872) p_T spectrum: 1-7 % to 11 % with decreasing p_T
- ψ (2S) p_T spectrum: 1-7 % to 11 % with decreasing p_T
- dimuon efficiencies tend to cancel in the ratio: < 1%

example: signal yield from fit to invariant mass in two p_T bins

X(3872) production cross section

results

- differential cross section ratio R as a function of the X(3872) p_T
- $R = N_{X(3872)} A_{\psi(2S)} \varepsilon_{\psi(2S)} / N_{\psi(2S)} A_{X(3872)} \varepsilon_{X(3872)}$

- prompt fraction: pseudoproper decay-length larger than 0.1 mm retains 80 % of non-prompt X(3872) while contamination from prompt candidates is less than 0.1 %
- measurement of prompt X(3872) production cross section from R and prompt $\psi(2S)$ cross section

such a difference from predicted values means this is not standard charmonium

∧_b lifetime

introduction

- complementary to cross section measurement to understand the models behind HF production
 - lifetime predicted by non-perturbative models
- topology similar to $B \rightarrow J/\psi \ K^0_S (\pi^+\pi^-)$
 - accurate measurement of B lifetime used to validate the procedure

data sample

- 5.0 fb⁻¹ of 2011 pp collision data at $\sqrt{s} = 7$ TeV
 - displaced-vertex J/ψ dimuon trigger in central region

BPH-11-013, presented at HCP 2012

event selection

- - $J/\psi \rightarrow \mu^+ \mu^$
 - opposite-sign muon-pair with central rapidity, consistent with J/ψ mass, high-quality track
 - $\wedge \rightarrow p \pi^-$
 - Λ from opposite-sign charged tracks, "proton" hypothesis assigned to the highest momentum track in the pair
 - K^{0}_{S} ($\pi^{+}\pi^{-}$) hypothesis is tested and event is rejected, if candidate mass is close to m(K^{0}_{S})
 - J/ψ and Λ candidates common vertex refit, dimuon mass constraint, proton-pion mass constraint

∧_b lifetime

analysis

- Λ_b lifetime and mass simultaneously extracted from unbinned maximum-likelihood fit
- B lifetime and mass as a control measurement

backgrounds

- prompt background (combinatorial)
- non-prompt background: different *b* hadrons with wrong mass assumptions for tracks, incompletely reconstructed decays

main systematics

- detector alignment
- efficiency as a function of proper decay time
- fit model

results

- Λ_b lifetime = 1.503 ±0.052 (stat) ±0.031 (syst) ps
 - world average value: 1.425 ±0.032 ps
 - *B* lifetime: 1.526 ±0.019 ps

Observation of $B^+_c \rightarrow J/\psi \ \pi^+$ and $B^+_c \rightarrow J/\psi \ \pi^+ \ \pi^- \ \pi^+$

introduction and previous studies

- unique probe for heavy-quark dynamics not accessible to $b\overline{b}$ or $c\overline{c}$ bound states
 - ground state of two different bound heavy quarks with competing decay modes
- measurement of lifetime and branching fraction would help in understanding the decay dynamics
- ► $B^+_c \rightarrow J/\psi \pi^+ \pi^- \pi^+$ first observed at LHCb, CMS measurement is the only experimental confirmation so far

data sample

- 4.7 fb⁻¹ of 2011 pp collision data at $\sqrt{s} = 7 \text{ TeV}$
 - displaced-vertex J/ψ dimuon triggers

event selection

- $B^{+}_{c} \rightarrow J/\psi \ \pi^{+}, B^{+}_{c} \rightarrow J/\psi \ \pi^{+} \ \pi^{-} \ \pi^{+}$
 - $J/\psi \rightarrow \mu^+ \mu^$
 - opposite-sign muon-pair with central rapidity, consistent with J/ψ mass, high-quality track
 - 1 or 3 additional tracks, assumed to be pions
 - largest- $p_T B^+_c$ candidate retained
 - $p_T(B^+_c) > 10 \text{ GeV}, |\eta(B^+_c)| < 1.6$
- $B^+_c \rightarrow J/\psi \ \pi^+ \text{ and } B^+_c \rightarrow J/\psi \ \pi^+ \ \pi^- \ \pi^+ \text{ specific}$ based on 3D secondary-vertex significance

CMS-PAS-BPH-11-003

Observation of $B^+_c \rightarrow J/\psi \ \pi^+$ and $B^+_c \rightarrow J/\psi \ \pi^+ \ \pi^- \ \pi^+$

analysis

- signal yield from binned maximum-likelihood fit to invariant-mass distributions
- signal yield from fit to invariant mass for the 1-pion and 3-pions decay modes

results

- number of observed decays (measured yields)
 - $B^{+}_{c} \rightarrow J/\psi \ \pi^{+}$: 330 ±36 (stat) ±23 (syst), **S/V(S+B) = 10.5**
 - $B^{+}_{c} \rightarrow J/\psi \ \pi^{+} \ \pi^{-} \ \pi^{+}$: 108 ±19 (stat) ±14 (syst), S/V(S+B) = 6.1

Structures in $J/\psi \phi$ spectrum from $B^+ \rightarrow J/\psi \phi K^+$

introduction and previous studies

- conventional quark model is unable to explain charmonium-like states discovered over last decade
 - charmed hybrids? tetraquarks? molecular states?
- CDF studied $B^+ \rightarrow J/\psi \phi K^+$ in 2009
 - narrow structure near J/ψ threshold with 5 σ significance: Y(4140) m = 4143.4 +2.0 (stat) ±1.2 (syst) MeV, Γ = 15.3 +10.4 (stat) ±2.5 (syst) MeV
 - exotic state candidate
- analogous searches at Belle (inconclusive, but found another structure around 4.38 GeV) and LHCb (in conflict with CDF)
 - independent results may clarify the status

event selection

- $B^+ \rightarrow J/\psi \phi K^+$
 - $J/\psi \rightarrow \mu^+\mu^-$
 - $\phi \rightarrow K^+ K^-$
 - muon pair combined with three additional tracks with total charge ±1 and kaon mass assigned
 - ϕ candidate is the lowest-mass opposite-sign pair (if mass is compatible with the ϕ mass)

data sample

- 5.2 fb⁻¹ of 2011 pp collision data at $\sqrt{s} = 7$ TeV
 - displaced-vertex J/ψ dimuon triggers

BPH-11-026, presented at HCP 2012

Structures in $J/\psi \phi$ spectrum from $B^+ \rightarrow J/\psi \phi K^+$

analysis

- $\Delta m = m(\mu^+\mu^-K^+K^-) m(\mu^+\mu^-) as sensitive variable$
- Δm distributions must be corrected for phase-space effects
- observed structures are modeled by S-wave relativistic Breit-Wigner functions (convolved with Gaussian resolution, width constrained to value from simulation)

backgrounds

- misidentified $B^+ \rightarrow J/\psi f^0(980) K^+$ is negligible
- non-resonant $B^+ \rightarrow J/\psi \ K^+ \ K^- \ K^+$ is negligible
- combinatorial from misidentified $B^0_s \rightarrow \psi(2S) \phi \rightarrow J/\psi \pi^+\pi^-\phi$ is rejected with $\Delta m = m(\mu^+\mu^-K^+K^-) m(\mu^+\mu^-) > 1.568$ GeV cut

- confirmation of CDF result with structure 1
- angular analysis would help in understanding the nature of these structures

Observation of a new Ξ_b baryon

introduction and previous studies

- several predicted baryons with beauty and strange valence quarks
 - Ξ_b ground state: $J^P = 1/2^+$
 - Ξ'_b : $J^P = 1/2^+$
 - $= *_b: J^p = 3/2^+$
 - two states with negative P
- \succeq Ξ_b candidates observed at the Tevatron
 - quantum numbers not probed yet

data sample

- 5.3 fb⁻¹ of 2011 pp collision data at $\sqrt{s} = 7 \text{ TeV}$
 - displaced-vertex J/ψ dimuon triggers

event selection

- decays reconstructed with quality criteria as in previously described measurements
- $= \pm^{*0}_{b} \rightarrow \pm^{-}_{b} \pi^{+}$
 - $= \Xi^-_b \rightarrow J/\psi \equiv^-$
 - $J/\psi \rightarrow \mu^+\mu^-$
 - $\equiv^- \rightarrow \wedge \pi^-$
 - $\wedge \rightarrow p \pi^-$
- three secondary vertices in the full event reconstruction
- K_S contamination removed with invariant-mass constraints

Phys. Rev. Lett. 108 (2012) 252002

Observation of a new Ξ_b baryon

analysis

- signal yield from unbinned maximum-likelihood fit to $Q = m(J/\psi \Xi^- \pi^+) m(J/\psi \Xi^-) m(\pi^+)$
 - combinatorial background modeled with wrong-sign pion and Ξ_b candidates
 - measured distributions are used to generate uncorrelated momenta of same-sign candidates to calculate Q
 - simulation of exclusive decays of b hadrons to evaluate the impact of partially reconstructed decays

systematics

 background evaluation from wrong-sign candidates: different parameterizations of measured distributions are used

results

- first observation: **6.9** σ significance
- $m = 5945.0 \pm 0.7 \text{ (stat)} \pm 2.7 \text{ (PDG } \Xi_b \text{ mass)} \text{ MeV}$
 - given mass and decay mode, this baryon is a candidate Ξ^*_b with $J^p = 3/2^+$

Q: background from wrong-sign pion and Ξ_b candidates

Q: signal and background

remarks concluding

- the LHC excellent performance in 2010 and 2011 allowed CMS and the other LHC experiments to perform high-quality studies in heavy-flavor physics
- excellent performance of CMS tracker and muon detectors was crucial in studying heavy-flavor physics in fully reconstructed decays of b hadrons
 - new results in exotic quarkonia: X(3872)
 - new results in properties of b hadrons: Λ_b and B^+_c
 - observation of new hadrons and structures: Ξ^*_b and $B^+ \rightarrow J/\psi \phi K^+$

https://twiki.cern.ch/twiki/bin/view/CMSPublic/PhysicsResultsBPH

backup

references

- **♦** *X*(3872) production
 - ✓ presented at HCP 2012, submitted to *JHEP*, preprint available at *arXiv:1302.3968*
- \wedge Λ_b lifetime
 - ✓ presented at HCP 2012
- observation of $B^+_c \to J/\psi \ \pi^+$ and $B^+_c \to J/\psi \ \pi^+ \ \pi^- \ \pi^+$
 - ✓ presented at ICHEP 2012, CMS pubic analysis summary available at CERN Document Server as CMS-PAS-BPH-11-003
- observation of structures in $B^+ \rightarrow J/\psi \phi K^+$
 - ✓ presented at HCP 2012
- ♦ observation of a new ∃_b baryon
 - ✓ presented at FPCP 2012, *Phys. Rev. Lett.* **108** (2012) 252002

∧_b production cross section

introduction and previous studies

- first measurement of the production cross section of a b baryon, from fully reconstructed $J/\psi \wedge decays$
- predictions from perturbative QCD at NLO
- understanding the production rates for *b* hadrons: essential for accurate estimates of HF backgrounds for various searches (H, SUSY, etc.)
 - pp initial state at the LHC allows tests of baryon transport models, which predict rapiditydependent antibaryon/baryon asymmetries, in contrast to baryon-antibaryon pair production

data sample

- 1.9 fb⁻¹ of 2011 pp collision data at $\sqrt{s} = 7$ TeV
 - J/ψ dimuon trigger with dimuon p_T > 7 GeV
 - displaced J/ψ vertex at trigger level

event selection

- - $J/\psi \rightarrow \mu^+\mu^$
 - single muon $p_T > 3.5 \text{ GeV}$, $|\eta| < 2.2$
 - track selection based on stringent quality criteria
 - $J/\psi \rightarrow \mu^+\mu^-$ vertex and mass constraints
 - $\wedge \rightarrow p \pi^{-}$
 - Λ from opposite-sign charged tracks
 - "proton" hypothesis assigned to the higher momentum track in the pair, $p_T > 1.0$ GeV
 - Λ → p π vertex and mass constraints
 - J/ψ and Λ candidates common vertex refit, dimuon mass constraint, proton-pion mass constraint
 - $p_T(J/\psi p \pi^-) > 10 \text{ GeV}, |y(J/\psi p \pi^-)| < 2.0$
- ✓ presented at Moriond 2012, *Phys. Lett. B* **714** (2012) 136-157

∧_b production cross section

backgrounds

dominated by non-prompt J/ψ production in B decays, rejected with J/ψ Λ invariant mass constraints

analysis

- particle-antiparticle separation with proton-pion charge
 - separate selection efficiencies
- yields are extracted from unbinned extended maximumlikelihood fits to $J/\psi \wedge I$ invariant mass in bins of p_T and |y|

systematics

- relevant for both cross section and cross section ratio
 - signal-shape uncertainty
 - background-shape uncertainty
 - G4 simulation of antiproton interaction
 - detector material
 - simulated sample size
 - relevant only for cross section
 - reconstruction and selection efficiencies
 - Λ_b kinematics and polarization
 - pileup luminosity
 - p_T and |y| bin size

∧_b production cross section

additional comments

- cross section measurement is complemented by cross section ratio between baryon and anti-baryon
- \triangleright comparison with measured p_T spectra of B mesons
- comparison with LO and NLO predictions
 - the measured Λ_b spectrum decreases faster than both the prediction and the measured p_T spectra of B mesons

b-hadron p_T spectra

- ▶ comparison of CMS results for *b*-hadron production versus p_T : data are fit to the Tsallis function (C = normalization, T = shape, m = hadron mass)
- ► T dominates at low p_T (exponential) and is fixed to the mean value from fit to B^+ and B^0
- ightharpoonup n dominates at high p_T (power law)
- larger n value for Λ_b : more steeply falling p_T distribution than observed for the mesons
 - this suggests that the production of Λ_b baryons, relative to B mesons, varies as a function of p_T , with a larger Λ_b/B ratio at lower p_T

$$\frac{1}{N}\frac{\mathrm{d}N}{\mathrm{d}p_{\mathrm{T}}} = Cp_{\mathrm{T}}\left[1 + \frac{\sqrt{p_{\mathrm{T}}^2 + m^2} - m}{nT}\right]^{-n}$$

