

Fluorine nucleosynthesis: measurement of $^{15}N(\alpha,\gamma)^{19}F$

A. Di Leva for the ERNA Collaboration

Origin of ¹⁹F: a long standing issue

three the possible astrophysical sites proposed:

- 1. type II Supernovae: via spallation of ^{20}Ne by ν_{μ} and ν_{τ}
- **3. Wolf Rayet stars:** massive stars experiencing large mass loss episodes, where the material exposed to the He burning can be ejected before the fluorine destruction occurs via the $^{19}F(\alpha, p)^{22}Ne$ reaction
- **5. Asymptotic Giant Branch (AGB)** stars via the chains $^{14}\text{N}(n,p)^{14}\text{C}(\alpha,\gamma)^{18}\text{O}(p,\alpha)^{15}\text{N}(\alpha,\gamma)^{19}\text{F}$ $^{14}\text{N}(\alpha,\gamma)^{18}\text{F}(\beta+)^{18}\text{O}(p,\alpha)^{15}\text{N}(\alpha,\gamma)^{19}\text{F}$ neutrons from $^{13}\text{C}(\alpha,n)^{16}\text{O}$, protons from $^{14}\text{N}(n,p)^{14}\text{C}$ in the convective zones generated by recurring He-burning thermonuclear runaways (thermal pulses). **Most promising:** observational evidence of ^{19}F in outer envelope

Sensitivity to nuclear inputs

Updated nuclear network cross sections, models computed with FUNS. Main uncertainty related to $^{13}C(\alpha,n)^{16}O$ and $^{14}N(p,\gamma)^{15}O$

However, playing a little with unlikely options:

Table 3. Scaling factors sf of the computed tests with the corresponding ¹⁹F and F/(s) surface ratios with respect to the reference case.

Reaction rate	sf	R(19F)	$R(F/\langle s \rangle)$
$^{13}C(\alpha,n)^{16}O$	0.01	4.70	2.80
$^{13}C(\alpha,n)^{16}O$	100	0.62	0.67
$^{14}\mathrm{C}(\alpha,\gamma)^{18}\mathrm{O}$	0.01	1.03	1.59
$^{14}\text{C}(\alpha,\gamma)^{18}\text{O}$	100	1.04	1.61
$^{14}N(\alpha,\gamma)^{18}F$	0.01	3.03	5.14
$^{14}N(\alpha,\gamma)^{18}F$	100	0.64	1.10
$^{15}N(\alpha,\gamma)^{19}F$	0.01	0.11	0.12
$^{15}N(\alpha,\gamma)^{19}F$	100	0.96	1.50
$^{18}O(\alpha,\gamma)^{22}Ne$	0.01	2.21	2.01
$^{18}O(\alpha,\gamma)^{22}Ne$	100	0.52	0.52
$^{19}F(\alpha,p)^{22}Ne$	0.01	1.05	1.19
$^{19}\text{F}(\alpha,\text{p})^{22}\text{Ne}$	100	0.08	0.14

Cristallo et al. A&A 570, A46 (2014) Effects of nuclear cross sections on ¹⁹F nucleosynthesis at low metallicities (RN)

Recoil separators for Nuclear Astrophysics

Recoil Mass Separator ERNA

ERNA at CIRCE

ERNA at CIRCE

Cross section determination

$$\sigma(E) = \frac{1}{T_q \, \phi_q(E) \varepsilon N_{\text{target}} N_{\text{projectiles}}} Y \left(R^{q+} \right)$$

		typical
		uncertainty
$T \downarrow q$	transmission to end detector (acceptance)	1%
$\phi \downarrow q(E)$	charge state probability	3%
${\cal E}$	detection efficiency	0.5-2%
<i>N↓</i> target	number of target atoms	5%
<i>N</i> ↓projectiles	number of projectiles	1%
$Y(R\uparrow q+)$	number of detected recoils	2%

Intense N ion beam production

Nitrogen ion beam generation with a source of negative ions by cesium sputtering (**SNICS**) suffers difficulties connected with its low electron negativity, which hampers the formation of a stable negative ion.

material	Mass	$I_{ m FC02}$	$I_{ m FC04}$
	injected	$[\mu A]$	$[p\mu A]$
BN + C + Ag	26	7.7	2.1 ± 0.5
BN + C + Ag	25	2.5	0.7
$\mathrm{Fe_{3}K(CN)_{6}}$	26	14.0	4.0 ± 0.5
KSCN	26	11.0	3.5 ± 0.6
${ m KSC^{15}N}$	27	10.0	3.2
Polypyrrole	26	6.0	1.3
$NaN_3 + C$	26	10.0	2.8
Eumelanin	26	7.0	1.7
Nitroaniline	26	0.3	
BN	25	2.7	0.8
$NaNO_3$	30	0.4	
$\mathrm{NH_4NO_3}$	30	0.03	

⁴He extended gas target

Measurements overlapped with 7 Be(p, γ) 8 B, target chamber was adapted for a shorter gas cell. Target fully characterized.

P_{4He:} 4 mbar

Effective length: ...

Thickness: (0.54±0.03)atoms/cm²

¹⁹F recoils charge state

The use of an additional layer of a different gas can make charge state independent of reaction coordinate within the target

Separator acceptance

1323keV resonance

$$\Gamma_{\gamma} = (1.62 \pm 0.09) \text{eV}$$

 $\Gamma_{\alpha} = (2.51 \pm 0.10) \text{keV}$

1487keV resonance

$$\Gamma_{\rm Y} = (2.2 \pm 0.2) \, {\rm eV}$$

$$\Gamma_{\alpha} = (6.0 \pm 0.3) \text{keV}$$

Influence on reaction rate

Outlook

Using values from: Wilmes et al., Phys.Rev. C 66 (2002) 065802 De Olivera et al., Phys.Rev. C 55 (1997) 3149

need:

- end detector with lower detection threshold: ToF-E (see poster J.G. Duarte #...);
- ⁴He jet gas target (see poster D. Rapagnani #...);

aim:

- measurement of narrow resonances
 E_{cm} = 536keV÷1093keV (not difficult)
- measurement of non resonant component (DC) (challenging)
- measurement of 365keV resonance (very challenging)

Thank you for your attention

