Lectures & objectives

ISAPP 2014 (Belgirate) 21-30 July 2014

Transport of cosmic rays in the Galaxy and in the heliosphere (~4h30)

- What is GCR (Galactic Cosmic Ray) physics and transport
- Relevant time scales: \neq species have \neq phenomenology
- Main modelling ingredients: key parameters and uncertainties
- Tools to solve the transport equation

Charged signals: electrons/positrons, antibaryons (~1h30)

- What is astroparticle physics and DM (Dark Matter) indirect detection
- What are the astrophysical backgrounds + uncertainties [nuclear]
- Phenomenology of DM signals + uncertainties [transport and dark matter]
- Pros and Cons of DM indirect detection with charged GCRs

David Maurin (LPSC) dmaurin@lpsc.in2p3.fr

Transport of cosmic rays (CR) in the Galaxy

I. Introduction; Galactic Cosmic Rays

- 1. Early history of CRs: discovery and disputes
- 2. GCR journey (from source to detector)
- 3. Timeline
- 4. Observables and questions
- II. Processes, ingredients, characteristic times
 - 1. Definitions
 - 2. Diffusion (space and momentum)
 - 3. Convection and adiabatic losses
 - 4. Energy losses (continuous)
 - 5. Catastrophic losses
 - 6. All together

III. Solving the equations: GCR phenomenology

- 1. From microphysics to effective models
- 2. Full set of equations (with source terms)
- 3 (Semi-)Analytical, numerical, & MC solutions
- 4. Stable species: degeneracy D₀ /L
- 5. Radioactive species and local ISM
- 6. Leptons and local sources

GCRs-II.pdf

Time scales: all together

 \rightarrow Numbers depend on MW model parameters (halo size, diffusion coefficient...)

 \rightarrow Time scale for effects in the disc overestimated: CRs see density $n_{ISM} \ge \langle n \rangle \ge (h/H) n_{ISM}$

- 1. Dominant effects
 - Nuclei escape from the Galaxy
 - Leptons loose their energy
- 2. Local origin
 - Low energy radioactive nuclei
 - High energy electrons and positrons

Transport of cosmic rays (CR) in the Galaxy

I. Introduction; Galactic Cosmic Rays

- 1. Early history of CRs: discovery and disputes
- 2. GCR journey (from source to detector)
- 3. Timeline
- 4. Observables and questions

II. Processes, ingredients, characteristic times

- 1. Definitions
- 2. Diffusion (space and momentum)
- 3. Convection and adiabatic losses
- 4. Energy losses (continuous)
- 5. Catastrophic losses
- 6. All together
- III. Solving the equations: GCR phenomenology
 - 1. From microphysics to effective models
 - 2. Full set of equations (with source terms)
 - 3 (Semi-)Analytical, numerical, & MC solutions
 - 4. Stable species: degeneracy D₀ /L
 - 5. Radioactive species and local ISM
 - 6. Leptons and local sources

GCRs-III.pdf

Charged cosmic rays in the Galaxy: reminder

Charged cosmic rays in the Galaxy: reminder

Do we understand the "standard" fluxes (everywhere and anytime)?

- Sources (SN, pulsars, ...)
- Nucleosynthesis (r and s-process for heavy nuclei)
- Acceleration mechanisms (injection, B amplification, Emax)
- Propagation mechanisms (turbulence, spatial dependence, isotropy)
- Magneto-cosmico-gaseo properties of the Galaxy (MHD description)

Charged cosmic rays in the Galaxy: reminder

Do we understand the "standard" fluxes (everywhere and anytime)?

- Sources (SN, pulsars, ...)
- Nucleosynthesis (r and s-process for heavy nuclei)
- Acceleration mechanisms (injection, B amplification, Emax)
- Propagation mechanisms (turbulence, spatial dependence, isotropy)
- Magneto-cosmico-gaseo properties of the Galaxy (MHD description)

Transport of cosmic rays (CR) in the Galaxy

III. Solving the transport equations: GCR phenomenology

1. Diffusion: from microphysics to effective models

- 2. Full set of equations (with source terms)
- 3 (Semi-)Analytical, numerical, & MC solutions
- 4. Stable species: degeneracy K₀ /L
- 5. Radioactive species and local ISM
- 6. Leptons and local sources

[Adapted from R. Tautz (CRISM 2014)]

[Adapted from R. Tautz (CRISM 2014)]

- Physics problem: motion in a turbulent field
- Ansatz: diffusion equation $\frac{\partial f}{\partial t} S = \nabla \cdot \left(\kappa_{nj} \cdot \nabla f \mathbf{v} f \right) + \frac{\partial}{\partial p} \left(p^2 D_p \frac{\partial}{\partial p} \frac{f}{p^2} \dot{p} f \right) + \dots$

[Adapted from R. Tautz (CRISM 2014)]

• Ansatz: diffusion equation
$$\frac{\partial f}{\partial t} - S = \nabla \cdot \left(\kappa_{nj} \cdot \nabla f - \mathbf{v} f \right) + \frac{\partial}{\partial p} \left(p^2 D_p \frac{\partial}{\partial p} \frac{f}{p^2} - \dot{p} f \right) + \dots$$

 $\kappa = \begin{pmatrix} \kappa_{\perp} & \kappa_A & 0 \\ -\kappa_A & \kappa_{\perp} & 0 \\ 0 & 0 & \kappa_{\parallel} \end{pmatrix} \quad \kappa_{\parallel}: \text{ Diffusion } along^2 B$
 $\kappa_{\perp}: \text{ Diffusion } across^3 B$
 $\kappa_{A}: \text{ Drift effects}^4$

[Adapted from R. Tautz (CRISM 2014)]

• Ansatz: diffusion equation
$$\frac{\partial f}{\partial t} - S = \nabla \cdot \left(\kappa_{nj} \cdot \nabla f - \mathbf{v} f\right) + \frac{\partial}{\partial p} \left(p^2 D_p \frac{\partial}{\partial p} \frac{f}{p^2} - \dot{p} f\right) + \dots$$

$$\kappa = \left(\begin{pmatrix} \kappa_{\perp} & \kappa_A & 0 \\ -\kappa_A & \kappa_{\perp} & 0 \\ 0 & 0 & \kappa_{\parallel} \end{pmatrix} \right)^{\mathbf{k}} \quad \begin{array}{l} \kappa_{\parallel} : \text{ Diffusion } along^2 B \\ \kappa_{\perp} : \text{ Diffusion } across^3 B \\ \kappa_A : \text{ Drift effects}^4 \end{array}$$
Analytical calculation
- Mean free path $\lambda_{\parallel} \propto \kappa_{\parallel} \propto \int_{-1}^{1} d\mu \frac{(1-\mu^2)^2}{D_{\mu\mu}(\mu)}$

[Adapted from R. Tautz (CRISM 2014)]

• Physics problem: motion in a turbulent field

• Ansatz: diffusion equation
$$\frac{\partial f}{\partial t} - S = \nabla \cdot (\kappa_{nj} \cdot \nabla f - \mathbf{v} f) + \frac{\partial}{\partial p} \left(p^2 D_p \frac{\partial}{\partial p} \frac{f}{p^2} - \dot{p} f \right) + \dots$$

 $\kappa = \begin{pmatrix} \kappa_{\perp} & \kappa_A & 0 \\ -\kappa_A & \kappa_{\perp} & 0 \\ 0 & 0 & \kappa_{\parallel} \end{pmatrix}$
 κ_{\perp} : Diffusion along² B
 κ_{\perp} : Diffusion across³ B
 κ_{\perp} : Diffusion across³ B
 κ_{\perp} : Diffusion across⁴ B
 κ_{\perp} : Diffu

[Adapted from R. Tautz (CRISM 2014)]

• Physics problem: motion in a turbulent field

• Ansatz: diffusion equation $\frac{\partial f}{\partial t} - S = \nabla \cdot \left(\kappa_{nj} \cdot \nabla f - \mathbf{v} f \right) + \frac{\partial}{\partial p} \left(p^2 D_p \frac{\partial}{\partial p} \frac{f}{p^2} - \dot{p} f \right) + \dots$ $\kappa = \begin{pmatrix} \kappa_{\perp} & \kappa_A & 0 \\ -\kappa_A & \kappa_{\perp} & 0 \\ 0 & 0 & \kappa_{\parallel} \end{pmatrix} \xrightarrow{\mathbf{k}_{\parallel}} \text{Diffusion along}^2 \mathbf{B}$ $\kappa_{\perp}: \text{Diffusion across}^3 \mathbf{B}$ $\kappa_{A}: \text{Drift effects}^4$ Analytical calculation - Mean free path $\lambda_{\parallel} \propto \kappa_{\parallel} \propto \int_{-1}^{1} d\mu \frac{(1-\mu^{2})^{2}}{D_{\mu\mu}(\mu)}$ Pitch angle $\mu = cos(v, B_{0})$ - Fokker-Planck coefficient $D_{\mu\mu} = \int_{0}^{\infty} dt \langle \dot{\mu}(t) \dot{\mu}^{*}(0) \rangle$ Taylor-Green-Kubo formula - Equation of motion (Lorentz) $\dot{\mu} = \frac{\partial}{\partial t} \left(\frac{v_{\parallel}}{v} \right) \stackrel{\text{static}}{=} \frac{\dot{v}_{\parallel}}{v}$ Unknown v_{x,y}, unknown $= \frac{\Omega}{v} \left(\mathbf{v}_{x} \frac{\delta B_{y}}{B_{0}} - \mathbf{v}_{y} \frac{\delta B_{x}}{B_{0}} \right)$ position in $\delta B_{x,y}$

[Adapted from R. Tautz (CRISM 2014)]

• Physics problem: motion in a turbulent field

• Ansatz: diffusion equation $\frac{\partial f}{\partial t} - S = \nabla \cdot \left(\kappa_{nj} \cdot \nabla f - \mathbf{v} f \right) + \frac{\partial}{\partial p} \left(p^2 D_p \frac{\partial}{\partial p} \frac{f}{p^2} - \dot{p} f \right) + \dots$ $\kappa = \begin{pmatrix} \kappa_{\perp} & \kappa_A & 0 \\ -\kappa_A & \kappa_{\perp} & 0 \\ 0 & 0 & \kappa_{\parallel} \end{pmatrix} \stackrel{\checkmark}{\longrightarrow} \begin{array}{c} \kappa_{\parallel} : \text{ Diffusion } along^2 \ B \\ \kappa_{\perp} : \text{ Diffusion } across^3 \ B \\ \kappa_{A} : \text{ Drift effects}^4 \end{cases}$ Analytical calculation - Mean free path $\lambda_{\parallel} \propto \kappa_{\parallel} \propto \int_{-1}^{1} d\mu \frac{(1-\mu^{2})^{2}}{D_{\mu\mu}(\mu)}$ Pitch angle $\mu = cos(v, B_{0})$ - Fokker-Planck coefficient $D_{\mu\mu} = \int_{0}^{\infty} dt \langle \dot{\mu}(t) \dot{\mu}^{*}(0) \rangle$ Taylor-Green-Kubo formula - Equation of motion (Lorentz) $\dot{\mu} = \frac{\partial}{\partial t} \left(\frac{v_{\parallel}}{v} \right) \stackrel{\text{static}}{=} \frac{\dot{v}_{\parallel}}{v}$ Unknown v_{x,y}, unknown $= \frac{\Omega}{\mathbf{v}} \left(\mathbf{v}_{\mathbf{x}} \frac{\delta B_{\mathbf{y}}}{B_{\mathbf{x}}} - \mathbf{v}_{\mathbf{y}} \frac{\delta B_{\mathbf{x}}}{B_{\mathbf{x}}} \right)$ position in $\delta B_{x,y}$

 \rightarrow Can only be solved in ideal situations

- Quasi-Linear Theory ($\delta B \ll B$): QLT
- 2nd order QLT: SOQLT
- Non-linear guiding centre: NLGC

[Adapted from R. Tautz (CRISM 2014)]

• Physics problem: motion in a turbulent field

[Adapted from R. Tautz (CRISM 2014)]

[Adapted from R. Tautz (CRISM 2014)]

[Adapted from R. Tautz (CRISM 2014)]

[Adapted from R. Tautz (CRISM 2014)]

• Physics problem: motion in a turbulent field

• Ansatz: diffusion equation $\frac{\partial f}{\partial t} - S = \nabla \cdot \left(\kappa_{nj} \cdot \nabla f - \mathbf{v} f \right) + \frac{\partial}{\partial p} \left(p^2 D_p \frac{\partial}{\partial p} \frac{f}{p^2} - \dot{p} f \right) + \dots$ $\kappa = \begin{pmatrix} \kappa_{\perp} & \kappa_A & 0 \\ -\kappa_A & \kappa_{\perp} & 0 \\ 0 & 0 & \kappa_{\parallel} \end{pmatrix} \stackrel{\checkmark}{\longrightarrow} \begin{array}{l} \kappa_{\parallel} : \text{ Diffusion } along^2 \ B \\ \kappa_{\perp} : \text{ Diffusion } across^3 \ B \\ \kappa_{A} : \text{ Drift effects}^4 \end{cases}$ $\begin{array}{c} \hline & \text{Mean free path } \lambda_{||} \propto \kappa_{||} \propto \int_{-1}^{1} d\mu \ \frac{\left(1 - \mu^{2}\right)^{2}}{D_{\mu\mu}(\mu)} \\ Pitch \ angle \ \mu = cos(v, B_{0}) \end{array}$ Numerical simulations Reality: resonant wave-particle interaction with stochastic motion... turbulence model requires: - Fokker-Planck coefficient $D_{\mu\mu} = \int_0^\infty dt \langle \dot{\mu}(t) \, \dot{\mu}^*(0) \rangle$ • Energy spectrum (diff.eq. for wave!): $W \propto k^{-s}$ • Geometry • Dynamical behaviour Taylor-Green-Kubo formula - Equation of motion (Lorentz) $\dot{\mu} = \frac{\partial}{\partial t} \left(\frac{V_{\parallel}}{V} \right) \stackrel{\text{static}}{=} \frac{\dot{V}_{\parallel}}{V}$ Unknown v_{x,y}, unknown $=\frac{\Omega}{v}\left(\mathbf{v}_{x}\,\frac{\delta B_{y}}{B_{0}}-\mathbf{v}_{y}\,\frac{\delta B_{x}}{B_{0}}\right)$ position in $\delta B_{x,y}$ \rightarrow Can only be solved in ideal situations • Quasi-Linear Theory ($\delta B \ll B$): QLT 2nd order QLT: SOQLT Non-linear guiding centre: NLGC **III.1**Microphysics

[Adapted from R. Tautz (CRISM 2014)]

[Adapted from R. Tautz (CRISM 2014)]

• Physics problem: motion in a turbulent field

• Ansatz: diffusion equation $\frac{\partial f}{\partial t} - S = \nabla \cdot \left(\kappa_{nj} \cdot \nabla f - \mathbf{v} f \right) + \frac{\partial}{\partial p} \left(p^2 D_p \frac{\partial}{\partial p} \frac{f}{p^2} - \dot{p} f \right) + \dots$ $\kappa = \begin{pmatrix} \kappa_{\perp} & \kappa_A & 0 \\ -\kappa_A & \kappa_{\perp} & 0 \\ 0 & 0 & \kappa_{\parallel} \end{pmatrix} \overset{\bullet}{} \kappa_{\perp}$: Diffusion along² B κ_{\perp} : Diffusion across³ B κ_{A} : Drift effects⁴ Analytical calculation Numerical simulations - Mean free path $\lambda_{\parallel} \propto \kappa_{\parallel} \propto \int_{-1}^{1} d\mu \frac{(1-\mu^2)^2}{D_{\mu\mu}(\mu)}$ Reality: resonant wave-particle interaction with stochastic motion... turbulence model requires: Pitch angle $\mu = cos(v, B_0)$ Energy spectrum (diff.eq. for wave!): $W \propto k^{-s}$ - Fokker-Planck coefficient $D_{\mu\mu} = \int_0^\infty dt \langle \dot{\mu}(t) \dot{\mu}^*(0) \rangle$ • Geometry • Dynamical behaviour Taylor-Green-Kubo formula - Instabilities - Equation of motion (Lorentz) $\dot{\mu} = \frac{\partial}{\partial t} \left(\frac{V_{\parallel}}{V} \right) \stackrel{\text{static}}{=} \frac{\dot{V}_{\parallel}}{V}$ - Damped waved - Intermittency Unknown v_{x,y}, unknown $= \frac{\Omega}{v} \left(\mathbf{v}_{\mathbf{x}} \frac{\delta B_{y}}{B_{0}} - \mathbf{v}_{y} \frac{\delta B_{x}}{B_{0}} \right)$ position in $\delta B_{x,y}$ Diffusion in MHD \rightarrow Can only be solved in ideal situations turbulence • Quasi-Linear Theory ($\delta B \ll B$): QLT 2nd order QLT: SOQLT Non-linear guiding centre: NLGC

[Adapted from R. Tautz (CRISM 2014)]

• Physics problem: motion in a turbulent field

• Ansatz: diffusion equation $\frac{\partial f}{\partial t} - S = \nabla \cdot \left(\kappa_{nj} \cdot \nabla f - \mathbf{v} f \right) + \frac{\partial}{\partial p} \left(p^2 D_p \frac{\partial}{\partial p} \frac{f}{p^2} - \dot{p} f \right) + \dots$ $\kappa = \begin{pmatrix} \kappa_{\perp} & \kappa_A & 0 \\ -\kappa_A & \kappa_{\perp} & 0 \\ 0 & 0 & \kappa_{\parallel} \end{pmatrix} \overset{\bullet}{} \kappa_{\perp}$: Diffusion along² B κ_{\perp} : Diffusion across³ B κ_{A} : Drift effects⁴ Analytical calculation Numerical simulations - Mean free path $\lambda_{\parallel} \propto \kappa_{\parallel} \propto \int_{-1}^{1} d\mu \frac{(1-\mu^2)^2}{D_{\mu\mu}(\mu)}$ Reality: resonant wave-particle interaction with stochastic motion... turbulence model requires: Pitch angle $\mu = cos(v, B_0)$ - Fokker-Planck coefficient $D_{\mu\mu} = \int_0^\infty dt \langle \dot{\mu}(t) \dot{\mu}^*(0) \rangle$ Energy spectrum (diff.eq. for wave!): $W \propto k^{-s}$ • Geometry • Dynamical behaviour Taylor-Green-Kubo formula - Instabilities - Equation of motion (Lorentz) $\dot{\mu} = \frac{\partial}{\partial t} \left(\frac{V_{\parallel}}{V} \right) \stackrel{\text{static}}{=} \frac{\dot{V}_{\parallel}}{V}$ - Damped waved - Intermittency Unknown v_{x,y}, unknown $=\frac{\Omega}{v}\left(\mathbf{v}_{x}\,\frac{\delta B_{y}}{B_{0}}-\mathbf{v}_{y}\,\frac{\delta B_{x}}{B_{0}}\right)$ position in $\delta B_{x,y}$ \rightarrow Low resolution only (time-consuming) \rightarrow Can only be solved in ideal situations \rightarrow Near future(?): full MHD • Quasi-Linear Theory ($\delta B \ll B$): QLT treatment (CRs + gas + B) 2nd order QLT: SOQLT • Non-linear guiding centre: NLGC

Magnetic fields

- Everywhere: planetary \rightarrow galaxy clusters
- Typical amplitudes: $\sim \mu G nT$
- Two components (comparable strength):
 - Regular B0 (large scale)
 - Turbulent δB (small scale), i.e. $\langle \delta B \rangle = 0$

Magnetic fields

- Everywhere: planetary \rightarrow galaxy clusters
- Typical amplitudes: $\sim \mu G nT$
- Two components (comparable strength):
 - Regular B0 (large scale)
 - Turbulent δB (small scale), i.e. $\langle \delta B \rangle = 0$

Diffusion+ confinement = geometry

III.1Microphysics

Transport of cosmic rays (CR) in the Galaxy

III. Solving the transport equations: GCR phenomenology

1. Diffusion: from microphysics to effective models

2. Full set of equations (with source terms)

- 3 (Semi-)Analytical, numerical, & MC solutions
- 4. Stable species: degeneracy K₀ /L
- 5. Radioactive species and local ISM
- 6. Leptons and local sources

The full transport equation(s)

The full transport equation(s)

The full transport equation(s)

 \rightarrow Refinement: add specific sources you

believe may contribute to the total

For nuclei:
$$\frac{d\sigma_i^{ps}(E_p \to E_s)}{dE_s} \simeq \sigma_i^{ps} \delta(E_{k/n}^p - E_{k/n}^s)$$

• Semi-empirical (Silberberg & Tsao) • Empirical (Webber et al.) • Microscopic (Zeitlin et al.) $\Delta \sigma / \sigma \sim 10-20\%$

III.2 All terms

III.2 All terms

III.2 All terms

Transport of cosmic rays (CR) in the Galaxy

III. Solving the transport equations: GCR phenomenology

Diffusion: from microphysics to effective models
 Full set of equations (with source terms)
 (Semi-)Analytical, numerical, & MC solutions
 Stable species: degeneracy K₀ /L
 Radioactive species and local ISM

6. Leptons and local sources

$\frac{\partial t}{\partial t}$ +	$\left(-\vec{\nabla}\cdot\left(D(E,\vec{r})\vec{\nabla}\right)\right)+\vec{\nabla}\cdot\vec{V_c}(\vec{r})\right) N$	$N^{j} + \frac{\partial}{\partial E} \left(b^{j} N^{j} - D_{EE} \frac{\partial N}{\partial E} \right) + \left(\Gamma_{ra} \right)$	$_{\rm ad} + \Gamma_{\rm inel}$) $N^j = Q^j(t, E, \vec{r})$
	(Semi-)analytical	Numerical	Monte Carlo

Variat	ion Spatial transport: diffusion+convection	E losses and gains	Source
$\frac{\partial N}{\partial t}$	$\frac{d\vec{r}}{dr} + \left(-\vec{\nabla} \cdot \left(D(E, \vec{r}) \vec{\nabla} \right) \right) + \vec{\nabla} \cdot \vec{V_c}(\vec{r}) \right)$	$N^{j} + \frac{\partial}{\partial E} \left(b^{j} N^{j} - D_{EE} \frac{\partial N^{j}}{\partial E} \right) + \left(\overline{\Gamma_{I}} \right)$	$(ad + \Gamma_{inel})$ $N^j = Q^j(t, E, \vec{r})$
	(Semi-)analytical	Numerical	Monte Carlo
Approach	Simplify the problem: • keep dominant effects only • simplify the geometry - spherical/cylindrical/1D halo - sources/gas in thin disc δ(z)		
			III.3 Techniques

Variat	Spatial transport: diffusion+convection	E losses and gains	strophic losses Source
$\frac{\partial N}{\partial t}$	$\frac{d\vec{p}}{dr} + \left(-\vec{\nabla} \cdot \left(D(E, \vec{r}) \vec{\nabla} \right) \right) + \vec{\nabla} \cdot \vec{V_c}(\vec{r}) \right)$	$N^{j} + \frac{\partial}{\partial E} \left(b^{j} N^{j} - D_{EE} \frac{\partial N^{j}}{\partial E} \right) + \left(\overline{\Gamma}_{1} \right)$	$\underbrace{\frac{1}{1}}_{\text{rad}} + \Gamma_{\text{inel}} N^{j} = \underbrace{\overline{Q^{j}(t, E, \vec{r})}}_{i}$
	(Semi-)analytical	Numerical	Monte Carlo
Approach	 <u>Simplify the problem</u>: keep dominant effects only simplify the geometry spherical/cylindrical/1D halo sources/gas in thin disc δ(z) 		
Tools	• Green functions $\mathcal{L}N(x) = f(x) \begin{cases} \mathcal{L}G(x x') = \delta(x-x') \\ N^{\text{part}}(x) = \int G(x x')f(x')dx \end{cases}$		
			III.3 Techniques

Variat	Spatial transport: diffusion+convection	E losses and gains	strophic losses Source
$\frac{\partial N}{\partial t}$	$\frac{j}{2} + \left(-\vec{\nabla} \cdot \left(D(E, \vec{r}) \vec{\nabla} \right) \right) + \vec{\nabla} \cdot \vec{V_c}(\vec{r}) \right)$	$N^{j} + \frac{\partial}{\partial E} \left(b^{j} N^{j} - D_{EE} \frac{\partial N^{j}}{\partial E} \right) + \left(\overline{\Gamma_{I}} \right)$	$(\overline{Q^{j}(t, E, \vec{r})})$ $N^{j} = Q^{j}(t, E, \vec{r})$
	(Semi-)analytical	Numerical	Monte Carlo
Approach	 <u>Simplify the problem</u>: keep dominant effects only simplify the geometry spherical/cylindrical/1D halo sources/gas in thin disc δ(z) 		
Tools	 Green functions Fourier/Bessel expansion Differential equations 		
			III.3 Techniques

Variat	Spatial transport: diffusion+convection	E losses and gains	rophic losses Source
$\frac{\partial N}{\partial t}$	$\frac{j}{\vec{r}} + \left(-\vec{\nabla} \cdot \left(D(E, \vec{r}) \vec{\nabla} \right) \right) + \vec{\nabla} \cdot \vec{V_c}(\vec{r}) \right)$	$N^{j} + \frac{\partial}{\partial E} \left(b^{j} N^{j} - D_{EE} \frac{\partial N^{j}}{\partial E} \right) + \left(\overline{\Gamma_{ra}} \right)$	$\overrightarrow{H}_{\text{id}} + \overrightarrow{\Gamma_{\text{inel}}} N^{j} = \overbrace{Q^{j}(t, E, \vec{r})}^{\text{bounce}}$
	(Semi-)analytical	Numerical	Monte Carlo
Approach	 <u>Simplify the problem</u>: keep dominant effects only simplify the geometry spherical/cylindrical/1D halo sources/gas in thin disc δ(z) 		
Tools	 Green functions Fourier/Bessel expansion Differential equations 		
Pros and cons	 Useful to understand the physics Fast and no instabilities Only solve approximate model New solution for new problem 		
			III 3 Technique

Variat	Spatial transport: diffusion+convection	E losses and gains	rophic losses Source
$\frac{\partial N}{\partial t}$	$ + \left(-\vec{\nabla} \cdot \left(D(E, \vec{r}) \vec{\nabla} \right) \right) + \vec{\nabla} \cdot \vec{V_c}(\vec{r}) \right) $	$N^{j} + \frac{\partial}{\partial E} \left(b^{j} N^{j} - D_{EE} \frac{\partial N^{j}}{\partial E} \right) + \left(\overline{\Gamma_{ra}} \right)$	$\overrightarrow{H}_{\text{id}} + \overrightarrow{\Gamma_{\text{inel}}} N^{j} = \overrightarrow{Q^{j}(t, E, \vec{r})}$
	(Semi-)analytical	Numerical	Monte Carlo
Approach	 <u>Simplify the problem</u>: keep dominant effects only simplify the geometry spherical/cylindrical/1D halo sources/gas in thin disc δ(z) 	 <u>Finite difference scheme</u>: discretise the equation scheme (e.g., Crank-Nicholson) invert tridiagonal matrix 	
Tools	 Green functions Fourier/Bessel expansion Differential equations 		
Pros and cons	 Useful to understand the physics Fast and no instabilities Only solve approximate model New solution for new problem 		
			III 3 Technique

Varia	tion Spatial transport: diffusion+convection	E losses and gains	strankia laggar Source
$\frac{\partial N}{\partial t}$	$\frac{d\vec{r}}{dt} + \left(-\vec{\nabla} \cdot \left(D(E, \vec{r}) \vec{\nabla} \right) \right) + \vec{\nabla} \cdot \vec{V_c}(\vec{r}) \right)$	$N^{j} + \frac{\partial}{\partial E} \left(b^{j} N^{j} - D_{EE} \frac{\partial N^{j}}{\partial E} \right) + \left(\overline{\Gamma_{r}} \right)$	$r_{ad} + \Gamma_{inel}$ $N^j = \overbrace{Q^j(t, E, \vec{r})}^{boulee}$
	(Semi-)analytical	Numerical	Monte Carlo
Approach Tools	 <u>Simplify the problem</u>: keep dominant effects only simplify the geometry spherical/cylindrical/1D halo sources/gas in thin disc δ(z) Green functions Fourier/Bessel expansion Differential equations 	Finite difference scheme:• discretise the equation• scheme (e.g., Crank-Nicholson)• invert tridiagonal matrix	icit scheme Explicit scheme $-2u_i^{n+1} + u_{i-1}^{n+1}) + (u_{i+1}^n - 2u_i^n + u_{i-1}^n))$
Pros and cons	 Useful to understand the physics Fast and no instabilities Only solve approximate model New solution for new problem 		Crank-Nicholson scheme
			III 3 Technique

$\overbrace{\partial N}^{\text{Variat}}$	$\underbrace{\frac{1}{j}}_{j}$ Spatial transport: diffusion+convection	E losses and gains $\partial \left(1 i N i \right) = \partial N^{j} $ Catast	$\underbrace{\text{rophic losses}}_{\text{Oliver E and }} \underbrace{\text{Source}}_{\text{Oliver E and }}$
- dt	$- + \left(-V \cdot \left(D(E, r)V\right)\right) + V \cdot V_c(r)\right)$	$N^{j} + \frac{\partial E}{\partial E} \left(\frac{\partial^{j} N^{j} - D_{EE}}{\partial E} \right) + (\Gamma_{ra})$	$d + 1$ inel) $N^{j} = Q^{j}(t, E, r)$
	(Semi-)analytical	Numerical	Monte Carlo
Approach	 <u>Simplify the problem</u>: keep dominant effects only simplify the geometry spherical/cylindrical/1D halo sources/gas in thin disc δ(z) 	 <u>Finite difference scheme</u>: discretise the equation scheme (e.g., Crank-Nicholson) invert tridiagonal matrix 	
Tools	 Green functions Fourier/Bessel expansion Differential equations 	 Numerical solvers Numerical recipes (Press et al.) NAG libraries, GSL (free) 	
Pros and cons	 Useful to understand the physics Fast and no instabilities Only solve approximate model New solution for new problem 		
			III 3 Technique

Variati	Spatial transport: diffusion+convection	E losses and gains	rophic losses Source
$\frac{\partial N}{\partial t}$	$ \frac{j}{-} + \left(-\vec{\nabla} \cdot \left(D(E, \vec{r}) \vec{\nabla} \right) \right) + \vec{\nabla} \cdot \vec{V_c}(\vec{r}) \right) $	$N^{j} + \frac{\partial}{\partial E} \left(b^{j} N^{j} - D_{EE} \frac{\partial N^{j}}{\partial E} \right) + \left(\overline{\Gamma_{ra}} \right)$	$\underbrace{\frac{1}{d} + \Gamma_{\text{inel}}}_{j} N^{j} = \underbrace{Q^{j}(t, E, \vec{r})}_{j}$
	(Semi-)analytical	Numerical	Monte Carlo
Approach	 <u>Simplify the problem</u>: keep dominant effects only simplify the geometry spherical/cylindrical/1D halo sources/gas in thin disc δ(z) 	 <u>Finite difference scheme</u>: discretise the equation scheme (e.g., Crank-Nicholson) invert tridiagonal matrix 	
Tools	 Green functions Fourier/Bessel expansion Differential equations 	 Numerical solvers Numerical recipes (Press et al.) NAG libraries, GSL (free) 	
Pros and cons	 Useful to understand the physics Fast and no instabilities Only solve approximate model New solution for new problem 	 Very simple algebra Any new input easily included Slow, huge memory for high res. Less insight in the physics 	
			III 3 Technique

Variat	Spatial transport: diffusion+convection	E losses and gains	source
$\frac{\partial N}{\partial t}$	$\frac{j}{\vec{r}} + \left(-\vec{\nabla} \cdot \left(D(E, \vec{r}) \vec{\nabla} \right) \right) + \vec{\nabla} \cdot \vec{V_c}(\vec{r}) \right)$	$N^{j} + \frac{\partial}{\partial E} \left(b^{j} N^{j} - D_{EE} \frac{\partial N^{j}}{\partial E} \right) + \left(\overline{\Gamma_{ra}} \right)$	$\underbrace{\overline{d} + \Gamma_{\text{inel}}}_{d} + \Gamma_{\text{inel}} N^{j} = \underbrace{\overline{Q^{j}(t, E, \vec{r})}}_{Q^{j}(t, E, \vec{r})}$
	(Semi-)analytical	Numerical	Monte Carlo
Approach	 <u>Simplify the problem</u>: keep dominant effects only simplify the geometry spherical/cylindrical/1D halo sources/gas in thin disc δ(z) 	 <u>Finite difference scheme</u>: discretise the equation scheme (e.g., Crank-Nicholson) invert tridiagonal matrix 	Follow each particle: • N particles at t=0 • evolve each of them to t+1 • draw random numbers for D $1D: \Delta z = \pm \sqrt{2D\Delta t}$
Tools	 Green functions Fourier/Bessel expansion Differential equations 	 Numerical solvers Numerical recipes (Press et al.) NAG libraries, GSL (free) 	
Pros and cons	 Useful to understand the physics Fast and no instabilities Only solve approximate model New solution for new problem 	 Very simple algebra Any new input easily included Slow, huge memory for high res. Less insight in the physics 	
			III 3 Technique

III.3 Techniques

Variat	ion Spatial transport: diffusion+convection	E losses and gains	source
$\frac{\partial N}{\partial t}$	$ \frac{d\vec{r}}{dr} + \left(-\vec{\nabla} \cdot \left(D(E, \vec{r}) \vec{\nabla} \right) \right) + \vec{\nabla} \cdot \vec{V_c}(\vec{r}) \right) $	$N^{j} + \frac{\partial}{\partial E} \left(b^{j} N^{j} - D_{EE} \frac{\partial N^{j}}{\partial E} \right) + \left(\overline{\Gamma_{ra}} \right)$	$\underbrace{\overline{d}_{d} + \Gamma_{\text{inel}}}_{N^{j}} N^{j} = \underbrace{\overline{Q^{j}(t, E, \vec{r})}}_{Q^{j}(t, E, \vec{r})}$
	(Semi-)analytical	Numerical	Monte Carlo
Approach	 <u>Simplify the problem</u>: keep dominant effects only simplify the geometry spherical/cylindrical/1D halo sources/gas in thin disc δ(z) 	 <u>Finite difference scheme</u>: discretise the equation scheme (e.g., Crank-Nicholson) invert tridiagonal matrix 	Follow each particle: • N particles at t=0 • evolve each of them to t+1 • draw random numbers for D $1D: \Delta z = \pm \sqrt{2D\Delta t}$
Tools	 Green functions Fourier/Bessel expansion Differential equations 	 Numerical solvers Numerical recipes (Press et al.) NAG libraries, GSL (free) 	 Stochastic differential equations Markov process MPI
Pros and cons	 Useful to understand the physics Fast and no instabilities Only solve approximate model New solution for new problem 	 Very simple algebra Any new input easily included Slow, huge memory for high res. Less insight in the physics 	
			III 3 Technique

III.3 Techniques

Variati	Spatial transport: diffusion+convection	E losses and gains	Source	
$ \frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E, \vec{r}) \vec{\nabla} \right) \right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r}) \right) N^{j} + \frac{\partial}{\partial E} \left(b^{j} N^{j} - D_{EE} \frac{\partial N^{j}}{\partial E} \right) + \left(\overline{(\Gamma_{\text{rad}} + \Gamma_{\text{inel}})} \right) N^{j} = \underbrace{\mathcal{Q}^{j}(t, E, \vec{r})}_{Q^{j}(t, E, \vec{r})} $				
	(Semi-)analytical	Numerical	Monte Carlo	
Approach	 <u>Simplify the problem</u>: keep dominant effects only simplify the geometry spherical/cylindrical/1D halo sources/gas in thin disc δ(z) 	 <u>Finite difference scheme</u>: discretise the equation scheme (e.g., Crank-Nicholson) invert tridiagonal matrix 	Follow each particle: • N particles at t=0 • evolve each of them to t+1 • draw random numbers for D $1D: \Delta z = \pm \sqrt{2D\Delta t}$	
Tools	 Green functions Fourier/Bessel expansion Differential equations 	 Numerical solvers Numerical recipes (Press et al.) NAG libraries, GSL (free) 	 Stochastic differential equations Markov process MPI 	
Pros and cons	 Useful to understand the physics Fast and no instabilities Only solve approximate model New solution for new problem 	 Very simple algebra Any new input easily included Slow, huge memory for high res. Less insight in the physics 	 Statistical properties (along path) No grid (t step), (for/back)-ward Very slow, statistical errors Massively parallel problem 	
			III.3 Techniques	

Variation Spatial transport: diffusion+convection E losses and gains			
$\frac{\partial N^{j}}{\partial t} + \underbrace{\left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla}\right)\right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r})\right)}_{N^{j}} N^{j} + \underbrace{\frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right)}_{Catastrophic losses} N^{j} = \underbrace{\mathcal{Q}^{j}(t,E,\vec{r})}_{Q^{j}(t,E,\vec{r})}$			
	(Semi-)analytical	Numerical	Monte Carlo
Approach	 <u>Simplify the problem</u>: keep dominant effects only simplify the geometry spherical/cylindrical/1D halo sources/gas in thin disc δ(z) 	 <u>Finite difference scheme</u>: discretise the equation scheme (e.g., Crank-Nicholson) invert tridiagonal matrix 	Follow each particle: • N particles at t=0 • evolve each of them to t+1 • draw random numbers for D $1D: \Delta z = \pm \sqrt{2D\Delta t}$
Tools	 Green functions Fourier/Bessel expansion Differential equations 	 Numerical solvers Numerical recipes (Press et al.) NAG libraries, GSL (free) 	 Stochastic differential equations Markov process MPI
Pros and cons	 Useful to understand the physics Fast and no instabilities Only solve approximate model New solution for new problem 	 Very simple algebra Any new input easily included Slow, huge memory for high res. Less insight in the physics 	 Statistical properties (along path) No grid (t step), (for/back)-ward Very slow, statistical errors Massively parallel problem
Codes and/or references	Webber (1970+) Ptuskin (1980+) Schlickeiser (1990+) USINE (2000+)	<i>GALPROP</i> (Strong et al. 1998) <i>DRAGON</i> (Evoli et al. 2008) PICARD (Kissmann et al., 2013)	Webber & Rockstroh (1997) Farahat et al. (2008) <i>Kopp, Büshing et al. (2012)</i> III.3 Techniques

Transport of cosmic rays (CR) in the Galaxy

III. Solving the transport equations: GCR phenomenology

- 1. Diffusion: from microphysics to effective models
- 2. Full set of equations (with source terms)
- 3 (Semi-)Analytical, numerical, & MC solutions
- 4. Stable species: degeneracy D₀ /L
- 5. Radioactive species and local ISM
- 6. Leptons and local sources

$$\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla}\right)\right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r})\right)N^{j} + \frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right) + (\Gamma_{rad} + \Gamma_{inel})N^{j} = Q^{j}(t,E,\vec{r})$$

$$\mathbf{L} \qquad \mathbf{L} \qquad \mathbf{L}$$

Solution for stable species

$$-DN'' + nv\sigma 2h\delta(z) \times N = 2h\delta(z)Q(E)$$

- Solve in the halo
- Ensure condition N(z=L)=0
- Integrate around 0

Solution for stable species

$$-DN'' + nv\sigma 2h\delta(z) \times N = 2h\delta(z)Q(E)$$

- Solve in the halo
- Ensure condition N(z=L)=0 $N(0) = \frac{2hQ(E)}{2D/L + 2hnv\sigma}$

2h

- Neglect energy losses/gains
- D(E) isotropic, space-independent

Solution for stable species

$$-DN'' + nv\sigma 2h\delta(z) \times N = 2h\delta(z)Q(E)$$

- Solve in the halo
- Ensure condition N(z=L)=0 $N(0) = \frac{2hQ(E)}{2D/L + 2hnv\sigma}$

K(z,E)

Disk (standard sources + spallations)

Kinetic energy per nucleon, MeV

(z=0)

Vgal(z)

Stable nuclei: ratio of primary species

Solution for stable species

$$-DN'' + nv\sigma 2h\delta(z) \times N = 2h\delta(z)Q(E)$$

- Solve in the halo
- Ensure condition N(z=L)=0 $N(0) = \frac{2hQ(E)}{2D/L + 2hnv\sigma}$

$$\frac{N^{1}(0)}{N^{2}(0)} \propto \frac{R^{-\alpha_{1}}}{R^{-\alpha_{2}}} \times \frac{2D/L + 2hnv\sigma_{2}}{2D/L + 2hnv\sigma_{1}}$$

 $O^{\rm prim}(R) = q_0 R^{-\alpha}$
Stable nuclei: ratio of primary species (LE)

$$\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E, \vec{r})\vec{\nabla}\right)\right) + \vec{\nabla} \cdot \vec{\nabla_{c}}(\vec{r})\right) N^{j} + \frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE} \frac{\partial N^{j}}{\partial E}\right) + \left(\Gamma_{rad} + \Gamma_{incl}\right) N^{j} = Q^{j}(t, E, \vec{r})$$

$$\stackrel{\text{Simplified 1D geometry (infinite plane)}{(N_{c}) = 0} + N_{c}(e^{j}) + (V_{rad} + \Gamma_{incl}) N^{j} = Q^{j}(t, E, \vec{r})$$

$$\stackrel{\text{Solution for stable species}}{(z=0) - DN'' + nv\sigma 2h\delta(z) \times N = 2h\delta(z)Q(E)}$$

$$\stackrel{\text{Solve in the halo}}{= \text{Integrate around 0}} N(0) = \frac{2hQ(E)}{2D/L + 2hnv\sigma}$$

$$\stackrel{\text{The heavier the nucleus, the more destroyed it is at low energy}$$

$$\stackrel{\text{The heavier the nucleus, the more destroyed it is at low energy}$$

III.4 Stables and B/C

 $Q^{\rm prim}(R) = q_0 R^{-\alpha}$

Stable nuclei: ratio of primary species (HE)

Solution for stable species

$$-DN'' + nv\sigma 2h\delta(z) \times N = 2h\delta(z)Q(E)$$
Solve in the halo
Ensure condition N(z=L)=0
Integrate around 0

$$N(0) = \frac{2hQ(E)}{2D/L + 2hnv\sigma}$$

$$\frac{N^{1}(0)}{N^{2}(0)} \propto \frac{R^{-\alpha_{1}}}{R^{-\alpha_{2}}} \times \frac{2D/L + 2hnv\sigma_{2}}{2D/L + 2hnv\sigma_{1}}$$
Hint at $\alpha_{p} \neq \alpha_{He}^{2}$
(collective effects, acceleration in WR winds)

$$Hint at \alpha_{p} \neq \alpha_{He}^{2}$$
(collective effects, acceleration in WR winds)

 $O^{\rm prim}(R) = q_0 R^{-\alpha}$

Stable nuclei: primary flux (HE)

Solution for stable species

• Solve in the halo

10

104

E (GeV/n)

III.4 Stables and B/C

Stable nuclei: secondary/primary (HE)

Solution for stable species

$$-DN'' + nv\sigma 2h\delta(z) \times N = 2h\delta(z)Q(E)$$

- Solve in the halo
- Ensure condition N(z=L)=0 $N(0) = \frac{2hQ(E)}{2D/L + 2hnv\sigma}$

$$\rightarrow N^{\text{sec}}(0) = \frac{Q^{\text{sec}}(E)}{D(E)} \propto \frac{nv\sigma^{ps}N^{p}(0)}{2D/L}$$
$$\rightarrow \frac{N^{s}}{N^{p}}(0) \propto \frac{L}{D_{0}}R^{-\delta}$$

 $sec(R) = nv\sigma^{ps}N^p(0)$

Stable nuclei: secondary/primary + δ

$$\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla}\right)\right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r})\right)N^{j} + \frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right) + \left(\Gamma_{\text{rad}} + \Gamma_{\text{inel}}\right)N^{j} = Q^{j}(t,E,\vec{r})$$

- Simplified 1D geometry (infinite plane)
- Neglect energy losses/gains
- D(E) isotropic, space-independent

Solution for stable species

$$-DN'' + nv\sigma 2h\delta(z) \times N = 2h\delta(z)Q(E)$$

- Solve in the halo
- Ensure condition N(z=L)=0 $N(0) = \frac{2hQ(E)}{2D/L + 2hnv\sigma}$
- Integrate around 0

$$\rightarrow N^{\text{sec}}(0) = \frac{Q^{\text{sec}}(E)}{D(E)} \propto \frac{nv\sigma^{ps}N^{p}(0)}{2D/L}$$
$$\rightarrow \frac{N^{s}}{N^{p}}(0) \propto \frac{L}{D_{0}}R^{-\delta}$$

 \rightarrow Current data not at high energy enough to determine δ

Stable nuclei: secondary/primary + δ

- Simplified 1D geometry (infinite plane)
- Neglect energy losses/gains
- D(E) isotropic, space-independent

Solution for stable species

$$-DN'' + nv\sigma 2h\delta(z) \times N = 2h\delta(z)Q(E)$$

- Solve in the halo
- Ensure condition N(z=L)=0 $> N(0) = \frac{2hQ(E)}{2D/L + 2hnv\sigma}$

$$\rightarrow N^{\text{sec}}(0) = \frac{Q^{\text{sec}}(E)}{D(E)} \propto \frac{nv\sigma^{ps}N^{p}(0)}{2D/L}$$
$$\rightarrow \frac{N^{s}}{N^{p}}(0) \propto \frac{L}{D_{0}}R^{-\delta}$$

 \rightarrow Current data not at high energy enough to determine δ

Stable nuclei: secondary/primary + δ

2h

- Neglect energy losses/gains
- D(E) isotropic, space-independent

Solution for stable species

$$-DN'' + nv\sigma 2h\delta(z) \times N = 2h\delta(z)Q(E)$$

- Solve in the halo
- Ensure condition N(z=L)=0 $N(0) = \frac{2hQ(E)}{2D/L + 2hnv\sigma}$

$$\rightarrow N^{\text{sec}}(0) = \frac{Q^{\text{sec}}(E)}{D(E)} \propto \frac{nv\sigma^{ps}N^{p}(0)}{2D/L}$$
$$\rightarrow \frac{N^{s}}{N^{p}}(0) \propto \frac{L}{D_{0}}R^{-\delta}$$

 \rightarrow Current data not at high energy enough to determine δ

Disk (standard sources + spallations)

 \rightarrow Nuclear uncertainties > B/C data uncertainties

Stable nuclei: secondary/primary and D₀/L degeneracy

III.4 Stables and B/C

Stable nuclei: secondary/primary and D₀/L degeneracy

$$\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E, \vec{r})\vec{\nabla}\right)\right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r})\right)N^{j} + \frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right) + (\Gamma_{rad} + \Gamma_{inel})N^{j} = Q^{j}(t, E, \vec{r})$$

$$\stackrel{\text{Simplified 1D geometry (infinite plane)}{} \cdot \text{Neglect energy losses/gains} \quad L \quad \begin{array}{c} \mathbf{L} \\ \mathbf{K}(\mathbf{z}, \mathbf{E}) \\ \mathbf{L} \\ \mathbf{L$$

Solution for stable species

$$-DN'' + nv\sigma 2h\delta(z) \times N = 2h\delta(z)Q(E)$$

- Solve in the halo Ensure condition N(z=L)=0 $N(0) = \frac{2hQ(E)}{2D/L + 2hnv\sigma}$

$$\rightarrow N^{\text{sec}}(0) = \frac{Q^{\text{sec}}(E)}{D(E)} \propto \frac{nv\sigma^{ps}N^{p}(0)}{2D/L}$$
$$\rightarrow \frac{N^{s}}{N^{p}}(0) \propto \frac{L}{D_{0}}R^{-\delta}$$

 \rightarrow Current data not at high energy enough to determine δ

Leaky-Box equation and grammage

$$\frac{N^{s}}{\tau_{esc}} + nv\sigma N^{s} = nv\sigma^{ps}N^{p}$$

$$\frac{N^{s}}{N^{p}} = nv\sigma^{ps}\tau_{esc} \qquad \tau_{esc} = \lambda_{esc}n\bar{m}v$$

$$\lambda_{esc}(1 \text{ GV}) = \frac{N^{s}}{N^{p}} \times \frac{\bar{m}}{\sigma^{ps}}$$

$$\lambda_{esc}(1 \text{ GV}) = 0.3 \times \frac{2 \cdot 10^{-24}}{20 \cdot 10^{-27}} \sim 30 \text{ g cm}^{-2}$$
N.B.: correct answer ~ 10 g/cm²

Disk (standard sources + spallations)

 \rightarrow Strong D₀/L degeneracy \neq D₀ and L (but same D₀/L) gives same B/C

III.4 Stables and B/C

Transport of cosmic rays (CR) in the Galaxy

III. Solving the transport equations: GCR phenomenology

- 1. Diffusion: from microphysics to effective models
- 2. Full set of equations (with source terms)
- 3 (Semi-)Analytical, numerical, & MC solutions
- 4. Stable species: degeneracy K₀ /L
- 5. Radioactive species and local ISM
- 6. Leptons and local sources

$$\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla})\right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r})\right)N^{j} + \frac{\partial}{\partial E}\left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right) + \left(\Gamma_{\rm rad} + \Gamma_{\rm inel}\right)N^{j} = Q^{j}(t,E,\vec{r})$$

 $\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla}\right)\right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r})\right)N^{j} + \frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right) + (\Gamma_{\text{rad}} + \Gamma_{\text{inel}})N^{j} = Q^{j}(t,E,\vec{r})$

$$\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla} \right) \right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r}) \right) N^{j} + \frac{\partial}{\partial E} \left(b^{j} N^{j} - D_{EE} \frac{\partial N^{j}}{\partial E} \right) + \left(\Gamma_{\rm rad} + \Gamma_{\rm inel} \right) N^{j} = Q^{j}(t,E,\vec{r})$$

Solution for radioactive species

- Only decay and diffusion
- Unbounded diffusion (not sensitive to L)

$$-D \triangle_{\vec{r}} N^r + \frac{N^r}{\gamma \tau_0} = Q(r) \quad \Rightarrow \begin{cases} -\Delta_{\vec{r}} N^r + \lambda^2 N^r = \frac{Q(r)}{D} \\ \lambda = 1/\sqrt{D\gamma \tau_0} \end{cases}$$

$$\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla} \right) \right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r}) \right) N^{j} + \frac{\partial}{\partial E} \left(b^{j} N^{j} - D_{EE} \frac{\partial N^{j}}{\partial E} \right) + \left(\Gamma_{\rm rad} + \Gamma_{\rm inel} \right) N^{j} = Q^{j}(t,E,\vec{r})$$

 $\Omega(\cdot)$

Solution for radioactive species

- Only decay and diffusion
- Unbounded diffusion (not sensitive to L)

$$-D \triangle_{\vec{r}} N^r + \frac{N^r}{\gamma \tau_0} = Q(r) \quad \Rightarrow \begin{cases} -\Delta_{\vec{r}} N^r + \lambda^2 N^r = \frac{Q(r)}{D} \\ \lambda = 1/\sqrt{D\gamma \tau_0} \end{cases}$$

• Green function: solution for $Q(r) = \delta(r)$ $\mathcal{L}N(x) = f(x) \begin{cases} \mathcal{L}G(x|x') = \delta(x-x') \\ N^{\text{part}}(x) = \int G(x|x')f(x')dx' \end{cases} \xrightarrow{G(r) = \exp(-\lambda r)/(4\pi r)} \rightarrow only \ depends \ on \ the \ distance \ to \ the \ source} \end{cases}$

$$\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla})\right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r})\right)N^{j} + \frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right) + \left(\Gamma_{\rm rad} + \Gamma_{\rm inel}\right)N^{j} = Q^{j}(t,E,\vec{r})$$

 $\Omega(\cdot)$

Solution for radioactive species

- Only decay and diffusion
- Unbounded diffusion (not sensitive to L)

$$-D \triangle_{\vec{r}} N^r + \frac{N^r}{\gamma \tau_0} = Q(r) \quad \Rightarrow \begin{cases} -\Delta_{\vec{r}} N^r + \lambda^2 N^r = \frac{Q(r)}{D} \\ \lambda = 1/\sqrt{D\gamma \tau_0} \end{cases}$$

• Green function: solution for $Q(r) = \delta(r)$ $\mathcal{L}G(x|x') = \delta(x-x')$ $N^{\text{part}}(x) = \int G(x|x')f(x')dx'$ $G(r) = \exp(-\lambda r)/(4\pi r)$ $\rightarrow only \ depends \ on \ the \ distance \ to \ the \ source$ $N^{r}(r) = \int d^{3}r G(|r-r'|) \frac{Q(r)}{D} = \int d^{3}r Q(r) \frac{e^{-\lambda r}}{4\pi Dr}$

$$\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla})\right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r})\right)N^{j} + \frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right) + \left(\Gamma_{\rm rad} + \Gamma_{\rm inel}\right)N^{j} = Q^{j}(t,E,\vec{r})$$

 α

Solution for radioactive species

- Only decay and diffusion
- Unbounded diffusion (not sensitive to L)

$$-D \triangle_{\vec{r}} N^r + \frac{N^r}{\gamma \tau_0} = Q(r) \quad \Rightarrow \begin{cases} -\Delta_{\vec{r}} N^r + \lambda^2 N^r = \frac{Q(r)}{D} \\ \lambda = 1/\sqrt{D\gamma \tau_0} \end{cases}$$

$$N^{r}(r) = \int d^{3}r G(|r - r'|) \frac{Q(r)}{D} = \int d^{3}r Q(r) \frac{e^{-\lambda r}}{4\pi Dr}$$

$$\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla}\right)\right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r})\right)N^{j} + \frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right) + \left(\Gamma_{\rm rad} + \Gamma_{\rm inel}\right)N^{j} = Q^{j}(t,E,\vec{r})$$

Solution for radioactive species

- Only decay and diffusion
- Unbounded diffusion (not sensitive to L)

$$-D \triangle_{\vec{r}} N^r + \frac{N^r}{\gamma \tau_0} = Q(r) \quad \Rightarrow \begin{cases} -\Delta_{\vec{r}} N^r + \lambda^2 N^r = \frac{Q(r)}{D} \\ \lambda = 1/\sqrt{D\gamma \tau_0} \end{cases}$$

$$N^{r}(r) = \int d^{3}r G(|r - r'|) \frac{Q(r)}{D} = \int d^{3}r Q(r) \frac{e^{-\lambda r}}{4\pi Dr}$$

 $Q^r(z) = 2h\delta(z)n_{\rm ISM}v\sigma^{p\to r}N^p(z)$

$$\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E, \vec{r}) \vec{\nabla} \right) \right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r}) \right) N^{j} + \frac{\partial}{\partial E} \left(b^{j} N^{j} - D_{EE} \frac{\partial N^{j}}{\partial E} \right) + \left(\Gamma_{\text{rad}} + \Gamma_{\text{inel}} \right) N^{j} = Q^{j}(t, E, \vec{r})$$

Solution for radioactive species

- Only decay and diffusion
- Unbounded diffusion (not sensitive to L)

$$-D \triangle_{\vec{r}} N^r + \frac{N^r}{\gamma \tau_0} = Q(r) \quad \Rightarrow \begin{cases} -\Delta_{\vec{r}} N^r + \lambda^2 N^r = \frac{Q(r)}{D} \\ \lambda = 1/\sqrt{D\gamma \tau_0} \end{cases}$$

$$N^{r}(r) = \int d^{3}r G(|r - r'|) \frac{Q(r)}{D} = \int d^{3}r Q(r) \frac{e^{-\lambda r}}{4\pi Dr}$$

<u>N.B.</u>: *r* is the distance, and we now change to (r,z) variables $d^3r=4\pi r^2 dr = 2\pi r dr dz$

Find solution N^r(0)

$$\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla}\right)\right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r})\right)N^{j} + \frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right) + \left(\Gamma_{\rm rad} + \Gamma_{\rm inel}\right)N^{j} = Q^{j}(t,E,\vec{r})$$

Solution for radioactive species

- Only decay and diffusion
- Unbounded diffusion (not sensitive to L)

$$-D \triangle_{\vec{r}} N^r + \frac{N^r}{\gamma \tau_0} = Q(r) \quad \Rightarrow \begin{cases} -\Delta_{\vec{r}} N^r + \lambda^2 N^r = \frac{Q(r)}{D} \\ \lambda = 1/\sqrt{D\gamma \tau_0} \end{cases}$$

$$N^{r}(r) = \int d^{3}r G(|r - r'|) \frac{Q(r)}{D} = \int d^{3}r Q(r) \frac{e^{-\lambda r}}{4\pi Dr}$$

<u>N.B.</u>: *r* is the distance, and we now change to (r,z) variables $d^3r=4\pi r^2 dr = 2\pi r dr dz$

 \rightarrow Direct measure of the diffusion coefficient

$$\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla}\right)\right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r})\right)N^{j} + \frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right) + \left(\Gamma_{\text{rad}} + \Gamma_{\text{inel}}\right)N^{j} = Q^{j}(t,E,\vec{r})$$

Solution for radioactive species

- Only decay and diffusion
- Unbounded diffusion (not sensitive to L)

$$-D \triangle_{\vec{r}} N^r + \frac{N^r}{\gamma \tau_0} = Q(r) \quad \Rightarrow \begin{cases} -\Delta_{\vec{r}} N^r + \lambda^2 N^r = \frac{Q(r)}{D} \\ \lambda = 1/\sqrt{D\gamma \tau_0} \end{cases}$$

$$N^{r}(r) = \int d^{3}r G(|r - r'|) \frac{Q(r)}{D} = \int d^{3}r Q(r) \frac{e^{-\lambda r}}{4\pi Dr}$$

<u>N.B.</u>: *r* is the distance, and we now change to (*r*,*z*) variables

But data are scarce...

- No direct measurement of ¹⁰Be
- Only ~ one energy for ${}^{10}\text{Be/Be}$ or ${}^{10}\text{Be/}{}^{9}\text{Be}$ (also ${}^{26}\text{Al}$, ${}^{36}\text{Cl}$, ${}^{54}\text{Mn}$)

$$N^{r}(0) = \int_{0}^{\infty} \int_{-\infty}^{+\infty} Q^{r}(z) \frac{e^{-\lambda \sqrt{r^{2} + z^{2}}}}{2D} dr dz = Q^{r}(0) \int_{0}^{\infty} \frac{e^{-\lambda r}}{4\pi D} dr$$
$$N^{r}(0) = hn_{\text{ISM}} v \sigma^{p \to r} N^{p}(0) \sqrt{\frac{\gamma \tau_{0}}{D}}$$

$$\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla}\right)\right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r})\right)N^{j} + \frac{\partial}{\partial E}\left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right) + (\Gamma_{\rm rad} + \Gamma_{\rm inel})N^{j} = Q^{j}(t,E,\vec{r})$$

Solution for radioactive species

- Only decay and diffusion
- Unbounded diffusion (not sensitive to L)

$$-D \triangle_{\vec{r}} N^r + \frac{N^r}{\gamma \tau_0} = Q(r) \quad \Rightarrow \begin{cases} -\Delta_{\vec{r}} N^r + \lambda^2 N^r = \frac{Q(r)}{D} \\ \lambda = 1/\sqrt{D\gamma \tau_0} \end{cases}$$

$$N^{r}(r) = \int d^{3}r G(|r - r'|) \frac{Q(r)}{D} = \int d^{3}r Q(r) \frac{e^{-\lambda r}}{4\pi Dr}$$

<u>*N.B.*</u>: r is the distance, and we now change to (r,z) variables

But data are scarce...

- No direct measurement of ¹⁰Be
- Only ~ one energy for ${}^{10}\text{Be/Be}$ or ${}^{10}\text{Be/}{}^{9}\text{Be}$ (also ${}^{26}\text{Al}$, ${}^{36}\text{Cl}$, ${}^{54}\text{Mn}$)

$$N^{r}(0) = hn_{\rm ISM} v\sigma^{p \to r} N^{p}(0) \sqrt{\frac{\gamma \tau_{0}}{D}}$$

Secondary radioactive nuclei: the local ISM (LISM)

From how far away radioactive nuclei come?

 $D = 0.05 \text{ kpc}^{2}/\text{Myr} \times (\text{E}/1 \text{ GeV})^{0.5} \\ \tau (^{10}\text{Be}) \sim 1.5 \text{ Myr}$

Secondary radioactive nuclei: the local ISM (LISM)

Radioactive species are sensitive to small scales (~ 300 pc) \rightarrow the local gas is not homogeneous on this scale!

Secondary radioactive nuclei: LISM and local bubble

NaI absorption measurements (5890 Å): 1005 sight lines

Lallement et al., A&A 411, 447 (2003)

 \rightarrow 20 SN explosions during the past 10-20 Myr (age of the local bubble)

(local bubble linked to the formation of the Gould Belt 30-60 Myr ago?)

\rightarrow 1 more SN about 1 Myr ago

(The SN could be as close as ~ 40 pc from SS: contribution to the Pliocene-Pleistocen extinction?)

Maíz-Apellániz, ApJ **560**, L83 (2001) Berghöfer & Breitschwerdt, A&A **390**, 299 (2002) Benítez, Maíz-Apellániz & Canelles, Phys. Rev. Lett. **88**, 081101 (2002)

Secondary radioactive nuclei: toy model

$$\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E, \vec{r}) \vec{\nabla} \right) \right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r}) \right) N^{j} + \frac{\partial}{\partial E} \left(b^{j} N^{j} - D_{EE} \frac{\partial N^{j}}{\partial E} \right) + \left(\Gamma_{\text{rad}} + \Gamma_{\text{inel}} \right) N^{j} = Q^{j}(t, E, \vec{r})$$

Solution for radioactive species

- Only decay and diffusion
- Unbounded diffusion (not sensitive to L)

$$-D \triangle_{\vec{r}} N^r + \frac{N^r}{\gamma \tau_0} = Q(r) \quad \Rightarrow \begin{cases} -\Delta_{\vec{r}} N^r + \lambda^2 N^r = \frac{Q(r)}{D} \\ \lambda = 1/\sqrt{D\gamma \tau_0} \end{cases}$$

$$N^{r}(r) = \int d^{3}r G(|r - r'|) \frac{Q(r)}{D} = \int d^{3}r Q(r) \frac{e^{-\lambda r}}{4\pi Dr}$$

<u>*N.B.*</u>: r is the distance, and we now change to (r,z) variables

 $Q^{\text{sec}}(R) = nv\sigma^{ps}N^{p}(0)$

$$N^{r}(0) = \int_{0}^{\infty} \int_{-\infty}^{+\infty} Q^{r}(z) \frac{e^{-\lambda \sqrt{r^{2} + z^{2}}}}{2D} dr dz = Q^{r}(0) \int_{0}^{\infty} \frac{e^{-\lambda r}}{4\pi D} dr$$
$$N^{r}(0) = hn_{\text{ISM}} v \sigma^{p \to r} N^{p}(0) \sqrt{\frac{\gamma \tau_{0}}{D}}$$

Extra parameter: size of the underdense region

 \rightarrow Hole in the thin disc

Secondary radioactive nuclei: toy model $Q^{\text{sec}}(R) = nv\sigma^{ps}N^{p}(0)$

$$\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla}\right)\right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r})\right)N^{j} + \frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right) + \left(\Gamma_{\rm rad} + \Gamma_{\rm inel}\right)N^{j} = Q^{j}(t,E,\vec{r})$$

Solution for radioactive species

- Only decay and diffusion
- Unbounded diffusion (not sensitive to L)

$$-D \triangle_{\vec{r}} N^r + \frac{N^r}{\gamma \tau_0} = Q(r) \quad \Rightarrow \begin{cases} -\Delta_{\vec{r}} N^r + \lambda^2 N^r = \frac{Q(r)}{D} \\ \lambda = 1/\sqrt{D\gamma \tau_0} \end{cases}$$

$$N^{r}(r) = \int d^{3}r G(|r - r'|) \frac{Q(r)}{D} = \int d^{3}r Q(r) \frac{e^{-\lambda r}}{4\pi Dr}$$

<u>*N.B.*</u>: r is the distance, and we now change to (r,z) variables

Extra parameter: size of the underdense region

 \rightarrow Hole in the thin disc

Donato et al, A&A 381 (2002) 539

Secondary radioactive nuclei: toy model $Q^{\text{sec}}(R) = nv\sigma^{ps}N^{p}(0)$

$$\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla}\right)\right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r})\right)N^{j} + \frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right) + \left(\Gamma_{\rm rad} + \Gamma_{\rm inel}\right)N^{j} = Q^{j}(t,E,\vec{r})$$

Solution for radioactive species

- Only decay and diffusion
- Unbounded diffusion (not sensitive to L)

$$-D \triangle_{\vec{r}} N^r + \frac{N^r}{\gamma \tau_0} = Q(r) \quad \Rightarrow \begin{cases} -\Delta_{\vec{r}} N^r + \lambda^2 N^r = \frac{Q(r)}{D} \\ \lambda = 1/\sqrt{D\gamma \tau_0} \end{cases}$$

$$N^{r}(r) = \int d^{3}r G(|r - r'|) \frac{Q(r)}{D} = \int d^{3}r Q(r) \frac{e^{-\lambda r}}{4\pi Dr}$$

<u>*N.B.*</u>: r is the distance, and we now change to (r,z) variables

Secondary radioactive nuclei: toy model

$$\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla}\right)\right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r})\right)N^{j} + \frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right) + \left(\Gamma_{\text{rad}} + \Gamma_{\text{inel}}\right)N^{j} = Q^{j}(t,E,\vec{r})$$

Solution for radioactive species

- Only decay and diffusion
- Unbounded diffusion (not sensitive to L)

$$-D \triangle_{\vec{r}} N^r + \frac{N^r}{\gamma \tau_0} = Q(r) \quad \Rightarrow \begin{cases} -\Delta_{\vec{r}} N^r + \lambda^2 N^r = \frac{Q(r)}{D} \\ \lambda = 1/\sqrt{D\gamma \tau_0} \end{cases}$$

$$N^{r}(r) = \int d^{3}r G(|r - r'|) \frac{Q(r)}{D} = \int d^{3}r Q(r) \frac{e^{-\lambda r}}{4\pi Dr}$$

<u>*N.B.*</u>: r is the distance, and we now change to (r,z) variables

$$E \overline{\partial E} + (\Gamma_{rad} + \Gamma_{irrel}) N^{J} = Q^{J}(t, E, r')$$

$$L + \overline{N}^{r}(0) = \int_{0}^{\infty} \int_{-\infty}^{+\infty} Q^{r}(z) \frac{e^{-\lambda \sqrt{r^{2} + z^{2}}}}{2D} dr dz = Q^{r}(0) \int_{0}^{\infty} \frac{e^{-\lambda r}}{4\pi D} dr$$

$$N^{r}(0) = hn_{ISM} v \sigma^{p \to r} N^{p}(0) \sqrt{\frac{\gamma \tau_{0}}{D}}$$

Extra parameter: size of the underdense region

 \rightarrow CR data point towards rh~ 80 pc \rightarrow extra parameter rh: prevent lifting D₀/L degeneracy

> → D in the underdense region? + Bad fit Be/B data (nuclear uncertainties?)

 $sec(R) = nv\sigma^{ps}N^p(0)$

Transport of cosmic rays (CR) in the Galaxy

III. Solving the transport equations: GCR phenomenology

- 1. Diffusion: from microphysics to effective models
- 2. Full set of equations (with source terms)
- 3 (Semi-)Analytical, numerical, & MC solutions
- 4. Stable species: degeneracy K₀ /L
- 5. Radioactive species and local ISM
- 6. Leptons and local sources

Solution for primary electrons

 $\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla}\right)\right) + \vec{\nabla} \cdot \vec{V_{c}(r)}\right)N^{j} + \frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right) + \left(\Gamma_{\text{rad}} + \Gamma_{\text{inel}}\right)N^{j} = Q^{j}(t,E,\vec{r})$

General time-dependent solution

THE DISTRIBUTION OF RELATIVISTIC ELECTRONS IN THE GALAXY AND THE SPECTRUM OF SYNCHROTRON RADIO EMISSION

Syrovatskii, Soviet Astronomy 3 (1959) 22

The problem of the diffusion of particles is solved, taking into account the regular changes of the particle energy during this process. The spatial dis-

III.6 High energy $e\pm$

Solution for primary electrons

 $\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla}\right)\right) + \vec{\nabla} \cdot \vec{V_{c}(r)}\right)N^{j} + \frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right) + \left(\Gamma_{\text{rad}} + \Gamma_{\text{inel}}\right)N^{j} = Q^{j}(t,E,\vec{r})$

Syrovatskii, Soviet Astronomy 3 (1959) 22

General time-dependent solution

THE DISTRIBUTION OF RELATIVISTIC ELECTRONS IN THE GALAXY AND THE SPECTRUM OF SYNCHROTRON RADIO EMISSION

The problem of the diffusion of particles is solved, taking into account the regular changes of the particle energy during this process. The spatial dis-

But no data to support time-dependent behaviour

For the problem of diffusion in the galaxy and the determination of the electron spectrum we can restrict ourselves to the investigation of the stationary conditions since there are no reasons for considering that the number of relativistic electrons supplied by the sources is appreciably time-dependent. Therefore, we shall use the source function (11) for the stationary case.

III.6 High energy $e \pm$

Solution for primary electrons

 $\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla})\right) + \vec{\nabla} \cdot \vec{V_{c}(r)}\right)N^{j} + \frac{\partial}{\partial E}\left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right) + \left(\Gamma_{\rm rad} + \Gamma_{\rm inel}\right)N^{j} = Q^{j}(t,E,\vec{r})$

General time-dependent solution

Syrovatskii, Soviet Astronomy 3 (1959) 22 THE DISTRIBUTION OF RELATIVISTIC ELECTRONS IN THE

GALAXY AND THE SPECTRUM OF SYNCHROTRON RADIO EMISSION The problem of the diffusion of particles is solved, taking into account

the regular changes of the particle energy during this process. The spatial dis-

But no data to support time-dependent behaviour

For the problem of diffusion in the galaxy and the determination of the electron spectrum we can restrict ourselves to the investigation of the stationary conditions since there are no reasons for considering that the number of relativistic electrons supplied by the sources is appreciably time-dependent. Therefore, we shall use the source function (11) for the stationary case.

> Synchrotron: $B \sim 6 \mu G$ IC: negligible

<u>Green function solution</u> (Ansatz: Syrovatskii variable) → similar variable used to solve propagation of UHECRs in the expanding Universe Berezinsky & Gazizov, ApJ 643 (2006) 8 Alves Batista & Sigl (arXiv:1407.6150)

High energy electrons : local origin

High energy electrons : local origin

 $\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla}\right)\right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r})\right)N^{j} + \frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right) + \left(\Gamma_{\text{rad}} + \Gamma_{\text{inel}}\right)N^{j} = Q^{j}(t,E,\vec{r})$

Origin of high energy electrons (TeV)

• $t_{IC} \sim 0.3 \text{ Myr}$ • $d_{max} \sim (2Dt)^{1/2}$ $\rightarrow d_{max} \sim 1 \text{ kpc}$

High energy electrons: single source?

 $\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla}\right)\right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r})\right)N^{j} + \frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right) + \left(\Gamma_{\text{rad}} + \Gamma_{\text{inel}}\right)N^{j} = Q^{j}(t,E,\vec{r})$

Origin of high energy electrons (TeV)

• $t_{IC} \sim 0.3 \text{ Myr}$ • $d_{max} \sim (2Dt)^{1/2}$ $\rightarrow d_{max} \sim 1 \text{ kpc}$

Shen, ApJ 162 (1970) 181

Singe source and cut-off in HE spectrum \rightarrow very sensitive to D

PULSARS AND VERY HIGH-ENERGY COSMIC-RAY ELECTRONS

In the study of the propagation of cosmic-ray electrons, the use of a continuous source distribution is not valid in the range of very high energies. The electron spectrum in that energy range depends on the age and distance of a few local sources. It is shown that if the far-infrared background discovered recently exists in the Galaxy, the very high-energy electrons observed at Earth probably all come from the source Vela X, and a cutoff energy at about 2×10^3 BeV is predicted. Implications on the propagation of cosmic rays in the Galaxy are discussed.

High energy electrons: single source?

 $\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E, \vec{r}) \vec{\nabla} \right) \right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r}) \right) N^{j} + \frac{\partial}{\partial E} \left(b^{j} N^{j} - D_{EE} \frac{\partial N^{j}}{\partial E} \right) + \left(\Gamma_{\text{rad}} + \Gamma_{\text{inel}} \right) N^{j} = Q^{j}(t, E, \vec{r})$

Origin of high energy electrons (TeV)

• $t_{IC} \sim 0.3 \text{ Myr}$ • $d_{max} \sim (2Dt)^{1/2}$ $\rightarrow d_{max} \sim 1 \text{ kpc}$

Shen, ApJ 162 (1970) 181

Singe source and cut-off in HE spectrum \rightarrow very sensitive to D

PULSARS AND VERY HIGH-ENERGY COSMIC-RAY ELECTRONS

In the study of the propagation of cosmic-ray electrons, the use of a continuous source distribution is not valid in the range of very high energies. The electron spectrum in that energy range depends on the age and distance of a few local sources. It is shown that if the far-infrared background discovered recently exists in the Galaxy, the very high-energy electrons observed at Earth probably all come from the source Vela X, and a cutoff energy at about 2×10^3 BeV is predicted. Implications on the propagation of cosmic rays in the Galaxy are discussed.

Time-dependent solution for constant D

$$V_i(E) = \int_{(bE)^{-1}}^0 \frac{K_i(t)f_i[E/(1-bEt)] \exp(-r_i^2/4Dt)}{(4\pi Dt)^{3/2}(1-bEt)^2} dt \qquad Q_i = K_i(t)f_i(E) \text{ at a distance } r_i = 0$$

$$N_{i}(E) = Q_{i}(E) (4\pi Dt_{i})^{-3/2} (1 - bEt_{i})^{\alpha - 2} \exp(-r_{i}^{2}/4Dt_{i}) \quad \text{for } E < E_{i} = (bt_{i})^{-1}$$

= 0 for $E > E_{i} = (bt_{i})^{-1} \quad [\alpha = \text{injection spectral index}]$

 $\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E, \vec{r}) \vec{\nabla} \right) \right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r}) \right) N^{j} + \frac{\partial}{\partial E} \left(b^{j} N^{j} - D_{EE} \frac{\partial N^{j}}{\partial E} \right) + \left(\Gamma_{\text{rad}} + \Gamma_{\text{inel}} \right) N^{j} = Q^{j}(t, E, \vec{r})$

Origin of high energy electrons (TeV)

• $t_{IC} \sim 0.3 \text{ Myr}$ • $d_{max} \sim (2Dt)^{1/2}$ $\rightarrow d_{max} \sim 1 \text{ kpc}$

Shen, ApJ 162 (1970) 181

Singe source and cut-off in HE spectrum \rightarrow very sensitive to D

PULSARS AND VERY HIGH-ENERGY COSMIC-RAY ELECTRONS

In the study of the propagation of cosmic-ray electrons, the use of a continuous source distribution is not valid in the range of very high energies. The electron spectrum in that energy range depends on the age and distance of a few local sources. It is shown that if the far-infrared background discovered recently exists in the Galaxy, the very high-energy electrons observed at Earth probably all come from the source Vela X, and a cutoff energy at about 2×10^3 BeV is predicted. Implications on the propagation of cosmic rays in the Galaxy are discussed.

Time-dependent solution for constant D

$$V_i(E) = \int_{(bE)^{-1}}^0 \frac{K_i(t)f_i[E/(1-bEt)] \exp(-r_i^2/4Dt)}{(4\pi Dt)^{3/2}(1-bEt)^2} dt \qquad Q_i = K_i(t)f_i(E) \text{ at a distance } r_i = C_i(t)f_i(E)$$

$$N_{i}(E) = Q_{i}(E) \cdot (4\pi Dt_{i})^{-3/2} (1 - bEt_{i})^{\alpha - 2} \exp(-r_{i}^{2}/4Dt_{i}) \quad \text{for } E < E_{i} = (bt_{i})^{-1}$$

= 0 for $E > E_{i} = (bt_{i})^{-1} \quad [\alpha = \text{injection spectral index}]$

Procedure \checkmark sources @ r>1kpc: continuous space-time distribution(use of 50 pulsars) \rightarrow sources @ r<1kpc</td>

III.6 High energy $e \pm$

 $\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E, \vec{r}) \vec{\nabla} \right) \right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r}) \right) N^{j} + \frac{\partial}{\partial E} \left(b^{j} N^{j} - D_{EE} \frac{\partial N^{j}}{\partial E} \right) + \left(\Gamma_{\text{rad}} + \Gamma_{\text{inel}} \right) N^{j} = Q^{j}(t, E, \vec{r})$

Origin of high energy electrons (TeV)

Atoyan, Aharonian &Völk, PRD 52 (1995) 3265 Electrons and positrons in the galactic cosmic rays

 $\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla}\right)\right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r})\right)N^{j} + \frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right) + \left(\Gamma_{\text{rad}} + \Gamma_{\text{inel}}\right)N^{j} = Q^{j}(t,E,\vec{r})$

Origin of high energy electrons (TeV)

Atoyan, Aharonian &Völk, PRD 52 (1995) 3265 Electrons and positrons in the galactic cosmic rays

 $\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla}\right)\right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r})\right)N^{j} + \frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right) + (\Gamma_{\text{rad}} + \Gamma_{\text{inel}})N^{j} = Q^{j}(t,E,\vec{r})$

Origin of high energy electrons (TeV)

Atoyan, Aharonian & Völk, PRD 52 (1995) 3265 Electrons and positrons in the galactic cosmic rays

 \rightarrow Apply procedure of Shen (1970) \rightarrow More general solutions and analysis

Diffusion slope $\delta = 0.6$

$$\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla})\right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r})\right)N^{j} + \frac{\partial}{\partial E}\left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right) + \left(\Gamma_{\rm rad} + \Gamma_{\rm inel}\right)N^{j} = Q^{j}(t,E,\vec{r})$$

Origin of high energy electrons (TeV)

Atoyan, Aharonian &Völk, PRD 52 (1995) 3265 Electrons and positrons in the galactic cosmic rays \rightarrow Apply procedure of Shen (1970) \rightarrow More general solutions and analysis

Injection slope α =2.2 Diffusion slope δ =0.6

$$\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla})\right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r})\right)N^{j} + \frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E}\right) + \left(\Gamma_{\rm rad} + \Gamma_{\rm inel}\right)N^{j} = Q^{j}(t,E,\vec{r})$$

Origin of high energy electrons (TeV)

Atoyan, Aharonian &Völk, PRD 52 (1995) 3265 Electrons and positrons in the galactic cosmic rays

$$\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla} \right) \right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r}) \right) N^{j} + \frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E} \right) + \left(\Gamma_{\rm rad} + \Gamma_{\rm inel} \right) N^{j} = Q^{j}(t,E,\vec{r})$$

Origin of high energy electrons (TeV)

Atoyan, Aharonian &Völk, PRD 52 (1995) 3265 Electrons and positrons in the galactic cosmic rays

$$\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla} \right) \right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r}) \right) N^{j} + \frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E} \right) + \left(\Gamma_{\rm rad} + \Gamma_{\rm inel} \right) N^{j} = Q^{j}(t,E,\vec{r})$$

Origin of high energy electrons (TeV)

Atoyan, Aharonian &Völk, PRD 52 (1995) 3265 Electrons and positrons in the galactic cosmic rays

$$\frac{\partial N^{j}}{\partial t} + \left(-\vec{\nabla} \cdot \left(D(E,\vec{r})\vec{\nabla} \right) \right) + \vec{\nabla} \cdot \vec{V_{c}}(\vec{r}) \right) N^{j} + \frac{\partial}{\partial E} \left(b^{j}N^{j} - D_{EE}\frac{\partial N^{j}}{\partial E} \right) + \left(\Gamma_{\text{rad}} + \Gamma_{\text{inel}} \right) N^{j} = Q^{j}(t,E,\vec{r})$$

Origin of high energy electrons (TeV)

Atoyan, Aharonian &Völk, PRD 52 (1995) 3265 Electrons and positrons in the galactic cosmic rays

HE e± spectrum from a single local source

Catalog of known nearby SNRs (and pulsars)

#	SNR	other name	distance	radio index	Brightness	age	Pulsar
	G+long+lat		[kpc]		[Jy]	[kyr]	
1	18.95 - 1.1		2. ± 0.1	0.28	40	11.75 ± 0.85	?
2	65.3 + 5.7		0.9 ± 0.1	0.58 ± 0.07	52	26 ± 1	_
3	65.7 + 1.2	DA 495	1.0 ± 0.4	0.45 ± 0.1	5	16.75 ± 3.25	unknow
4	69.0 + 2.7	CTB 80	2.0 ± 0.1	0.20 ± 0.10	60 ± 10	20 ± 1	J1952+32
5	74.0 - 8.5	Cygnus Loop	$0.54^{+0.10}_{-0.08}$	0.4 ± 0.06	175 ± 30	10 ± 1	_
6	78.2 + 2.1	γ Cygni	1.5 ± 0.1	0.75 ± 0.03	275 ± 25	7 ± 1	_
7	82.2 + 5.3	W63	2.3 ± 1.0	0.36 ± 0.08	105 ± 10	20.1 ± 6.6	_
8	89.0 + 4.7	HB 21	1.7 ± 0.5	0.27 ± 0.07	200 ± 15	5.60 ± 0.28	_
9	93.7 - 0.2	CTB 104A or DA 551	1.5 ± 0.2	0.52 ± 0.12	42 ± 7	50 ± 20	_
10	114.3 + 0.3		0.7	0.49 ± 0.25	6.4 ± 1.4	7.7 ± 0.1	_
11	116.5 + 1.1		1.6	0.16 ± 0.11	10.9 ± 1.2	20 ± 5	B2334+6
12	116.9 + 0.2	CTB 1	1.6	0.33 ± 0.13	6.4 ± 1.4	20 ± 5	B2334+6
13	119.5 + 10.2	CTA 1	1.4 ± 0.3	0.57 ± 0.06	42.5 ± 2.5	10 ± 5	J0010+7
14	127.1 + 0.5	R5	$1.\pm 0.1$	0.43 ± 0.1	12 ± 1	25 ± 5	-
15	156.2 + 5.7		0.8 ± 0.5	$2.0^{+1.1}_{-0.7}$	4.2 ± 0.1	10 ± 1	B0450+5
16	160.9 + 2.6	HB 9	0.8 ± 0.4	0.48 ± 0.03	~ 75	5.5 ± 1.5	B0458+
17	180.0 - 1.7	S147	1.2 ± 0.4	0.75	74 ± 12	600 ± 10	J0538+2
18	184.6-5.8	Crab nebula or 3C144 or SN1054	2.0 ± 0.5	0.3	1,040	7.5 *	B0521+
19	189.1 + 3.0	IC 443	1.5 ± 0.1	0.36 ± 0.04	160 ± 5	30 or 4	_
20	203.0 + 12.0	Monogem ring	$0.288^{+0.033}_{-0.027}$			86 ± 1	B0656+
21	205.5 + 0.5	Monoceros Nebula	1.63 ± 0.25	0.66 ± 0.2	156.1 ± 19.9	29 ± 1	_
22	263.9 - 3.3	Vela(XYZ)	0.295 ± 0.075	variable	$2,000 \pm 700$	11.2 ± 0.1	B0833-
23	266.2-1.2	RX J0852.0-4622 or Vela Jr or SN1300	0.75 ± 0.01			$3.5 \pm 0.8 \star$?	J0855-46
24	276.5 + 19.0	Antlia	0.2 ± 0.14			≥1000	B0950+
25	315.1 + 2.7		1.7 ± 0.8	0.7		50 ± 10	J1423-
26	330.0 + 15.0	Lupus Loop	1.2 ± 0.3			50 ± 10	B1507-4
27	347.3 - 0.5	SN393	$1.\pm 0.3$			4.9 *	_

Electron flux from SNRs (<2 kpc)

Delahaye et al., A&A 524 (2010) A51

Electron flux from SNRs (<2 kpc)

Delahaye et al., A&A 524 (2010) A51

Electron flux from SNRs (<2 kpc)

Delahaye et al., A&A 524 (2010) A51

Full calculation for e±: distant+local contributions

Delahaye et al., A&A 524 (2010) A51

• Energy losses (B value/geometry)

III.6 High energy $e\pm$

« Standard » GCRs : summary and perspectives

Lecture II: processes, ingredients, characteristic times

\rightarrow Different time scales for nuclei and leptons

Nuclei Diffusive escape at high energy (>10 GeV/n) All effects compete @ GeV/n (convection, losses, reacceleration)

- Leptons E losses dominate at high energy (>10 GeV) E losses dominate below 100 MeV (ion and coulomb)

Lecture III: solving the transport equations and phenomenology

 \rightarrow Diffusion coefficient (microphysics) to effective models, GCR phenomenology

- secondary stable nuclei: *slope* δ of the diffusion coefficient
- secondary radioactive nuclei: local *value of Do* (but sensitive to LISM)
- high energy electrons and positrons: sensitive to *local source(s)*

 \rightarrow Homogeneous 2-zone diffusion models successfully explain most of the existing data up to the knee (~PeV)

Ongoing/future developments/improvements in the modelling

- Phenomenology: space-time granularity, spatial-dependence (D and V)
- Improvement on source description (radio/X/ γ -ray observations)
 - Spectra (not power-law): time-dependent, source dependent
 - In the source: secondary production, reacceleration
- Diffusion: use of D_{μ} , D_{μ} , anisotropic diffusion with more realistic B

 \rightarrow self-consistent description (MHD) of B, CRs, and gas