Higgs regulated amplitudes in $\mathcal{N} = 4$ SYM, the generalized cusp anomalous dimension and bound states of W-bosons

New Frontiers in Theoretical Physics 2016

Silvia Davoli

Università degli Studi di Parma

20/05/2016

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Short outline

Main focus: calculation of the cusp anomalous dimension Γ_{cusp} in $\mathcal{N}=4$ Super Yang-Mills

- weak coupling: from scattering amplitudes, with a general symmetry breaking structure

- strong coupling: from string calculations, exploiting $\mbox{AdS/CFT}$ correspondence

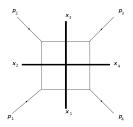
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- from Γ_{cusp} to bound states energy spectrum

$\mathcal{N}=4$ Super Yang-Mills theory

- Dual conformal symmetry: intrinsic property of massless MHV amplitudes under dimensional regularization (*Drummond, Henn, Korchemsky*,

Sokatchev; 2008)



after the following change of variables

$$p_i=x_i-x_{i+1},$$

it's invariant under conformal transformations in x space.

Dual conformal symmetry constrains the form of the amplitudes.

Higgsed $\mathcal{N} = 4$ SYM

- massless amplitudes \rightarrow IR divergencies

- alternative to dimensional regularization \rightarrow spontaneous symmetry breaking (Alday, Henn, Plefka, Schuster; 2010)

$$U(N+M) \rightarrow U(N) \times U(1)^{M}$$

- gauge invariance preserved

- turning on a vacuum expectation value (VEV) m_j , with (j = N + 1, ..., N + M), for scalar fields along one particular scalar direction

$$\hat{\Phi} = \Phi + \delta_{I9} \left< \Phi_9 \right>$$

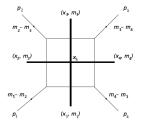
Preserved dual conformal symmetry

Defining enhanced momenta

$$\hat{p}_k = (p_k, m_{i_k} - m_{i_{k+1}})$$
 $\hat{l}_k = (l_k, m_{i_k})$

amplitudes become 5 - d integrals.

From now on, we are considering this box amplitude



Dual conformal symmetry is preserved $\rightarrow \mathcal{M} = \mathcal{M}(u, v)$, where

$$u = \frac{m_1 m_3}{s + (m_1 - m_3)^2} \qquad v = \frac{m_2 m_4}{t + (m_2 - m_4)^2}$$

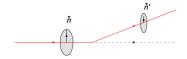
Cusp anomalous dimension Γ_{cusp}

 $\Gamma_{\textit{cusp}}$ has been introduced as an UV divergence of a Wilson loop with cusp.

In $\mathcal{N}=4$ SYM, a second angle is introduced for the cusp, linked to the coupling with scalars

$$W \sim \operatorname{Tr}\left[Pe^{i\oint A\cdot dx + \oint |dx|\vec{n}\cdot\vec{\Phi}}\right] \qquad \cos\theta = \vec{n}\cdot\vec{n}'$$

where \vec{n} and $\vec{n'}$ are the directions before and after the turn.



Γ_{cusp} from scattering amplitudes

 Γ_{cusp} characterizes also IR divergences from scattering massive W bosons on the Coulomb branch of $\mathcal{N} = 4$ SYM.

The cusp angle can be related to amplitude's momenta by

$$\cos\phi = \frac{p_2 \cdot p_3}{\sqrt{\left(p_2\right)^2 \left(p_3\right)^2}}$$

We choose a two-mass configuration ($m_1 = m_3 = m$, $m_2 = m_4 = M$), with $s, t \sim M^2$

- \rightarrow external massive particles
- ightarrow *m* as an IR cutoff

 Γ_{cusp} can be extracted from amplitudes (*Correa, Henn, Maldacena, Sever*; 2012)

$$\lim_{u\to 0} \ln \left(\mathcal{M} \left(u, v \right) \right) = (\ln u) \, \Gamma_{cusp} \left(\lambda, \varphi \right) + \mathcal{O} \left(u^0 \right)$$

More general Higgsing

We give a VEV along different scalar directions

$$\hat{\Phi}_{I} = \sum_{J=4}^{9} \delta_{IJ} \left< \Phi_{J} \right> + \Phi_{I}$$

and promote them to momenta variables according to

$$\hat{p}_k = \left(p_k, m_{i_k}^4 - m_{i_{k+1}}^4, \dots, m_{i_k}^9 - m_{i_{k+1}}^9\right) \qquad \hat{l}_k = \left(l_k, m_{i_k}^4, \dots, m_{i_k}^9\right)$$

We get 10-dimensional integrals. A dual conformal shift is still possible, defining 10-dimensional coordinates

$$\hat{x}^{\mu}_{i} \coloneqq x^{\mu}_{i} \qquad \hat{x}^{J}_{i} \coloneqq m^{J}_{i}$$

 \rightarrow preserved dual conformal symmetry

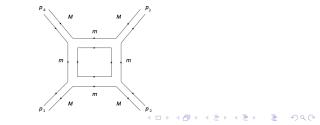
Mass configuration

Defining a mass vector $\vec{\alpha}_i = (m_i^4, \dots, m_i^9) = \|\vec{\alpha}_i\| \vec{n}_i$, VEV can be written as

$$\left\langle \vec{\Phi} \right\rangle = diag\left(\left\| \vec{\alpha}_1 \right\| \vec{n}_1, \left\| \vec{\alpha}_2 \right\| \vec{n}_2, \ldots \right)$$

Internal propagators have squared mass $\|\vec{\alpha}_i\|^2$, while external legs have a $(\vec{\alpha}_i - \vec{\alpha}_{i-1})^2$ squared mass. Let's impose a two mass configuration by

$$\begin{cases} \|\vec{\alpha}_1\|^2 = \|\vec{\alpha}_3\|^2 = m^2 \\ \|\vec{\alpha}_2\|^2 = \|\vec{\alpha}_4\|^2 = M^2 \end{cases} \quad \text{with } M^2 \gg m^2 \qquad s, t \sim M^2 \end{cases}$$



Extracting $\Gamma_{cusp}(\phi, \theta)$

 $\Gamma_{cusp}(\phi)$ can be also expressed as a

$$\Gamma_{cusp}(x,\xi)$$
 where $x = e^{i\phi}$ and $\xi = \frac{\cos \phi - 1}{\sin \phi}$

 $\Gamma_{cusp}\left(\phi,\theta\right)$ can be obtained from $\Gamma_{cusp}\left(\phi\right)$ with this substitution

$$\xi o rac{\cos \phi - \cos heta}{\sin \phi}$$

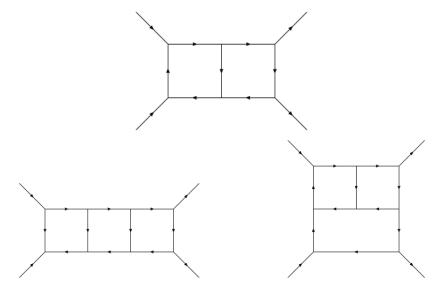
Example (1 loop)

$$I(s, t, m, M) = \left[1 + \frac{2M^2}{t} (1 - \cos \theta)\right] I(s, t)$$

Now, $\cos \phi = \frac{p_2 \cdot p_3}{\sqrt{(p_2)^2 (p_3)^2}} \rightarrow t \sim -2M^2 (1 - \cos \phi)$. Moreover,
it's known that one loop $\Gamma_{cusp}^{(1)}(\phi) \sim \ln u \, \xi \ln x$, so

$$\Gamma_{cusp}^{(1)}(\phi,\theta) = \frac{\cos\phi - \cos\theta}{\sin\phi} \ln u \ln x$$

Beyond one loop



▲ロト ▲園ト ▲ヨト ▲ヨト ニヨー のへ(で)

Physical meaning

Higgsed $\mathcal{N} = 4$ Super Yang-Mills theory describes massive W-bosons interacting by exchange of massless gauge fields from the unbroken part of the gauge group.

Interaction is attractive \rightarrow bound states

At weak coupling, hydrogen-like states (Wick-Cutkowski SO(4,2) hydrogen atom model)

Dual conformal symmetry \rightarrow spectrum organizes into SO (4, 2) multiplets

Exploiting Regge theory, spectrum can be calculated (*Caron-Huot, Henn; 2015*)

From scattering amplitudes to bound states

Regge theory connects bound states energy and spin according to

$$j(s_n) + 1 = n$$
 for $s = E_n^2$

where *n* is the principal quantum number (n = 1, 2, ...) and j(s) describes spin.

 $j\left(s
ight)$ is linked to a scattering amplitude \mathcal{M} (when $t o\infty$ at s<0 fixed) according to

$$\mathcal{M} \sim t^{j(s)+1}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$\Gamma_{cusp}(\phi)$ and bound states

Due to dual conformal symmetry (\mathcal{M} in function of t only through $v = \frac{M^2}{t}$), $t \to \infty$ limit is equivalent to $M \to 0$. In this limit

$$\mathcal{M} \sim M^{\Gamma_{cusp}}$$

Linking the two results

$$j(s) + 1 = -\Gamma_{cusp}(\phi)$$
 with $s = 4m^2 sin^2 \frac{\phi}{2}$

so, to get the spectrum, we have to solve

$$-\Gamma_{cusp}\left(\phi\right)=n$$

with

$$E_n^2 = 4m^2 sin^2 rac{\phi}{2}$$

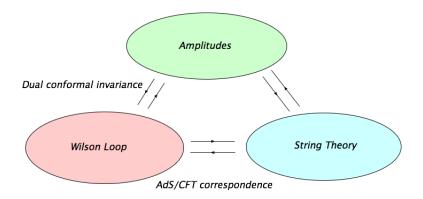
(日) (同) (三) (三) (三) (○) (○)

From previous amplitudes calculations, the spectrum of the low energy theory can be derived

$$E_n = 2M - \frac{M\lambda^2}{64\pi^2 n^2} \left(1 - \cos\theta\right)^2 + O\left(\lambda^2\right)$$

We notice that the effect produces a splitting of the energy levels.

Exploiting AdS/CFT correspondence



Strong coupling spectrum

In order to get the spectrum, we have to consider

$$\Gamma_{cusp}\left(\phi,\theta
ight)\sim\sqrt{\lambda}F\left(\phi,\theta
ight)
ightarrow-F\left(\phi, heta
ight)=-rac{n}{\sqrt{\lambda}}$$

Two different limits can be taken

$$\begin{cases} \sqrt{\lambda} \gg n & (\text{small quantum number}) \\ \sqrt{\lambda} \ll n & (\text{large quantum number}) \end{cases}$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

Small quantum number limit

Near BPS limit of Γ_{cusp} ($\theta = \pm \phi$) (Drukker, Forini; 2011 & Correa, Henn, Maldacena, Sever; 2012)

$$\Gamma_{cusp}\left(\phi,\theta\right) = -\frac{\sqrt{\lambda}}{4\pi^2} \frac{\phi^2 - \theta^2}{\sqrt{1 - \frac{\phi^2}{\pi^2}}} + O\left(\left(\phi^2 - \theta^2\right)^2\right)$$

For the spectrum, we obtain

$$E \simeq 2m\sinrac{ heta}{2} + 2mrac{n\pi}{\sqrt{\lambda}}\sqrt{rac{\pi^2}{ heta^2} - 1}\cosrac{ heta}{2}$$

◆□▶ ◆□▶ ◆∃▶ ◆∃▶ = のへで

with $\theta \neq 0, \pi$.

Consistency check

For BPS limit, we have $(\theta \rightarrow 0)$

from
$$J + 1 = n \rightarrow 1 \ll J \ll \sqrt{\lambda}$$

SO

$$\begin{cases} \phi \approx 2\pi \frac{\sqrt{J}}{\lambda^{1/4}} \\ E \sim 2\pi m \frac{\sqrt{J}}{\lambda^{1/4}} \end{cases}$$

$$E\simeq rac{2\pi m}{\lambda^{1/4}}\sqrt{J}+ heta^2rac{m}{2\pi}rac{\lambda^{1/4}}{\sqrt{J}}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The first term is consistent with holographic description of semi-classical rotating strings (Kruczenski, Mateos, Myers, Winters; 2003).

Large quantum number limit

"Antiparallel lines" limit of Γ_{cusp} ($\phi \sim \pi$ and $\theta \neq \pi$)

$$\Gamma_{cusp}\left(\phi,\theta\right) = -\frac{2}{\pi\left(\pi-\phi\right)} \frac{\left(\mathbb{E}\left(k^{2}\right) - \left(1-k^{2}\right)\mathbb{K}\left(k^{2}\right)\right)^{2}}{k\sqrt{1-k^{2}}}$$

(Drukker, Forini; 2011) where \mathbb{E} and \mathbb{K} are elliptic integrals of the first and second kind and

$$heta = 2\sqrt{1 - 2k^2\mathbb{K}(k^2)}$$
 $E \simeq 2m - rac{\lambda}{n^2}rac{m\gamma^2(heta)}{4}$

where

$$\gamma\left(\theta\right) = \frac{2}{\pi} \frac{\left(\mathbb{E}\left(k^{2}\right) - \left(1 - k^{2}\right)\mathbb{K}\left(k^{2}\right)\right)^{2}}{k\sqrt{1 - k^{2}}}$$

(日) (日) (日) (日) (日) (日) (日) (日)

Conclusions

- these results have also been checked numerically
- results for $\theta=0$ are consistent with already known AdS/CFT calculations of rotating strings
- there are no results for a model at $\theta \neq$ 0: a rotation not only in AdS but also in the S^5 may be useful
- general symmetry breaking regularization may be extended to other conformal theories (for instance, ABJ(M))