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1 Introduction The Anomalous Magnetic Moment of the Muon

Magnetic moment

• relation of spin and magnetic moment of a lepton:

~µ` = g`
e

2m`

~s

g`: Landé factor, gyromagnetic ratio

• Dirac’s prediction: ge = 2

• anomalous magnetic moment: a` = (g` − 2)/2

• helped to establish QED and QFT as the framework
for elementary particle physics

• today: probing not only QED but entire SM
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1 Introduction The Anomalous Magnetic Moment of the Muon

aµ: comparison of theory and experiment
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Figure 6: World average for aµ from BNL compared to SM predic-
tions from several groups.

While the discrepancy has been consolidated and has
withstood all scrutiny, the case for new physics is still
not conclusive. Supersymmetric extensions of the SM
could well explain the discrepancy and at the same time
be compatible with all EW precision data, see [26], but
the direct searches from the Tevatron and the LHC are
rapidly closing the parameter space of the most simple
models.

2. ∆α(M2
Z
) and the Higgs mass

The running (scale dependence) of the electromag-
netic coupling, caused by leptonic and hadronic VP con-
tributions, α(q2) = α/(1 − ∆αlep(q2) − ∆αhad(q2)), is a
well known effect. However, the precise prediction of
∆αhad(q2) suffers from hadronic uncertainties, similar to
those in g−2.6 They make α(M2

Z) the least well known
of the fundamental parameters {Gµ,MZ , α(M2

Z)} which
determine the electro-weak (EW) theory at the scale of
the Z boson. Improving its prediction is therefore most
important for the so-called EW precision fits of the SM
and the indirect determination of the Higgs mass. Using
a dispersion relation similar to the one for g−2 and the
same data compilation for the undressed hadronic cross
section, we obtain ∆α(5)

had(M
2
Z) = 0.027626 ± 0.000138,

where the superscript indicates the five flavour contribu-
tion. This corresponds to α(M2

Z)−1 = 128.944 ± 0.019.
When this value is used in the global fit of the EW data,

were not available yet, we obtained a 4σ discrepancy.
6The VP is actually required for the undressing of the data used

for g−2 and for ∆α(q2) itself. The calculations are therefore done in
an iterative way. A simple to use Fortran routine for α(q2) for space-
and time-like q2 is available from the authors upon request.

Figure 7: Indirect determination of the SM Higgs mass via the EW
precision fit as done by the LEP Electro-Weak Working Group [27].

Figure 8: Diagrams showing the contribution of different energy
ranges to the value and (squared) error of ahad,LOVP

µ and ∆α(5)
had(M

2
Z ).

the preferred Higgs mass is mH = 91+30
−23 GeV, which is

more accurate than when using older, less accurate pre-
dictions of ∆α(5)

had(M
2
Z). This is shown in the ‘blue band

plot’ of Fig. 7, which gives the fit’s ∆χ2 parabola, us-
ing our value (solid red curve) compared to the default
blue-band (shaded blue band with dotted line) [27]. The
light (yellow) shaded areas are the mH regions excluded
by direct searches from LEP-2 and the Tevatron. These
indirect determinations, together with the most recent
direct searches from the LHC, give strong indications
for the existence of a light Higgs boson.

3. Outlook

There has been significant progress in the determina-
tion of both g−2 and α(M2

Z). Currently, the VP con-
tributions are still the limiting factor in the prediction
of aSM

µ . Figure 8 gives the contributions of the differ-
ent energy regions to the value and the error squared

T. Teubner et al. / Nuclear Physics B (Proc. Suppl.) 225–227 (2012) 282–287286

→ Hagiwara et al. 2012
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1 Introduction The Anomalous Magnetic Moment of the Muon

aµ: theory vs. experiment

• discrepancy between SM and experiment ∼ 3σ

• hint to new physics?

• new experiments (FNAL, J-PARC) aim at reducing
the experimental error by a factor of 4

• theory error completely dominated by hadronic
effects

• hadronic vacuum polarisation responsible for largest
uncertainty, but will be systematically improved with
better data input
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1 Introduction Hadronic Light-by-Light Scattering

Hadronic light-by-light (HLbL) scattering

• up to now only model calculations

• lattice QCD not yet competitive

• uncertainty estimate based rather
on consensus than on a systematic
method

• will dominate theory error in a few
years
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2 Lorentz Structure of the HLbL Tensor Tensor Decomposition

How to improve HLbL calculation?

• make use of unitarity,
analyticity, gauge invariance
and crossing symmetry

• relate HLbL to experimentally
accessible quantities

9



2 Lorentz Structure of the HLbL Tensor Tensor Decomposition

The HLbL tensor

• object in question: Πµνλσ(q1, q2, q3)

• a priori 138 Lorentz structures

• gauge invariance: 95 linear relations
⇒ (off-shell) basis: 43 independent structures

• in 4 space-time dimensions: 2 more linear relations
⇒ 41 helicity amplitudes

• six dynamical variables, e.g. two Mandelstam
variables

s = (q1 + q2)
2, t = (q1 + q3)

2

and the photon virtualities q21, q22, q23, q24
10



2 Lorentz Structure of the HLbL Tensor Tensor Decomposition

HLbL tensor: Lorentz decomposition

Problem: find a decomposition

Πµνλσ(q1, q2, q3) =
∑

i

T µνλσi Πi(s, t, u; q2j )

with the following properties:

• Lorentz structures T µνλσi manifestly gauge invariant

• scalar functions Πi free of kinematic singularities and
zeros
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2 Lorentz Structure of the HLbL Tensor Tensor Decomposition

HLbL tensor: Lorentz decomposition

Recipe by Bardeen, Tung (1968) and Tarrach (1975):

• apply gauge projectors to the 138 initial structures:

Iµν12 = gµν − qµ2 q
ν
1

q1 · q2
, Iλσ34 = gλσ − qλ4 q

σ
3

q3 · q4

• remove poles taking appropriate linear combinations

• Tarrach: no kinematic-free basis of 43 elements
exists

• extend basis by additional structures taking care of
remaining kinematic singularities
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2 Lorentz Structure of the HLbL Tensor Tensor Decomposition

HLbL tensor: Lorentz decomposition

Solution for the Lorentz decomposition:

Πµνλσ(q1, q2, q3) =
54∑

i=1

T µνλσi Πi(s, t, u; q2j )

• Lorentz structures manifestly gauge invariant

• crossing symmetry manifest

• scalar functions Πi free of kinematics
⇒ ideal quantities for a dispersive treatment
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2 Lorentz Structure of the HLbL Tensor Master Formula for (g − 2)µ

Master formula: contribution to (g − 2)µ

aHLbL
µ = e6

∫
d4q1
(2π)4

d4q2
(2π)4

12∑
i=1

T̂i(q1, q2; p)Π̂i(q1, q2,−q1 − q2)

q21q
2
2(q1 + q2)2[(p+ q1)2 −m2

µ][(p− q2)2 −m2
µ]

• T̂i: known integration kernel functions

• Π̂i: linear combinations of the scalar functions Πi

• five loop integrals can be performed with
Gegenbauer polynomial techniques

• Wick rotation possible even in the presence of
anomalous thresholds
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3 Mandelstam Representation

Analytic properties of scalar functions

• right- and left-hand cuts in each Mandelstam variable

• double-spectral regions (box topologies)

• anomalous thresholds for large photon virtualities
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3 Mandelstam Representation

Mandelstam representation

• we limit ourselves to intermediate states of at most
two pions

• writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

Πµνλσ = Ππ0-pole
µνλσ + Πbox

µνλσ + Π̄µνλσ + . . .
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3 Mandelstam Representation

Mandelstam representation

• we limit ourselves to intermediate states of at most
two pions

• writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

Πµνλσ = Ππ0-pole
µνλσ

one-pion intermediate state:

+ Πbox
µνλσ + Π̄µνλσ + . . .
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3 Mandelstam Representation

Mandelstam representation

• we limit ourselves to intermediate states of at most
two pions

• writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

Πµνλσ = Ππ0-pole
µνλσ + Πbox

µνλσ

two-pion intermediate state in both channels:

+ Π̄µνλσ + . . .
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3 Mandelstam Representation

Mandelstam representation

• we limit ourselves to intermediate states of at most
two pions

• writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

Πµνλσ = Ππ0-pole
µνλσ + Πbox

µνλσ + Π̄µνλσ

two-pion intermediate state in first channel:

+ . . .
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3 Mandelstam Representation

Mandelstam representation

• we limit ourselves to intermediate states of at most
two pions

• writing down a double-spectral (Mandelstam)
representation allows us to split up the HLbL tensor:

Πµνλσ = Ππ0-pole
µνλσ + Πbox

µνλσ + Π̄µνλσ + . . .

neglected: higher intermediate states
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3 Mandelstam Representation

Pion pole

• input: doubly-virtual and
singly-virtual pion transition form
factors Fγ∗γ∗π0 and Fγ∗γπ0

• dispersive analysis of transition
form factor:
→ Hoferichter et al., EPJC 74 (2014) 3180
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3 Mandelstam Representation

Box contributions

• simultaneous two-pion cuts in
two channels

• analytic properties correspond to
sQED loop

• Mandelstam representation
explicitly constructed

Πi =
1

π2

∫
ds′dt′

ρsti (s′, t′)
(s′ − s)(t′ − t) + (t↔ u) + (s↔ u)

• q2-dependence given by multiplication with pion
vector form factor F V

π (q2) for each off-shell photon
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3 Mandelstam Representation

Rescattering contribution

• neglect left-hand cut due to
multi-particle intermediate states
in crossed channel

• two-pion cut in only one channel

• expansion into partial waves

• unitarity relates it to the helicity
amplitudes of the subprocess
γ∗γ(∗) → ππ

20



Overview

1 Introduction

2 Lorentz Structure of the HLbL Tensor

3 Mandelstam Representation

4 Conclusion and Outlook

21



4 Conclusion and Outlook

Summary

• our dispersive approach to HLbL scattering is based
on fundamental principles:
• gauge invariance, crossing symmetry
• unitarity, analyticity

• we take into account the lowest intermediate states:
π0-pole and ππ-cuts

• relation to experimentally accessible (or again with
data dispersively reconstructed) quantities

• a step towards a model-independent calculation of aµ

• numerical evaluation is work in progress
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4 Conclusion and Outlook

A roadmap for HLbL

e+e− → e+e−π0 γπ → ππγπ → ππ

e+e− → π0γe+e− → π0γ ω, φ → ππγ e+e− → ππγ

ππ → ππ

Pion transition form factor
Fπ0γ∗γ∗

(
q2
1, q2

2

) Partial waves for
γ∗γ∗ → ππ e+e− → e+e−ππ

Pion vector
form factor F π

V

Pion vector
form factor F π

V

e+e− → 3π pion polarizabilitiespion polarizabilities γπ → γπ

ω, φ → 3π ω, φ → π0γ∗ω, φ → π0γ∗

→ Flowchart by M. Hoferichter
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Backup
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5 Backup Wick Rotation and Anomalous Threshold

Wick rotation

Trajectory of triangle anomalous threshold:

Re(s)

Im(s)

q
2

2
→ −∞

q
2

2
→ ∞

q
2

2
= 0

q
2

2
= 4m2

0 < q21 < 4m2
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5 Backup Wick Rotation and Anomalous Threshold

Wick rotation

Trajectory of triangle anomalous threshold:

Re(s)

Im(s)

q
2

2
→ −∞q

2

2
→ ∞

q
2

2
= 0

q
2

2
= 4m2

4m2 < q21
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5 Backup Standard Model Contributions to aµ

1011 · aµ 1011 ·∆aµ
BNL E821 116 592 091 63 → PDG 2013

QED total 116 584 718.95 0.08 → Kinoshita et al. 2012

EW 153.6 1.0

LO HVP 6 949 43 → Hagiwara et al. 2011

NLO HVP −98 1 → Hagiwara et al. 2011

NNLO HVP 12.4 0.1 → Kurz et al. 2014

LO HLbL 116 40 → Jegerlehner, Nyffeler 2009

NLO HLbL 3 2 → Colangelo et al. 2014

Hadronic total 6982 59

Theory total 116 591 855 59
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5 Backup Standard Model Contributions to aµ

1011 · aµ 1011 ·∆aµ
BNL E821 116 592 091 63 → PDG 2013

QED O(α) 116 140 973.32 0.08

QED O(α2) 413 217.63 0.01

QED O(α3) 30 141.90 0.00

QED O(α4) 381.01 0.02

QED O(α5) 5.09 0.01

QED total 116 584 718.95 0.08 → Kinoshita et al. 2012

EW 153.6 1.0

Hadronic total 6982 59

Theory total 116 591 855 59
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5 Backup Models for HLbL

Model calculations of HLbL

with the photons might occur. According to quark-hadron duality, the (constituent) quark loop also models
the contribution to aµ from the exchanges and loops of heavier resonances, like π′, a′

0, f
′
0, p, n, . . . which have

not been included explicitly so far. It also “absorbs” the remaining cutoff dependences of the low-energy
effective models. This is even true for the modeling of the pion-exchange contribution within the large Nc

inspired approach (LMD+V), since not all QCD short-distance constraints in the 4-point function 〈V V V V 〉
are reproduced with those ansätze. Some estimates for the (dressed) constituent quark loop are given in
Table 12.

Table 12
Results for the (dressed) quark loops.

Model aµ(quarks) × 1011

Point coupling 62(3)

VMD [HKS, HK] [242,245] 9.7(11.1)

ENJL + bare heavy quark [BPP] [243] 21(3)

Bare c-quark only [PdRV] [294] 2.3

We observe again a large, very model-dependent effect of the dressing of the photons. HKS, HK [242,245]
used a simple VMD-dressing for the coupling of the photons to the constituent quarks as it happens for
instance in the ENJL model. On the other hand, BPP [243] employed the ENJL model up to some cutoff
µ and then added a bare quark loop with a constituent quark mass MQ = µ. The latter contribution
simulates the high-momentum component of the quark loop, which is non-negligible. The sum of these two
contributions is rather stable for µ = 0.7, 1, 2 and 4 GeV and gives the value quoted in Table 12. A value of
2 × 10−11 for the c-quark loop is included by BPP [243], but not by HKS [242,245].

Summary
The totals of all contributions to hadronic light-by-light scattering reported in the most recent estimations

are shown in Table 13. We have also included some “guesstimates” for the total value. Note that the number
aLbL;had

µ = (80 ± 40) × 10−11 written in the fourth column in Table 13 under the heading KN was actually
not given in Ref. [17], but represents estimates used mainly by the Marseille group before the appearance
of the paper by MV [257]. Furthermore, we have included in the sixth column the estimate aLbL;had

µ =
(110±40)×10−11 given recently in Refs. [298,41,43]. Note that PdRV [294] (seventh column) do not include
the dressed light quark loops as a separate contribution. They assume them to be already covered by using
the short-distance constraint from MV [257] on the pseudoscalar-pole contribution. PdRV add, however, a
small contribution from the bare c-quark loop.

Table 13
Summary of the most recent results for the various contributions to aLbL;had

µ × 1011. The last column is our estimate based on
our new evaluation for the pseudoscalars and some of the other results.

Contribution BPP HKS KN MV BP PdRV N/JN

π0, η, η′ 85±13 82.7±6.4 83±12 114±10 − 114±13 99±16

π, K loops −19±13 −4.5±8.1 − − − −19±19 −19±13

π, K loops + other subleading in Nc − − − 0±10 − − −
axial vectors 2.5±1.0 1.7±1.7 − 22± 5 − 15±10 22± 5

scalars −6.8±2.0 − − − − −7± 7 −7± 2

quark loops 21± 3 9.7±11.1 − − − 2.3 21± 3

total 83±32 89.6±15.4 80±40 136±25 110±40 105±26 116±39

77
→ Jegerlehner, Nyffeler 2009

• pseudoscalar pole contribution most important

• pion-loop second most important

• differences between models, large uncertainties
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