Higgs regulated amplitudes in $\mathcal{N}=4$ SYM, the generalized cusp anomalous dimension and bound states of W-bosons

New Frontiers in Theoretical Physics 2016

Silvia Davoli

Università degli Studi di Parma
20/05/2016

Short outline

Main focus: calculation of the cusp anomalous dimension $\Gamma_{\text {cusp }}$ in $\mathcal{N}=4$ Super Yang-Mills

- weak coupling: from scattering amplitudes, with a general symmetry breaking structure
- strong coupling: from string calculations, exploiting AdS/CFT correspondence
- from $\Gamma_{\text {cusp }}$ to bound states energy spectrum

$\mathcal{N}=4$ Super Yang-Mills theory

- Dual conformal symmetry: intrinsic property of massless MHV amplitudes under dimensional regularization (Drummond, Henn, Korchemsky,

Sokatchev; 2008)

after the following change of variables

$$
p_{i}=x_{i}-x_{i+1}
$$

it's invariant under conformal transformations in x space.
Dual conformal symmetry constrains the form of the amplitudes.

Higgsed $\mathcal{N}=4$ SYM

- massless amplitudes \rightarrow IR divergencies
- alternative to dimensional regularization \rightarrow spontaneous symmetry breaking (Alday, Henn, Plefka, Schuster; 2010)

$$
U(N+M) \rightarrow U(N) \times U(1)^{M}
$$

- gauge invariance preserved
- turning on a vacuum expectation value (VEV) m_{j}, with ($j=N+1, \ldots, N+M)$, for scalar fields along one particular scalar direction

$$
\hat{\Phi}=\Phi+\delta_{19}\left\langle\Phi_{9}\right\rangle
$$

Preserved dual conformal symmetry

Defining enhanced momenta

$$
\hat{p}_{k}=\left(p_{k}, m_{i_{k}}-m_{i_{k+1}}\right) \quad \hat{I}_{k}=\left(I_{k}, m_{i_{k}}\right)
$$

amplitudes become $5-d$ integrals.
From now on, we are considering this box amplitude

Dual conformal symmetry is preserved $\rightarrow \mathcal{M}=\mathcal{M}(u, v)$, where

$$
u=\frac{m_{1} m_{3}}{s+\left(m_{1}-m_{3}\right)^{2}} \quad v=\frac{m_{2} m_{4}}{t+\left(m_{2}-m_{4}\right)^{2}}
$$

Cusp anomalous dimension $\Gamma_{\text {cusp }}$

$\Gamma_{\text {cusp }}$ has been introduced as an UV divergence of a Wilson loop with cusp.

In $\mathcal{N}=4$ SYM, a second angle is introduced for the cusp, linked to the coupling with scalars

$$
W \sim \operatorname{Tr}\left[P e^{i \oint A \cdot d x+\oint|d x| \vec{n} \cdot \vec{\phi}}\right] \quad \cos \theta=\vec{n} \cdot \vec{n}
$$

where \vec{n} and \vec{n} are the directions before and after the turn.

$\Gamma_{\text {cusp }}$ from scattering amplitudes

$\Gamma_{\text {cusp }}$ characterizes also IR divergences from scattering massive W bosons on the Coulomb branch of $\mathcal{N}=4$ SYM.

The cusp angle can be related to amplitude's momenta by

$$
\cos \phi=\frac{p_{2} \cdot p_{3}}{\sqrt{\left(p_{2}\right)^{2}\left(p_{3}\right)^{2}}}
$$

We choose a two-mass configuration $\left(m_{1}=m_{3}=m, m_{2}=m_{4}=\right.$ $M)$, with $s, t \sim M^{2}$
\rightarrow external massive particles
$\rightarrow m$ as an IR cutoff
$\Gamma_{\text {cusp }}$ can be extracted from amplitudes (Correa, Henn, Maldacena, Sever; 2012)

$$
\lim _{u \rightarrow 0} \ln (\mathcal{M}(u, v))=(\ln u) \Gamma_{\text {cusp }}(\lambda, \varphi)+\mathcal{O}\left(u^{0}\right)
$$

More general Higgsing

We give a VEV along different scalar directions

$$
\hat{\Phi}_{I}=\sum_{J=4}^{9} \delta_{I J}\left\langle\Phi_{J}\right\rangle+\Phi_{I}
$$

and promote them to momenta variables according to

$$
\hat{p}_{k}=\left(p_{k}, m_{i_{k}}^{4}-m_{i_{k+1}}^{4}, \ldots, m_{i_{k}}^{9}-m_{i_{k+1}}^{9}\right) \quad \hat{l}_{k}=\left(I_{k}, m_{i_{k}}^{4}, \ldots, m_{i_{k}}^{9}\right)
$$

We get 10 -dimensional integrals. A dual conformal shift is still possible, defining 10-dimensional coordinates

$$
\hat{x}_{i}^{\mu}:=x_{i}^{\mu} \quad \hat{x}_{i}^{J}:=m_{i}^{J}
$$

\rightarrow preserved dual conformal symmetry

Mass configuration

Defining a mass vector $\vec{\alpha}_{i}=\left(m_{i}^{4}, \ldots, m_{i}^{9}\right)=\left\|\vec{\alpha}_{i}\right\| \vec{n}_{i}$, VEV can be written as

$$
\langle\vec{\phi}\rangle=\operatorname{diag}\left(\left\|\vec{\alpha}_{1}\right\| \vec{n}_{1},\left\|\vec{\alpha}_{2}\right\| \vec{n}_{2}, \ldots\right)
$$

Internal propagators have squared mass $\left\|\vec{\alpha}_{i}\right\|^{2}$, while external legs have a $\left(\vec{\alpha}_{i}-\vec{\alpha}_{i-1}\right)^{2}$ squared mass. Let's impose a two mass configuration by

$$
\begin{aligned}
& \left\{\begin{array}{l}
\left\|\vec{\alpha}_{1}\right\|^{2}=\left\|\vec{\alpha}_{3}\right\|^{2}=m^{2} \\
\left\|\vec{\alpha}_{2}\right\|^{2}=\left\|\vec{\alpha}_{4}\right\|^{2}=M^{2}
\end{array}\right. \\
& s, t \sim M^{2}
\end{aligned}
$$

Extracting $\Gamma_{\text {cusp }}(\phi, \theta)$

$\Gamma_{\text {cusp }}(\phi)$ can be also expressed as a

$$
\Gamma_{\text {cusp }}(x, \xi) \text { where } x=e^{i \phi} \text { and } \xi=\frac{\cos \phi-1}{\sin \phi}
$$

$\Gamma_{\text {cusp }}(\phi, \theta)$ can be obtained from $\Gamma_{\text {cusp }}(\phi)$ with this substitution

$$
\xi \rightarrow \frac{\cos \phi-\cos \theta}{\sin \phi}
$$

Example (1 loop)

$$
I(s, t, m, M)=\left[1+\frac{2 M^{2}}{t}(1-\cos \theta)\right] I(s, t)
$$

Now, $\cos \phi=\frac{p_{2} \cdot p_{3}}{\sqrt{\left(p_{2}\right)^{2}\left(p_{3}\right)^{2}}} \rightarrow t \sim-2 M^{2}(1-\cos \phi)$. Moreover,
it's known that one loop $\Gamma_{\text {cusp }}^{(1)}(\phi) \sim \ln u \xi \ln x$, so

$$
\Gamma_{\text {cusp }}^{(1)}(\phi, \theta)=\frac{\cos \phi-\cos \theta}{\sin \phi} \ln u \ln x
$$

Beyond one loop

Physical meaning

Higgsed $\mathcal{N}=4$ Super Yang-Mills theory describes massive W-bosons interacting by exchange of massless gauge fields from the unbroken part of the gauge group.

Interaction is attractive \rightarrow bound states
At weak coupling, hydrogen-like states (Wick-Cutkowski SO $(4,2)$ hydrogen atom model)

Dual conformal symmetry \rightarrow spectrum organizes into $S O(4,2)$ multiplets

Exploiting Regge theory, spectrum can be calculated (Caron-Huot, Henn; 2015)

From scattering amplitudes to bound states

Regge theory connects bound states energy and spin according to

$$
j\left(s_{n}\right)+1=n \quad \text { for } s=E_{n}^{2}
$$

where n is the principal quantum number $(n=1,2, \ldots)$ and $j(s)$ describes spin.
$j(s)$ is linked to a scattering amplitude \mathcal{M} (when $t \rightarrow \infty$ at $s<0$ fixed) according to

$$
\mathcal{M} \sim t^{j(s)+1}
$$

$\Gamma_{\text {cusp }}(\phi)$ and bound states

Due to dual conformal symmetry $(\mathcal{M}$ in function of t only through $\left.v=\frac{M^{2}}{t}\right), t \rightarrow \infty$ limit is equivalent to $M \rightarrow 0$. In this limit

$$
\mathcal{M} \sim M^{\Gamma_{\text {cusp }}}
$$

Linking the two results

$$
j(s)+1=-\Gamma_{\text {cusp }}(\phi) \quad \text { with } s=4 m^{2} \sin ^{2} \frac{\phi}{2}
$$

so, to get the spectrum, we have to solve

$$
-\Gamma_{\text {cusp }}(\phi)=n
$$

with

$$
E_{n}^{2}=4 m^{2} \sin ^{2} \frac{\phi}{2}
$$

Low energy spectrum for $\Gamma_{\text {cusp }}(\phi, \theta)$

From previous amplitudes calculations, the spectrum of the low energy theory can be derived

$$
E_{n}=2 M-\frac{M \lambda^{2}}{64 \pi^{2} n^{2}}(1-\cos \theta)^{2}+O\left(\lambda^{2}\right)
$$

We notice that the effect produces a splitting of the energy levels.

Exploiting AdS/CFT correspondence

Strong coupling spectrum

In order to get the spectrum, we have to consider

$$
\Gamma_{c u s p}(\phi, \theta) \sim \sqrt{\lambda} F(\phi, \theta) \rightarrow-F(\phi, \theta)=-\frac{n}{\sqrt{\lambda}}
$$

Two different limits can be taken

$$
\begin{cases}\sqrt{\lambda} \gg n & \text { (small quantum number) } \\ \sqrt{\lambda} \ll n & \text { (large quantum number) }\end{cases}
$$

Small quantum number limit

Near BPS limit of $\Gamma_{\text {cusp }}(\theta= \pm \phi)$ (Drukker, Forini; $2011 \&$ Correa, Henn, Maldacena,
Sever; 2012)

$$
\Gamma_{\text {cusp }}(\phi, \theta)=-\frac{\sqrt{\lambda}}{4 \pi^{2}} \frac{\phi^{2}-\theta^{2}}{\sqrt{1-\frac{\phi^{2}}{\pi^{2}}}}+O\left(\left(\phi^{2}-\theta^{2}\right)^{2}\right)
$$

For the spectrum, we obtain

$$
E \simeq 2 m \sin \frac{\theta}{2}+2 m \frac{n \pi}{\sqrt{\lambda}} \sqrt{\frac{\pi^{2}}{\theta^{2}}-1} \cos \frac{\theta}{2}
$$

with $\theta \neq 0, \pi$.

Consistency check

For BPS limit, we have $(\theta \rightarrow 0)$

$$
\text { from } J+1=n \rightarrow 1 \ll J \ll \sqrt{\lambda}
$$

SO

$$
\begin{gathered}
\left\{\begin{array}{l}
\phi \approx 2 \pi \frac{\sqrt{J}}{\lambda^{1 / 4}} \\
E \sim 2 \pi m \frac{\sqrt{J}}{\lambda^{1 / 4}}
\end{array}\right. \\
E \simeq \frac{2 \pi m}{\lambda^{1 / 4}} \sqrt{J}+\theta^{2} \frac{m}{2 \pi} \frac{\lambda^{1 / 4}}{\sqrt{J}}
\end{gathered}
$$

The first term is consistent with holographic description of semi-classical rotating strings (Kruczenski, Mateos, Myers, Winters; 2003).

Large quantum number limit

"Antiparallel lines" limit of $\Gamma_{\text {cusp }}(\phi \sim \pi$ and $\theta \neq \pi)$

$$
\Gamma_{\text {cusp }}(\phi, \theta)=-\frac{2}{\pi(\pi-\phi)} \frac{\left(\mathbb{E}\left(k^{2}\right)-\left(1-k^{2}\right) \mathbb{K}\left(k^{2}\right)\right)^{2}}{k \sqrt{1-k^{2}}}
$$

(Druker, Forini; 2011) where \mathbb{E} and \mathbb{K} are elliptic integrals of the first and second kind and

$$
\begin{aligned}
& \theta=2 \sqrt{1-2 k^{2} \mathbb{K}\left(k^{2}\right)} \\
& E \simeq 2 m-\frac{\lambda}{n^{2}} \frac{m \gamma^{2}(\theta)}{4}
\end{aligned}
$$

where

$$
\gamma(\theta)=\frac{2}{\pi} \frac{\left(\mathbb{E}\left(k^{2}\right)-\left(1-k^{2}\right) \mathbb{K}\left(k^{2}\right)\right)^{2}}{k \sqrt{1-k^{2}}}
$$

Conclusions

- these results have also been checked numerically
- results for $\theta=0$ are consistent with already known AdS/CFT calculations of rotating strings
- there are no results for a model at $\theta \neq 0$: a rotation not only in AdS but also in the S^{5} may be useful
- general symmetry breaking regularization may be extended to other conformal theories (for instance, $\mathrm{ABJ}(\mathrm{M})$)

