Semi-analytic and algebraic techniques for Integrand Reduction

Tiziano Peraro

Max-Planck-Institut für Physik, München, Germany

New Frontiers in Theoretical Physics Cortona, Italy 28–31 May 2014

T. Peraro (MPI - München)

Semi-analytic and algebraic techniques for Integrand Reduction

Cortona, 2014

Introduction and motivation

Motivation

- Theoretical understanding of scattering amplitudes
 - basic analytic/algebraic structure of loop integrands and integrals
- Need of theoretical predictions for colliders (LHC)
 - probing large phase space ⇒ several external legs
 - need of NLO or higher accuracy ⇒ computations at the loop level
- Automation of methods for predictions in perturbative QFT

We developed a coherent framework for the integrand decomposition of Feynman integrals

- based on simple concepts of algebraic geometry
- applicable at all loops

Integrand reduction

- The integrand of a generic $\ell\text{-loop}$ integral is a rational function:
 - polynomial numerator $\mathcal{N}_{i_1 \cdots i_n}$ -

$$\mathcal{M}_n = \int d^d ar{q}_1 \cdots d^d ar{q}_\ell ~~ \mathcal{I}_{i_1 \cdots i_n}, \qquad \mathcal{I}_{i_1 \cdots i_n} \equiv rac{\mathcal{N}_{i_1 \cdots i_n}}{D_{i_1} \cdots D_i}$$

loop propagators → quadratic polynomial denominators D_i)
 The integrand-reduction algorithm leads to

$$\mathcal{I}_{i_1\cdots i_n}(\bar{q}_1,\cdots,\bar{q}_\ell) \equiv \frac{\mathcal{N}_{i_1\cdots i_n}}{D_{i_1}\cdots D_{i_n}} = \underbrace{\frac{\Delta_{i_1\cdots i_n}}{D_{i_1}\cdots D_{i_n}}}_{\text{they must be irreducible}} + \cdots + \sum_{k=1}^n \frac{\Delta_{i_k}}{D_{i_k}} + \Delta_{\emptyset}$$

- The residues $\Delta_{i_1\cdots i_k}$ are irreducible polynomials in \bar{q}_i
 - universal topology-dependent parametric form
 - the coefficients of the parametrization are process-dependent

INTEGRAND REDUCTION \equiv a smart/rigorous partial fraction decomposition

T. Peraro (MPI - München) Semi-analytic and algebraic techniques for Integrand Reduction Cortona, 2014

From integrands to integrals

• By integrating the integrand decomposition

$$\mathcal{M}_n = \int d^d \bar{q}_1 \cdots d^d \bar{q}_\ell \left(\frac{\Delta_{i_1 \cdots i_n}}{D_{i_1} \cdots D_{i_n}} + \cdots + \sum_{k=1}^n \frac{\Delta_{i_k}}{D_{i_k}} + \Delta_{\emptyset} \right)$$

- some terms vanish and do not contribute to the amplitude ⇒ spurious terms
- non-vanishing terms give Master Integrals (MIs)
- The amplitude is a linear combination of MIs
- The coefficients of this linear combination can be identified with some of the coefficients which parametrize the polynomial residues

From integrands to integrals

• By integrating the integrand decomposition

$$\mathcal{M}_n = \int d^d \bar{q}_1 \cdots d^d \bar{q}_\ell \left(\frac{\Delta_{i_1 \cdots i_n}}{D_{i_1} \cdots D_{i_n}} + \cdots + \sum_{k=1}^n \frac{\Delta_{i_k}}{D_{i_k}} + \Delta_{\emptyset} \right)$$

- some terms vanish and do not contribute to the amplitude ⇒ spurious terms
- non-vanishing terms give Master Integrals (MIs)
- The amplitude is a linear combination of MIs
- The coefficients of this linear combination can be identified with some of the coefficients which parametrize the polynomial residues
 - \Rightarrow reduction to MIs \equiv polynomial fit of the residues

Integrand reduction via polynomial division

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

Integrand reduction via polynomial division: the recursive formula

$$\mathcal{N}_{i_1\cdots i_n} = \sum_{k=1}^n \mathcal{N}_{i_1\cdots i_{k-1}i_{k+1}\cdots i_n} D_{i_k} + \Delta_{i_1\cdots i_n}$$
 $\mathcal{I}_{i_1\cdots i_n} \equiv rac{\mathcal{N}_{i_1\cdots i_n}}{D_{i_1}\cdots D_{i_n}} = \sum_k \mathcal{I}_{i_1\cdots i_{k-1}i_{k+1}\cdots i_n} + rac{\Delta_{i_1\cdots i_n}}{D_{i_1}\cdots D_{i_n}}$

- Fit-on-the-cut approach
 - from a generic \mathcal{N} , get the parametric form of the residues Δ
 - determine the coefficients sampling on the cuts (impose $D_i = 0$)
 - residues can be built from tree-level amplitudes [see W. Torres' talk]
- Divide-and-Conquer approach
 - generate the ${\cal N}$ of the process
 - compute the residues by iterating the polynomial division algorithm

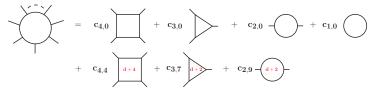
The one-loop decomposition

At one-loop we reproduce a well known result:

• the integrand decomposition [Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]

$$\begin{aligned} \mathcal{I}_{i_1 \cdots i_n} &= \frac{\mathcal{N}_{i_1 \cdots i_n}}{D_{i_1} \cdots D_{i_n}} = \sum_{j_1 \cdots j_5} \frac{\Delta_{j_1 j_2 j_3 j_4 j_5}}{D_{j_1} D_{j_2} D_{j_3} D_{j_4} D_{j_5}} + \sum_{j_1 j_2 j_3 j_4} \frac{\Delta_{j_1 j_2 j_3 j_4}}{D_{j_1} D_{j_2} D_{j_3} D_{j_4}} \\ &+ \sum_{j_1 j_2 j_3} \frac{\Delta_{j_1 j_2 j_3}}{D_{j_1} D_{j_2} D_{j_3}} + \sum_{j_1 j_2} \frac{\Delta_{j_1 j_2}}{D_{j_1} D_{j_2}} + \sum_{j_1} \frac{\Delta_{j_1}}{D_{j_1}} \end{aligned}$$

• the integral decomposition



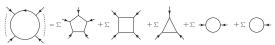
• all the Master Integrals are known!

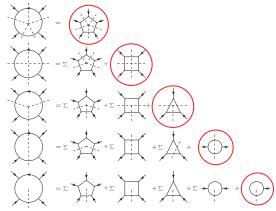
T. Peraro (MPI - München)

Fit-on-the-cut at 1-loop

[Ossola, Papadopoulos, Pittau (2007)]

Integrand decomposition:





Fit-on-the cut

- fit *m*-point residues on *m*-ple cuts
- Cutting a loop propagator means

$$\frac{1}{D_i} \to \delta(D_i)$$

i.e. putting it on-shell

The integrand reduction via Laurent expansion: [P. Mastrolia, E. Mirabella, T.P. (2012)]

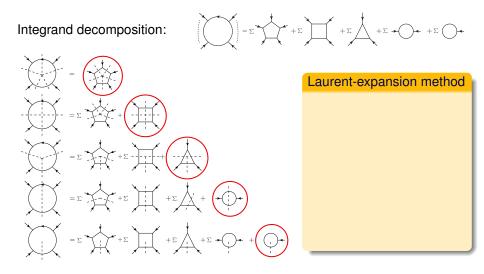
- fits residues by taking their asymptotic expansions on the cuts
- yields diagonal systems of equations for the coefficients
- requires the computation of fewer coefficients
- subtractions of higher point residues is simplified
 - implemented as corrections at the coefficient level

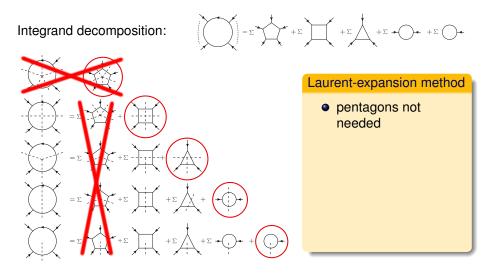
The integrand reduction via Laurent expansion: [P. Mastrolia, E. Mirabella, T.P. (2012)]

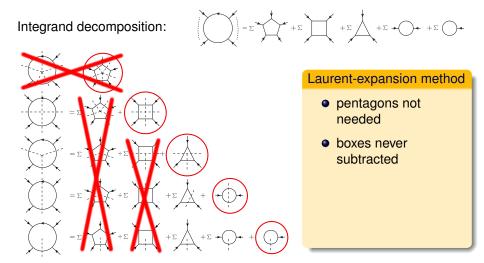
- fits residues by taking their asymptotic expansions on the cuts
- yields diagonal systems of equations for the coefficients
- requires the computation of fewer coefficients
- subtractions of higher point residues is simplified
 - implemented as corrections at the coefficient level
- ★ Implemented in the semi-numerical C++ library NINJA [T.P. (2014)]
 - Laurent expansions via a simplified polynomial-division algorithm
 - interfaced with the package GOSAM
 - interface with FORMCALC [T. Hahn et al.] under development
 - is a faster and more stable integrand-reduction algorithm

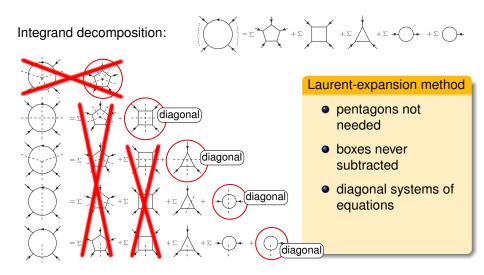
The integrand reduction via Laurent expansion: [P. Mastrolia, E. Mirabella, T.P. (2012)]

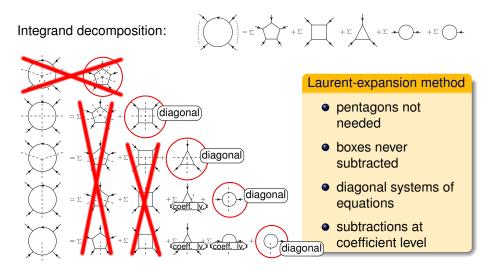
- fits residues by taking their asymptotic expansions on the cuts
- yields diagonal systems of equations for the coefficients
- requires the computation of fewer coefficients
- subtractions of higher point residues is simplified
 - implemented as corrections at the coefficient level
- ★ Implemented in the semi-numerical C++ library NINJA [T.P. (2014)]
 - Laurent expansions via a simplified polynomial-division algorithm
 - interfaced with the package GOSAM
 - interface with FORMCALC [T. Hahn et al.] under development
 - is a faster and more stable integrand-reduction algorithm
- ★ NINJA is public ⇒ ninja.hepforge.org











Automation of one-loop computation in GOSAM

GOSAM is a PYTHON package which:

- generates analytic integrands
- writes them into FORTRAN90 code
- can use different reduction algorithms at run-time
 - SAMURAI (d-dim. integrand reduction)
 - faster than GOLEM95 but numerically less stable
 - former default in GOSAM-1.0
 - GOLEM95 (tensor reduction)
 - slower than SAMURAI but more stable
 - default rescue-system for unstable points
 - Ninja
 - fast (2 to 5 times faster than SAMURAI)
 - stable (in worst cases $\mathcal{O}(1/1000)$ unstable points)
 - current default in GOSAM-2.0 ← just released

Benchmarks of GOSAM + NINJA

H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola and T.P. (2013)

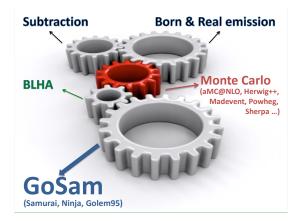
Benchmarks: GOSAM + NINJA			
Process		# NLO diagrams	ms/event ^a
W + 3j	$d\bar{u} \rightarrow \bar{\nu}_e e^- ggg$	1 411	226
Z + 3j	$d\bar{d} \rightarrow e^+ e^- ggg$	2 928	1 911
$\bar{t\bar{t}}b\bar{b}~(m_b\neq 0)$	$d\bar{d} \rightarrow t\bar{t}b\bar{b}$	275	178
	$gg \rightarrow t\bar{t}b\bar{b}$	1 530	5 685
$t\bar{t} + 2j$	$gg \rightarrow t\bar{t}gg$	4 700	13 827
$W b \overline{b} + 1 j (m_b \neq 0)$	$u\bar{d} \rightarrow e^+ \nu_e b\bar{b}g$	312	67
$W b \bar{b} + 2j (m_b \neq 0)$	$u\bar{d} \rightarrow e^+ \nu_e b\bar{b}s\bar{s}$	648	181
	$u\bar{d} \rightarrow e^+ \nu_e b\bar{b} d\bar{d}$	1 220	895
	$u\bar{d} \rightarrow e^+ \nu_e b\bar{b}gg$	3 923	5 387
H + 3j in GF	$gg \rightarrow Hggg$	9 325	8 961
$t\bar{t}H + 1j$	$gg \rightarrow t\bar{t}Hg$	1 517	1 505
H + 3j in VBF	$u\bar{u} \rightarrow Hgu\bar{u}$	432	101
H + 4j in VBF	$u\bar{u} \rightarrow Hggu\bar{u}$	1 176	669
H + 5j in VBF	$u\bar{u} \rightarrow Hgggu\bar{u}$	15 036	29 200

more processes in arXiv:1312.6678

 a Timings refer to full color- and helicity-summed amplitudes, using an Intel Core i7 CPU @ 3.40GHz, compiled with <code>ifort</code>.

T. Peraro (MPI - München)

From amplitudes to observables with GOSAM



The GOSAM collaboration:

G. Cullen, H. van Deurzen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, E. Mirabella,

G. Ossola, J. Reichel , J. Schlenk, J. F. von Soden-Fraunhofen, T. Reiter, F. Tramontano, T.P.

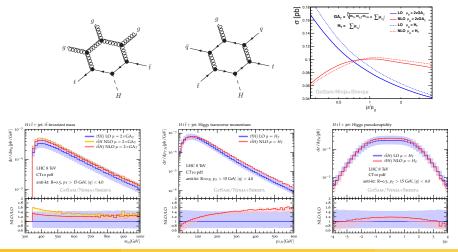
T. Peraro (MPI - München)

Semi-analytic and algebraic techniques for Integrand Reduction Corton

Application: $pp \rightarrow t\bar{t}H + jet$ with GOSAM + NINJA

H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2013)

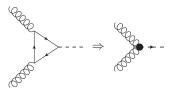
Interfaced with the Monte Carlo SHERPA



T. Peraro (MPI - München)

Semi-analytic and algebraic techniques for Integrand Reduction

• $m_t \rightarrow \infty$ approximation



- effective couplings H + (2, 3, 4)gl.
- higher-rank integrands ⇒ extension of int. red. methods [P. Mastrolia, E. Mirabella,T.P.(2012), H. van Deurzen (2013)]
- H + 2j (GOSAM+SAMURAI+SHERPA)
 [H. van Deurzen, N. Greiner, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, J. F. von Soden-Fraunhofen, F. Tramontano, T.P.(2013)]
- H + 3j (GOSAM+SAMURAI+SHERPA+MADGRAPH4/MADEVENT)
 [G. Cullen, H. van Deurzen, N. Greiner, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, F. Tramontano, T.P.(2013)]
- new analysis with ATLAS-like cuts, using NINJA for the reduction
 [G. Cullen, H. van Deurzen, N. Greiner, J. Huston, G. Luisoni, P. Mastrolia, E. Mirabella,
 G. Ossola, F. Tramontano, J. Winter, V. Yundin, T.P. (preliminary, 2014)]

- new distributions using NINJA (preliminary)
 - better accuracy
 - better performance

$$\mu_F = \mu_R = \frac{\hat{H}_T}{2} = \frac{1}{2} \left(\sqrt{m_H^2 + p_{t,H}^2} + \sum_{jets} |p_{t,jet}|^2 \right)$$

ATLAS-like cuts

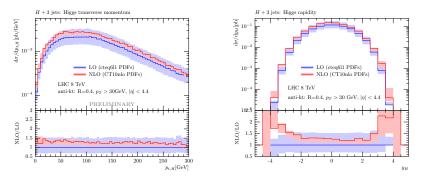
$$R = 0.4, \qquad p_{t,jet} > 30 \text{GeV}, \qquad |\eta_{jet}| < 4.4$$

total cross section

$$\begin{split} &\sigma_{LO}^{(H+2j)}([\text{pb}]) = 1.23^{+37\%}_{-24\%}, \qquad \sigma_{LO}^{(H+3j)}([\text{pb}]) = 0.381^{+53\%}_{-32\%} \\ &\sigma_{NLO}^{(H+2j)}([\text{pb}]) = 1.590^{-4\%}_{-7\%}, \qquad \sigma_{NLO}^{(H+3j)}([\text{pb}]) = 0.485^{-3\%}_{-13\%} \end{split}$$

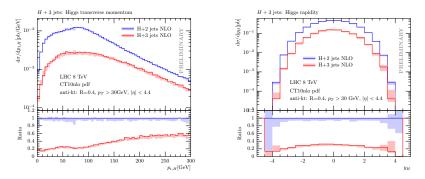
- new distributions using NINJA (preliminary)
 - better accuracy
 - better performance

$$\mu_F = \mu_R = \frac{\hat{H}_T}{2} = \frac{1}{2} \left(\sqrt{m_H^2 + p_{t,H}^2} + \sum_{jets} |p_{t,jet}|^2 \right)$$



- new distributions using NINJA (preliminary)
 - better accuracy
 - better performance

$$\mu_F = \mu_R = \frac{\hat{H}_T}{2} = \frac{1}{2} \left(\sqrt{m_H^2 + p_{t,H}^2} + \sum_{jets} |p_{t,jet}|^2 \right)$$



14

Extension to higher loops

- The integrand-level approach to scattering amplitudes at one-loop
 - can be used to compute any amplitude in any QFT
 - has been implemented in several codes, some of which public [SAMURAI, CUTTOOLS, NINJA]
 - has produced (and is still producing) results for LHC [GOSAM, FORMCALC, BLACKHAT, MADLOOP, NJETS, OPENLOOP ...]
- At two or higher loops
 - no general recipe is available
 - the standard and most successful approach is the Integration By Parts (IBP) method, but it becomes difficult for high multiplicities

Extension to higher loops

- The integrand-level approach to scattering amplitudes at one-loop
 - can be used to compute any amplitude in any QFT
 - has been implemented in several codes, some of which public [SAMURAI, CUTTOOLS, NINJA]
 - has produced (and is still producing) results for LHC [GOSAM, FORMCALC, BLACKHAT, MADLOOP, NJETS, OPENLOOP ...]
- At two or higher loops
 - no general recipe is available
 - the standard and most successful approach is the Integration By Parts (IBP) method, but it becomes difficult for high multiplicities

The integrand-level approach might be a tool for understanding the structure of multi-loop scattering amplitudes and a method for their evaluation.

Extension to higher loops

- The integrand-level approach to scattering amplitudes at one-loop
 - can be used to compute any amplitude in any QFT
 - has been implemented in several codes, some of which public [SAMURAI, CUTTOOLS, NINJA]
 - has produced (and is still producing) results for LHC [GOSAM, FORMCALC, BLACKHAT, MADLOOP, NJETS, OPENLOOP ...]
- At two or higher loops
 - no general recipe is available
 - the standard and most successful approach is the Integration By Parts (IBP) method, but it becomes difficult for high multiplicities

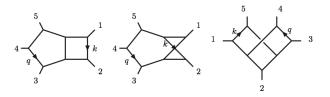
The integrand-level approach might be a tool for understanding the structure of multi-loop scattering amplitudes and a method for their evaluation.

• ... we are moving the first steps in this direction

Higher loops

$\mathcal{N}=4$ SYM and $\mathcal{N}=8$ SUGRA amplitudes

P. Mastrolia, G. Ossola (2011); P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)



- Examples in $\mathcal{N} = 4$ SYM and $\mathcal{N} = 8$ SUGRA amplitudes (d = 4)
 - generation of the integrand
 - graph based [Carrasco, Johansson (2011)]
 - unitarity based [U. Schubert (Diplomarbeit)]
 - fit-on-the-cut approach for the reduction
- Results:
- $\mathcal{N}=4~$ linear combination of 8 and 7-denominators MIs
- $\mathcal{N}=8~$ linear combination of 8, 7 and 6-denominators MIs

Divide-and-Conquer approach

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2013)

The divide-and-conquer approach to the integrand reduction

- does not require the knowledge of the solutions of the cut
- can always be used to perform the reduction in a finite number of purely algebraic operations
- has been automated in a PYTHON package which uses MACAULAY2 and FORM for algebraic operations

 also works in special cases where the fit-on-the-cut approach is not applicable (e.g. in presence of double denominators)

Divide-and-Conquer approach: a simple example

iterating the polynomial division algorithm on the numerator we get

 $\mathcal{N}_{11234} = \Delta_{11234} + \Delta_{1234} D_1 + \Delta_{1134} D_2 + \Delta_{1124} D_3 + \Delta_{1123} D_4 + \Delta_{234} D_1^2 + \Delta_{114} D_2 D_3 + \Delta_{113} D_2 D_4$

the integrand decomposition becomes

$$\begin{aligned} \mathcal{I}_{11234} &= \frac{\mathcal{N}_{11234}}{D_1^2 D_2 D_3 D_4} = \frac{\Delta_{11234}}{D_1^2 D_2 D_3 D_4} + \frac{\Delta_{1234}}{D_1 D_2 D_3 D_4} + \frac{\Delta_{1134}}{D_1^2 D_3 D_4} + \frac{\Delta_{1124}}{D_1^2 D_2 D_4} \\ &+ \frac{\Delta_{1123}}{D_1^2 D_2 D_3} + \frac{\Delta_{234}}{D_2 D_3 D_4} + \frac{\Delta_{114}}{D_1^2 D_4} + \frac{\Delta_{113}}{D_1^2 D_3} \end{aligned}$$

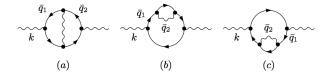
$$\Delta_{11234} = 16m^2 \left(k^2 + 2m^2 - k^2\epsilon\right) \qquad \Delta_{1134} = -16m^2 (1-\epsilon)$$

$$\Delta_{1234} = 16 \left[(q_2 \cdot k)(1-\epsilon)^2 + m^2\right] \qquad \Delta_{113} = -\Delta_{114} = \Delta_{234} = 8 (1-\epsilon)^2$$

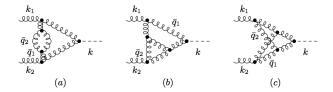
$$\Delta_{1124} = -\Delta_{1123} = 8 (1-\epsilon) \left[k^2(1-\epsilon) + 2m^2\right]$$

Examples of divide-and-conquer approach

• Photon self-energy in massive QED, $(4 - 2\epsilon)$ -dimensions



• Diagrams entering $gg \rightarrow H$, in $(4 - 2\epsilon)$ -dimensions



From Master Integrands to Master Integrals

P. Mastrolia, G. Ossola, T.P. (work in progress)

- Independent integrands can be linearly dependent at the integral level
 - further identities exist between integrals
 - traditional approach: Integration by Part (IBP)

$$\int rac{\partial}{\partial ar{q}_i^\mu} rac{\mathcal{N}(ar{q}_i)^\mu}{D_{i_1}\cdots D_{i_n}} = 0$$

- A 2-step strategy
 - use integrand reduction first
 - \Rightarrow integrals with higher multiplicity should be reduced
 - then apply IBP
 - \Rightarrow could be easier after integrand reduction
- Can we instead see IBPs from Integrand Reduction?
 - Can we recover IBPs from int. red. relations computed in step 1?

From Master Integrands to Master Integrals

IBP identities can be found by combining

- integrand reduction of "special" integrands
- dimensional recurrence relations of respective integrals
- "Special" integrands can be Shouten polynomials [see L. Tancredi's talk]
- They satisfy dimensional recurrence relations
 - easily found using Schwinger parameters

$$egin{aligned} \mathcal{I}[S(4;q_1,\ldots,q_\ell,k_1,\ldots,k_{n-1})] \propto \mathcal{I}^{(d+2)} \ \mathcal{I}[S(-2\epsilon;ec{\mu}_1,\ldots,ec{\mu}_\ell)] \propto \mathcal{I}^{(d+2)} \end{aligned}$$

⇒ integrand reduction of I.h.s. + dim. shifts, from lower to higher point integrals, gives IBP-like or PV-like relations

Examples of IBP via int. red. + dim. shifts

$$\mathcal{I}_{01}[\mathcal{N}] = \frac{\mathcal{N}}{D_0 D_1} \qquad (d-3) \,\mathcal{I}_{01} = \frac{1}{2 \, m^2} \, (d-2) \,\mathcal{I}_1$$

$$\mathcal{I}_{012}[\mathcal{N}] = \frac{\mathcal{N}}{D_0 D_1 D_2} \qquad (4-d) \,\mathcal{I}_{012} = \frac{2}{4m^2 - s} \left((3-d) \,\mathcal{I}_{12} + \frac{d-2}{2 \, m^2} \,\mathcal{I}_1 \right)$$

$$\mathcal{I}_{123}[\mathcal{N}] = \frac{\mathcal{N}}{D_1 D_2 D_3} \qquad \mathcal{I}_{123} = \frac{d-2}{2m^2(d-3)} \mathcal{I}_{12}$$

Summary and Outlook

Summary

- we have a framework for the all-loop reduction at the integrand level
- the integrand is decomposed via multivariate polynomial division
- at one loop it reproduces well knwon results (OPP)
- one-loop reduction is improved by Laurent expansion (NINJA)
- algebraic reduction at any loop via divide-and-conquer approach
- IBPs via integrand reduction and d-shifts

Outlook

- improve one-loop generation (recursion, global abbreviations,...)
- application of int. red. + d-shifts a full two-loop QED/QCD process
- fully automated analytic one-loop via divide-and-conquer

THANK YOU FOR YOUR ATTENTION

T. Peraro (MPI - München) Semi-analytic and algebraic techniques for Integrand Reduction

Cortona, 2014