Hadronic Light-by-Light Scattering and the Muon $g-2$

Peter Stoffer

in collaboration with G. Colangelo, M. Hoferichter and M. Procura
arXiv:1506.01386 [hep-ph] (submitted to JHEP),
JHEP 09 (2014) 091 [arXiv:1402.7081 [hep-ph]]

Helmholtz-Institut für Strahlen- und Kernphysik
University of Bonn

2nd July 2015

The $8^{\text {th }}$ International Workshop on Chiral Dynamics 2015, Pisa

Outline

(1) Introduction

(2) Lorentz Structure of the HLbL Tensor
(3) Mandelstam Representation
(4) Conclusion and Outlook

Overview

(1) Introduction

The Anomalous Magnetic Moment of the Muon Hadronic Light-by-Light Scattering
(2) Lorentz Structure of the HLbL Tensor
(3) Mandelstam Representation
(4) Conclusion and Outlook

Magnetic moment

- relation of spin and magnetic moment of a lepton:

$$
\vec{\mu}_{\ell}=g_{\ell} \frac{e}{2 m_{\ell}} \vec{s}
$$

g_{ℓ} : Landé factor, gyromagnetic ratio

- Dirac's prediction: $g_{e}=2$
- anomalous magnetic moment: $a_{\ell}=\left(g_{\ell}-2\right) / 2$
- helped to establish QED and QFT as the framework for elementary particle physics
- today: probing not only QED but entire SM
a_{μ} : comparison of theory and experiment

a_{μ} : theory vs. experiment
- discrepancy between SM and experiment $\sim 3 \sigma$
- hint to new physics?
- new experiments (FNAL, J-PARC) aim at reducing the experimental error by a factor of 4
- theory error completely dominated by hadronic effects
- hadronic vacuum polarisation responsible for largest uncertainty, but will be systematically improved with better data input

Hadronic light-by-light (HLbL) scattering

- up to now only model calculations
- lattice QCD not yet competitive
- uncertainty estimate based rather on consensus than on a systematic method
- will dominate theory error in a few years

Overview

(1) Introduction

(2) Lorentz Structure of the HLbL Tensor Tensor Decomposition Master Formula for $(g-2)_{\mu}$
(3) Mandelstam Representation
(4) Conclusion and Outlook

How to improve HLbL calculation?

- make use of unitarity, analyticity, gauge invariance and crossing symmetry
- relate HLbL to experimentally accessible quantities

The HLbL tensor

- object in question: $\Pi^{\mu \nu \lambda \sigma}\left(q_{1}, q_{2}, q_{3}\right)$
- a priori 138 Lorentz structures
- gauge invariance: 95 linear relations
\Rightarrow (off-shell) basis: 43 independent structures
- in 4 space-time dimensions: 2 more linear relations
$\Rightarrow 41$ helicity amplitudes
- six dynamical variables, e.g. two Mandelstam variables

$$
s=\left(q_{1}+q_{2}\right)^{2}, \quad t=\left(q_{1}+q_{3}\right)^{2}
$$

and the photon virtualities $q_{1}^{2}, q_{2}^{2}, q_{3}^{2}, q_{4}^{2}$

HLbL tensor: Lorentz decomposition

Problem: find a decomposition

$$
\Pi^{\mu \nu \lambda \sigma}\left(q_{1}, q_{2}, q_{3}\right)=\sum_{i} T_{i}^{\mu \nu \lambda \sigma} \Pi_{i}\left(s, t, u ; q_{j}^{2}\right)
$$

with the following properties:

- Lorentz structures $T_{i}^{\mu \nu \lambda \sigma}$ manifestly gauge invariant
- scalar functions Π_{i} free of kinematic singularities and zeros

HLbL tensor: Lorentz decomposition
Recipe by Bardeen, Tung (1968) and Tarrach (1975):

- apply gauge projectors to the 138 initial structures:

$$
I_{12}^{\mu \nu}=g^{\mu \nu}-\frac{q_{2}^{\mu} q_{1}^{\nu}}{q_{1} \cdot q_{2}}, \quad I_{34}^{\lambda \sigma}=g^{\lambda \sigma}-\frac{q_{4}^{\lambda} q_{3}^{\sigma}}{q_{3} \cdot q_{4}}
$$

- remove poles taking appropriate linear combinations
- Tarrach: no kinematic-free basis of 43 elements exists
- extend basis by additional structures taking care of remaining kinematic singularities

HLbL tensor: Lorentz decomposition

Solution for the Lorentz decomposition:

$$
\Pi^{\mu \nu \lambda \sigma}\left(q_{1}, q_{2}, q_{3}\right)=\sum_{i=1}^{54} T_{i}^{\mu \nu \lambda \sigma} \Pi_{i}\left(s, t, u ; q_{j}^{2}\right)
$$

- Lorentz structures manifestly gauge invariant
- crossing symmetry manifest
- scalar functions Π_{i} free of kinematics
\Rightarrow ideal quantities for a dispersive treatment

Master formula: contribution to $(g-2)_{\mu}$

$$
a_{\mu}^{\mathrm{HLbL}}=e^{6} \int \frac{d^{4} q_{1}}{(2 \pi)^{4}} \frac{d^{4} q_{2}}{(2 \pi)^{4}} \frac{\sum_{i=1}^{12} \hat{T}_{i}\left(q_{1}, q_{2} ; p\right) \hat{\Pi}_{i}\left(q_{1}, q_{2}^{2},-q_{1}-q_{2}\right)}{\left.q_{1}+q_{2}\right)^{2}\left[\left(p+q_{1}\right)^{2}-m_{\mu}^{2}\right]\left[\left(p-q_{2}\right)^{2}-m_{\mu}^{2}\right]}
$$

- \hat{T}_{i} : known integration kernel functions
- $\hat{\Pi}_{i}$: linear combinations of the scalar functions Π_{i}
- five loop integrals can be performed with Gegenbauer polynomial techniques
- Wick rotation possible even in the presence of anomalous thresholds

Overview

(1) Introduction

(2) Lorentz Structure of the HLbL Tensor
(3) Mandelstam Representation

4 Conclusion and Outlook

Analytic properties of scalar functions

- right- and left-hand cuts in each Mandelstam variable
- double-spectral regions (box topologies)
- anomalous thresholds for large photon virtualities

Mandelstam representation

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{\pi^{0} \text {-pole }}+\Pi_{\mu \nu \lambda \sigma}^{\mathrm{box}}+\bar{\Pi}_{\mu \nu \lambda \sigma}+\ldots
$$

Mandelstam representation

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{0-\text {-pole }}+\Pi_{\mu \nu \lambda \sigma}^{\mathrm{box}}+\bar{\Pi}_{\mu \nu \lambda \sigma}+\ldots
$$

one-pion intermediate state:

Mandelstam representation

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{00^{- \text {-pole }}}+\Pi_{\mu \nu \lambda \sigma}^{\mathrm{box}}+\bar{\Pi}_{\mu \nu \lambda \sigma}+\ldots
$$

two-pion intermediate state in both channels:

Mandelstam representation

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{\pi^{-} \text {-pole }}+\Pi_{\mu \nu \lambda \sigma}^{\mathrm{box}}+\bar{\Pi}_{\mu \nu \lambda \sigma}+\ldots
$$

two-pion intermediate state in first channel:

Mandelstam representation

- we limit ourselves to intermediate states of at most two pions
- writing down a double-spectral (Mandelstam) representation allows us to split up the HLbL tensor:

$$
\Pi_{\mu \nu \lambda \sigma}=\Pi_{\mu \nu \lambda \sigma}^{\pi^{0} \text {-pole }}+\Pi_{\mu \nu \lambda \sigma}^{\mathrm{box}}+\bar{\Pi}_{\mu \nu \lambda \sigma}+\ldots
$$

neglected: higher intermediate states

Pion pole

- input: doubly-virtual and singly-virtual pion transition form factors $\mathcal{F}_{\gamma^{*} \gamma^{*} \pi^{0}}$ and $\mathcal{F}_{\gamma^{*} \gamma \pi^{0}}$
- dispersive analysis of transition form factor:
\rightarrow Hoferichter et al., EPJC 74 (2014) 3180

Box contributions

- simultaneous two-pion cuts in two channels
- analytic properties correspond to sQED loop
- Mandelstam representation explicitly constructed

$$
\Pi_{i}=\frac{1}{\pi^{2}} \int d s^{\prime} d t^{\prime} \frac{\rho_{i}^{s t}\left(s^{\prime}, t^{\prime}\right)}{\left(s^{\prime}-s\right)\left(t^{\prime}-t\right)}+(t \leftrightarrow u)+(s \leftrightarrow u)
$$

- q^{2}-dependence given by multiplication with pion vector form factor $F_{\pi}^{V}\left(q^{2}\right)$ for each off-shell photon

Rescattering contribution

- neglect left-hand cut due to multi-particle intermediate states in crossed channel
- two-pion cut in only one channel
- expansion into partial waves
- unitarity relates it to the helicity amplitudes of the subprocess

$$
\gamma^{*} \gamma^{(*)} \rightarrow \pi \pi
$$

Overview

(1) Introduction

(2) Lorentz Structure of the HLbL Tensor
(3) Mandelstam Representation
(4) Conclusion and Outlook

Summary

- our dispersive approach to HLbL scattering is based on fundamental principles:
- gauge invariance, crossing symmetry
- unitarity, analyticity
- we take into account the lowest intermediate states:
π^{0}-pole and $\pi \pi$-cuts
- relation to experimentally accessible (or again with data dispersively reconstructed) quantities
- a step towards a model-independent calculation of a_{μ}
- numerical evaluation is work in progress

A roadmap for HLbL

Backup

Wick rotation

Trajectory of triangle anomalous threshold:

Wick rotation

Trajectory of triangle anomalous threshold:

$$
10^{11} \cdot a_{\mu} \quad 10^{11} \cdot \Delta a_{\mu}
$$

BNL E821	116592091	63	\rightarrow PDG 2013
QED total	116584718.95	0.08	\rightarrow Kinoshita et al. 2012
EW	153.6	1.0	
LO HVP	6949	43	\rightarrow Hagiwara et al. 2011
NLO HVP	-98	1	\rightarrow Hagiwara et al. 2011
NNLO HVP	12.4	0.1	\rightarrow Kurz et al. 2014
LO HLbL	116	40	\rightarrow Jegerlehner, Nyffele 2009
NLO HLbL	3	2	\rightarrow Colangelo et al. 2014
Hadronic total	6982	59	
Theory total	116591855	59	

$10^{11} \cdot a_{\mu}$			
$10^{11} \cdot \Delta a_{\mu}$			
BNL E821	116592091	63	\rightarrow PDG 2013
QED $\mathcal{O}(\alpha)$	116140973.32	0.08	
QED $\mathcal{O}\left(\alpha^{2}\right)$	413217.63	0.01	
QED $\mathcal{O}\left(\alpha^{3}\right)$	30141.90	0.00	
QED $\mathcal{O}\left(\alpha^{4}\right)$	381.01	0.02	
QED $\mathcal{O}\left(\alpha^{5}\right)$	5.09	0.01	
QED total	116584718.95	0.08	\rightarrow Kinoshita et al. 2012
EW	153.6	1.0	
Hadronic total	6982	59	
Theory total	116591855	59	

Model calculations of HLbL

Table 13
Summary of the most recent results for the various contributions to $a_{\mu}^{\mathrm{LbL} ; h a d} \times 10^{11}$. The last column is our estimate based on our new evaluation for the pseudoscalars and some of the other results.

Contribution	BPP	HKS	KN	MV	BP	PdRV	N/JN
$\pi^{0}, \eta, \eta^{\prime}$	85 ± 13	82.7 ± 6.4	83 ± 12	114 ± 10	-	114 ± 13	99 ± 16
π, K loops	-19 ± 13	-4.5 ± 8.1	-	-	-	-19 ± 19	-19 ± 13
π, K loops + other subleading in N_{c}	-	-	-	0 ± 10	-	-	-
axial vectors	2.5 ± 1.0	1.7 ± 1.7	-	22 ± 5	-	15 ± 10	22 ± 5
scalars	-6.8 ± 2.0	-	-	-	-	-7 ± 7	-7 ± 2
quark loops	21 ± 3	9.7 ± 11.1	-	-	-	2.3	21 ± 3
total	83 ± 32	89.6 ± 15.4	80 ± 40	136 ± 25	110 ± 40	105 ± 26	116 ± 39
				\rightarrow Jegerlehner, Nyffeler 2009			

- pseudoscalar pole contribution most important
- pion-loop second most important
- differences between models, large uncertainties

