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Introduction and motivation

Introduction and motivation

Motivation
@ Theoretical understanding of scattering amplitudes
e basic analytic/algebraic structure of loop integrands and integrals
@ Need of theoretical predictions for colliders (LHC)
e probing large phase space = several external legs
e need of NLO or higher accuracy = computations at the loop level

@ Automation of methods for predictions in perturbative QFT

We developed a coherent framework for the integrand decomposition
of Feynman integrals

@ based on simple concepts of algebraic geometry
@ applicable at all loops
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Introduction and motivation

Integrand reduction

@ The integrand of a generic ¢-loop integral is a rational function:

e polynomial numerator A;,...;, /\

N
D, ---D

in
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In

e loop propagators — quadratic polynomial denominators D>
@ The integrand-reduction algorithm leads to

Dil e Din Dil o .Din D'k

= _ Ny A "OA,
I,']...in(qh... ,ql) Ll _ i1+lp S Z 3 +A@
k=1

they must be irreducible

@ The residues A;,..; are irreducible polynomials in g;
e universal topology-dependent parametric form
e the coefficients of the parametrization are process-dependent

INTEGRAND REDUCTION = a smart/rigorous partial fraction decompositionJ
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Introduction and motivation

From integrands to integrals

@ By integrating the integrand decomposition

_ _ Ay, ¢
M”:/ddq"”dd‘” (DD Fot Y
k=1
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e some terms vanish and do not contribute to the amplitude
= spurious terms
@ non-vanishing terms give Master Integrals (Mls)

@ The amplitude is a linear combination of Mls

@ The coefficients of this linear combination can be identified with some of
the coefficients which parametrize the polynomial residues
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Introduction and motivation

From integrands to integrals

@ By integrating the integrand decomposition
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e some terms vanish and do not contribute to the amplitude
= spurious terms
@ non-vanishing terms give Master Integrals (Mls)

@ The amplitude is a linear combination of Mls

@ The coefficients of this linear combination can be identified with some of
the coefficients which parametrize the polynomial residues

= reduction to Mls = polynomial fit of the residues
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Integrand reduction via polynomial division

Integrand reduction via polynomial division

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

Integrand reduction via polynomial division: the recursive formula
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@ Fit-on-the-cut approach
e from a generic NV, get the parametric form of the residues A
e determine the coefficients sampling on the cuts (impose D; = 0)
o residues can be built from tree-level amplitudes [see W. Torres’ talk]
@ Divide-and-Conquer approach

e generate the A of the process
e compute the residues by iterating the polynomial division algorithm
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Application at one-loop

The one-loop decomposition

At one-loop we reproduce a well known result:

@ the integrand decomposition
[Ossola, Papadopoulos, Pittau (2007); Ellis, Giele, Kunszt, Melnikov (2008)]
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@ the integral decomposition
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@ all the Master Integrals are known!
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Application at one-loop

Fit-on-the-cut at 1-loop

[Ossola, Papadopoulos, Pittau (2007

)]
Integrand decomposition: Q zﬁ' +xj:( HAH O O
. Fit-on-the cut
:Z‘ @ fit m-point residues on
N ‘ m-ple cuts

. + A @ Cutting a loop

! ! propagator means

Tk 5 00)

i B ' Di

‘s j:( ﬁ/&ﬁ ~(O- + i.e. putting it on-shell
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Integrand reduction via Laurent expansion (NINJA)

Integrand reduction via Laurent expansion (NINJA)
The integrand reduction via Laurent expansion:
[P. Mastrolia, E. Mirabella, T.P. (2012)]

@ fits residues by taking their asymptotic expansions on the cuts

@ yields diagonal systems of equations for the coefficients

@ requires the computation of fewer coefficients

@ subtractions of higher point residues is simplified

e implemented as corrections at the coefficient level
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Integrand reduction via Laurent expansion (NINJA)

Integrand reduction via Laurent expansion (NINJA)
The integrand reduction via Laurent expansion:
[P. Mastrolia, E. Mirabella, T.P. (2012)]

@ fits residues by taking their asymptotic expansions on the cuts

@ yields diagonal systems of equations for the coefficients

@ requires the computation of fewer coefficients

@ subtractions of higher point residues is simplified

e implemented as corrections at the coefficient level

% Implemented in the semi-numerical C++ library NINJA [T.P. (2014)]

Laurent expansions via a simplified polynomial-division algorithm
interfaced with the package GOSAM

interface with FORMCALC [T. Hahn et al.] under development

is a faster and more stable integrand-reduction algorithm
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Integrand reduction via Laurent expansion (NINJA)

Integrand reduction via Laurent expansion (NINJA)
The integrand reduction via Laurent expansion:
[P. Mastrolia, E. Mirabella, T.P. (2012)]

@ fits residues by taking their asymptotic expansions on the cuts

@ yields diagonal systems of equations for the coefficients

@ requires the computation of fewer coefficients

@ subtractions of higher point residues is simplified

e implemented as corrections at the coefficient level

% Implemented in the semi-numerical C++ library NINJA [T.P. (2014)]

Laurent expansions via a simplified polynomial-division algorithm
e interfaced with the package GoSAM

e interface with FORMCALC [T. Hahn et al.] under development

e is a faster and more stable integrand-reduction algorithm

% NINJA is public = ninja.hepforge.org
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Integrand reduction via Laurent expansion (NINJA)

Integrand reduction via Laurent expansion (NINJA)

Integrand decomposition:

T. Peraro (MPI - Mlnchen)

Semi-analytic and algebraic techniques for Integrand Reduction

Z:Z \Q’j:[ mAm{} O~

Laurent-expansion method

Cortona, 2014
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Integrand reduction via Laurent expansion (NINJA)

Integrand reduction via Laurent expansion (NINJA)

Integrand decomposition: Z:Z _\Q’ +zj:( mAm O~ = (O

Laurent-expansion method

@ pentagons not
needed
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Integrand reduction via Laurent expansion (NINJA)

Integrand reduction via Laurent expansion (NINJA)

Integrand decomposition: Z:Z _\Q’ +zj:( mAm O~ = (O

Laurent-expansion method

@ pentagons not
needed

@ boxes never
subtracted
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Integrand reduction via Laurent expansion (NINJA)

Integrand reduction via Laurent expansion (NINJA)

Integrand decomposition: Z:Z _\Q’ +zj:( +‘2A+: O ==

Laurent-expansion method

@ pentagons not
needed

@ boxes never
subtracted

@ diagonal systems of
equations
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Integrand reduction via Laurent expansion (NINJA)

Integrand reduction via Laurent expansion (NINJA)

Integrand decomposition: Z:Z _\Q’ +zj:( +‘2A+: O ==

Laurent-expansion method

@ pentagons not
needed

@ boxes never
subtracted

@ diagonal systems of
equations

@ subtractions at
+@diagm coefficient level
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Integrand reduction via Laurent expansion (NINJA)

Automation of one-loop computation in GOSAM

GOSAM is a PYTHON package which:
@ generates analytic integrands

@ writes them into FORTRAN90 code
@ can use different reduction algorithms at run-time
@ SAMURAI (d-dim. integrand reduction)

@ faster than GOLEM95 but numerically less stable
o former default in GOSAM-1.0

o GOLEM95 (tensor reduction)
@ slower than SAMURAI but more stable
@ default rescue-system for unstable points
o NINJA
@ fast (2 to 5 times faster than SAMURAI)
@ stable (in worst cases O(1/1000) unstable points)
@ current default in GOSAM-2.0 < just released
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Integrand reduction via Laurent expansion (NINJA)

Benchmarks of GOSAM + NINJA

H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola and T.P. (2013)

Benchmarks: GOSAM + NINJA

{ Process [ #NLO diagrams [ ms/event®
[W+3j [ dn — Dee”geg | 1411 ] 226
[z+3) [ dd — eTe geg | 2928 | 1911
mmso i
[[d+2) [ gs — ftge | 4700 | 13827
[ Wbb+ 1] (my, # 0) [ ud — et v bbg [ 312 [ 67
ud — eT v, bbss 648 181
Wbb+ 2j(my, # 0) ud — ¥ v bbdd 1220 895
ud — eT v, bbgg 3923 5387
[ H+3jinGF [ ¢ — Hgeg [ 9325 | 8961 |
[ 1TH+1j [ g¢ — riHg [ 1517 | 1505 |
[ H+3jinVBF [ un — Hguu [ 432 | 101 ]
[ H +4jinVBF [ un — Hggun [ 1176 | 669 |
[ H+5jinVBF [ un — Hgggun | 15036 | 29200 |

more processes in arXiv:1312.6678

&Timings refer to full color- and helicity-summed amplitudes, using an Intel Core i7 CPU @

3.40GHz, compiled with i fort.
T. Peraro (MPI - Miinchen)
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Integrand reduction via Laurent expansion (NINJA)

From amplitudes to observables with GOSAM

Subtraction Born & Real emission
N L pa ./
s __ ¥

Monte Carlo
/(aMC@NLO Herwig++,
Madevent, Powheg,

GoSam

(Samurai, Ninja, Golem95)

The GOSAM collaboration:
G. Cullen, H. van Deurzen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia, E. Mirabella,
G. Ossola, J. Reichel , J. Schlenk, J. F. von Soden-Fraunhofen, T. Reiter, F. Tramontano, T.P.
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Integrand reduction via Laurent expansion (NINJA)

Application: pp — ttH + jet with GOSAM + NINJA

H. van Deurzen, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2013)

@ Interfaced with the Monte Carlo SHERPA

50 T ]
£ 10 y=20A, ]
o . = 2:0A,
g o are 6= e Yoy
N\ 5, W= Iey
o1af - 4
q or2f 4
o 1
f L
E \
t \
u L
05 T 2
Wy
Hif 4 jet: thinvariant mass H U4 jet: Higgs transverse momentum H i+ jet: Higgs pseudorapidity
T T T T T T T T T T T T | AR R AR
—— 1] LO = 2xGAr 8 —— {HjLO = Hy
HHNLO i = 2%GAr 3 —— HHjNLO = Hy

—— HHjNLO t = 2xGAr

—— HjLO = Hy
—— {fH]NLO = Hy

LHC § TeV 0 Criopdt LHC 8 Tov
CTio0 pdf CTopdf . CT1o pdf
anti-kt: R=0.5, pr > 15 GeV, [y 4. 1
antickt: R=03, pr > 15 GV, [y] < 40 ikt Reo3, pr > 15 G, | <40 anti-kt: R=o5, pr > 15 GeV, [y] <
N R | I | | | N T I U DU R B
aans: T T T T T LETT T T T T , L3 BT T
o 16E E o E o 16 E
S b E 2 4E < 2 E E
S —relleed §uE E S uE E
z R i
o8 E 08 B E o8 =
06yl I I I I Lo s o611 I I I I = 06 B liuil Lol =
300 g0 0 600 700 S0 o0 1000 o w0 30 00 g0 0 6o b5 2 a e a2 i
glGev] pralGev] i
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Integrand reduction via Laurent expansion (NINJA)

Application: pp — H + jets in GF with GOSAM + NINJA

@ m; — oo approximation

e effective couplings H + (2,3,4)gl.
e o e higher-rank integrands =
extension of int. red. methods

[P. Mastrolia, E. Mirabella,T.P.(2012),
H. van Deurzen (2013)]
@ H +2j (GOSAM+SAMURAI+SHERPA)
[H. van Deurzen, N. Greiner, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola, J. F. von
Soden-Fraunhofen, F. Tramontano, T.P.(2013)]
@ H + 3j (GOSAM+SAMURAI+SHERPA+MADGRAPH4/MADEVENT)
[G. Cullen, H. van Deurzen, N. Greiner, G. Luisoni, P. Mastrolia, E. Mirabella, G. Ossola,
F. Tramontano, T.P.(2013)]
@ new analysis with ATLAS-like cuts, using NINJA for the reduction
[G. Cullen, H. van Deurzen, N. Greiner, J. Huston, G. Luisoni, P. Mastrolia, E. Mirabella,
G. Ossola, F. Tramontano, J. Winter, V. Yundin, T.P. (preliminary, 2014)]
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Integrand reduction via Laurent expansion (NINJA)

Application: pp — H + jets in GF with GOSAM + NINJA

@ new distributions using NINJA (preliminary)

o better accuracy
@ better performance

Hr 1
BE=HR = T2 =5 (\/m%l +rigt+ Z Pt,jet|2>

Jjets
@ ATLAS-like cuts

R=04,  puja>30GeV, | <44

@ total cross section

ot (pbl) = 1.2343%, ofg " (ipb]) = 0381137

—24%> —32%
oo™ (Ipbl) = 1.59073%, o5 ¥ (Ipb]) = 0485737,
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Integrand reduction via Laurent expansion (NINJA)

Application: pp — H + jets in GF with GOSAM + NINJA

do/dpy, ulpb/GeV]

NLO/LO

T. Peraro (MPI - Miinchen)

@ new distributions using NINJA (preliminary)

1073

o better accuracy
@ better performance

se momentum

—— LO (cteq6ll PDFs)
=~ NLO (CT10nlo PDFs)
LHC 8 TeV

anti-kt: R=0.4, pr > 30GeV, [y < 4.4

L L 3
50 00 50 200 250 300
pnlGeV]

dor/dyy [pb]

NLO/LO

\ my +!7,2,H + Z ‘Pt,jet|2

Jjets

H +3 jets: Higgs rapidity

—— LO (cteq6ll PDFs)
= NLO (CT10nlo PDFs)
LHC 8 TeV
anti-kt: R=0.4, pr > 30 GeV, [y] < 4.4
| |
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Integrand reduction via Laurent expansion (NINJA)

Application: pp — H + jets in GF with GOSAM + NINJA

@ new distributions using NINJA (preliminary)

o better accuracy
@ better performance

B 1
pr=pr === o |/ pig t > Ipejerl?

Jjets
H +3 jets: Higgs transverse momentum H +3 jots: Higgs rapidity

T T T T z T T —
2 102 = H42jets NLO- e u
B “——— H{3 jets NLO 3 g E E
S ] T F E
= 1 1072 = |
s — E —— H+2 jets NLO 3
o C ——— H+3 jets NLO b
10 = 0L .
LHC 8 Tev E E E
CT10nlo pdf 4 E LHC 8 TeV El
anti-kt: R=0.4, pr > 30GeV, [n] < 4.4 gl 1074 E CT10nlo pdf =
1 E anti-kt: R=0.4, pr > 30 GeV,, 5] < 4.4 E
4 F 3
M2 S 1002
1E ] 1E 3
o 0S8 E - L 08E =
e E E 2 06 =
= E| = oaf E
e 02 =
R S A B B WE /R R N B E

50 100 150 200 250 300 -4 -2 0 2 1

pnlGeV]
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Higher loops

Extension to higher loops

@ The integrand-level approach to scattering amplitudes at one-loop
@ can be used to compute any amplitude in any QFT
e has been implemented in several codes, some of which public
[SAMURAI, CUTTOOLS, NINJA]
e has produced (and is still producing) results for LHC
[GOSAM, FORMCALC, BLACKHAT, MADLOOP, NJETS, OPENLOOP ...]

@ At two or higher loops

@ no general recipe is available
e the standard and most successful approach is the Integration By
Parts (IBP) method, but it becomes difficult for high multiplicities
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Higher loops

Extension to higher loops

@ The integrand-level approach to scattering amplitudes at one-loop

@ can be used to compute any amplitude in any QFT
e has been implemented in several codes, some of which public
[SAMURAI, CUTTOOLS, NINJA]
e has produced (and is still producing) results for LHC
[GoSAM, FORMCALC, BLACKHAT, MADLOOP, NJETS, OPENLOOP ...]
@ At two or higher loops

@ no general recipe is available
e the standard and most successful approach is the Integration By
Parts (IBP) method, but it becomes difficult for high multiplicities

The integrand-level approach might be a tool for understanding the
structure of multi-loop scattering amplitudes and a method for their
evaluation.
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Higher loops

Extension to higher loops

@ The integrand-level approach to scattering amplitudes at one-loop

@ can be used to compute any amplitude in any QFT
e has been implemented in several codes, some of which public
[SAMURAI, CUTTOOLS, NINJA]
e has produced (and is still producing) results for LHC
[GoSAM, FORMCALC, BLACKHAT, MADLOOP, NJETS, OPENLOOP ...]
@ At two or higher loops

@ no general recipe is available
e the standard and most successful approach is the Integration By
Parts (IBP) method, but it becomes difficult for high multiplicities

The integrand-level approach might be a tool for understanding the
structure of multi-loop scattering amplitudes and a method for their
evaluation.

@ ... we are moving the first steps in this direction
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Higher loops

N =4 SYM and N = 8 SUGRA amplitudes

P. Mastrolia, G. Ossola (2011); P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2012)

@ Examples in N/ =4 SYM and N/ = 8 SUGRA amplitudes (d = 4)

@ generation of the integrand
@ graph based [Carrasco, Johansson (2011)]
@ unitarity based [U. Schubert (Diplomarbeit)]

e fit-on-the-cut approach for the reduction
@ Results:

N =4 linear combination of 8 and 7-denominators Mls
N = 8 linear combination of 8, 7 and 6-denominators Mls

T. Peraro (MPI - Mlnchen) Semi-analytic and algebraic techniques for Integrand Reduction Cortona, 2014
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Higher loops

Divide-and-Conquer approach

P. Mastrolia, E. Mirabella, G. Ossola, T.P. (2013)
The divide-and-conquer approach to the integrand reduction

@ does not require the knowledge of the solutions of the cut

@ can always be used to perform the reduction in a finite number of
purely algebraic operations

@ has been automated in a PYTHON package which uses
MACAULAY2 and FORM for algebraic operations

= (o)

@ also works in special cases where the fit-on-the-cut approach is
not applicable (e.g. in presence of double denominators)

PYTHON

[ MACAULAY2 ] <:
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Higher loops

Divide-and-Conquer approach: a simple example

Dy =gy —m*,
Mz Dy = (g1 — k) —m?,
D2D;D3Dy4 Dy=3,

Dy= (g1 +q)* —m®

Tiioze =

@ iterating the polynomial division algorithm on the numerator we get
Nias = Ar1as+A1234D1 +A1134D2 + A1124D3 + A 1123D4 + AosuDi + A 14D2 D3+ Ay 3D, D4

@ the integrand decomposition becomes

I _ Nz _ Ao Aoy Ajg3g ANEP
" T D2D,DsD,  D2DyDsDy | DiD:DsDy | D2D3Ds | D2DyDy
Apr23 Aoz Ay A
DID,Ds  D,D3D,  D3Dy  DID;
Aq1234 = 16m? (k2 + 2m? — k26> Az = — 16m? (1 - 6)
Az =16 [(qz k)(1—e)? +m2] Az = — Ajs = Ay = 8 (1 — ¢)?

Al

Ay =8(1—¢) [kz(l —e +2m2]

T. Peraro (MPI - Mlnchen) Semi-analytic and algebraic techniques for Integrand Reduction Cortona, 2014 18



Higher loops

Examples of divide-and-conquer approach

@ Photon self-energy in massive QED, (4 — 2¢)-dimensions

@ & Q1 ‘
A e
(a) (0) ()

@ Diagrams entering gg — H, in (4 — 2¢)-dimensions

a1
(73 ---- -—-- % -—--
Q1 k q2 k k
q1
(a) O] (o)
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Higher loops

From Master Integrands to Master Integrals

P. Mastrolia, G. Ossola, T.P. (work in progress)
@ Independent integrands can be linearly dependent at the integral
level
o further identities exist between integrals
e traditional approach: Integration by Part (IBP)
/ﬁ 9 N(g)*

A =0
0] DD

In

@ A 2-step strategy
@ use integrand reduction first
= integrals with higher multiplicity should be reduced
@ then apply IBP
= could be easier after integrand reduction
@ Can we instead see IBPs from Integrand Reduction?
e Can we recover IBPs from int. red. relations computed in step 1?

T. Peraro (MPI - Mlnchen) Semi-analytic and algebraic techniques for Integrand Reduction Cortona, 2014 20



Higher loops

From Master Integrands to Master Integrals

IBP identities can be found by combining
@ integrand reduction of “special” integrands
@ dimensional recurrence relations of respective integrals

@ “Special” integrands can be Shouten polynomials [see L. Tancredis talk]
@ They satisfy dimensional recurrence relations
e easily found using Schwinger parameters
1[5(4;6117 cee ,CIE,kh cee vknfl)] X I<d+2)
TIS(=2€; fiy, . . ., fie)] oc T2

= integrand reduction of I.h.s. + dim. shifts, from lower to higher
point integrals, gives IBP-like or PV-like relations
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Higher loops

Examples of IBP via int. red. + dim. shifts

OV P

T. Peraro (MPI - Mlnchen)

N 1
T — d—3)To = — (d—2)T
o1 V] DoD: ( )Zor = 55 ( ) ]
N
T L d—2
012['/\/] DoD\ D> 4 —ad) Iy, = e s ((3 —d)Zin + ) I])
v
N d—2
Z = Tis=-———=In
V] D\DaDs 2m2(d — 3) )

Semi-analytic and algebraic techniques for Integrand Reduction

Cortona, 2014
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Summary and Outlook

Summary and Outlook

@ Summary
e we have a framework for the all-loop reduction at the integrand level
e the integrand is decomposed via multivariate polynomial division
e at one loop it reproduces well knwon results (OPP)
e one-loop reduction is improved by Laurent expansion (NINJA)
@ algebraic reduction at any loop via divide-and-conquer approach
o IBPs via integrand reduction and d-shifts

@ Outlook

e improve one-loop generation (recursion, global abbreviations,. . .)
e application of int. red. + d-shifts a full two-loop QED/QCD process
o fully automated analytic one-loop via divide-and-conquer
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