

Heavy Ion Physics with ALICE

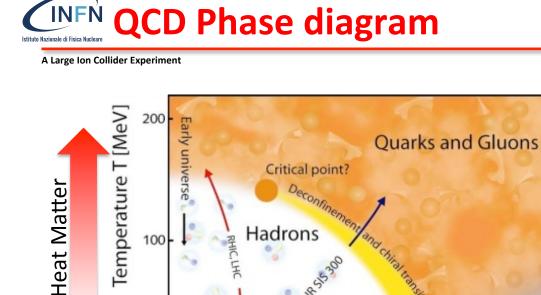
Grazia Luparello on behalf of the ALICE Collaboration INFN – Sezione di Trieste

Les Rencontres de Physique de la Vallée d'Aoste February 25th – March 3rd, 2018

Net Baryon Density

Neutron stars

Compress Matter


Color Super-

conductor?

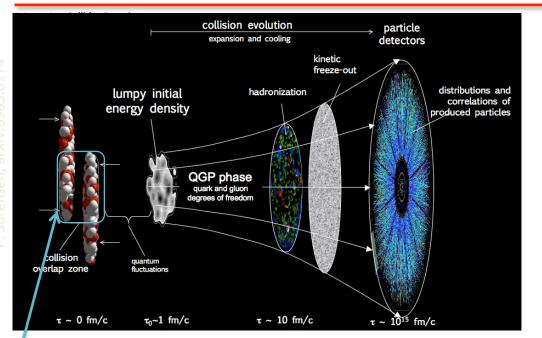
2

ALICE

Collisions of relativistic heavy nuclei create the conditions for the phase transition from ordinary matter to the Quark Gluon Plasma (QGP)

Hadrons

Nuclei


RHIC

100

0

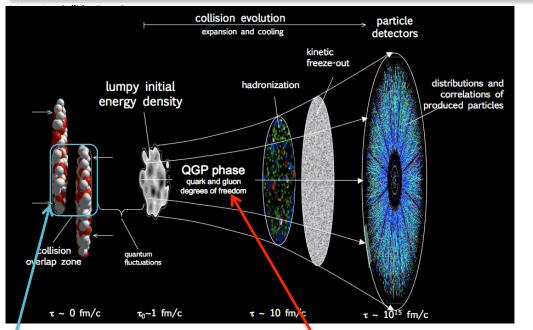
INFN Nuclear collision and QGP expansion

• Pre-thermal processes:

scattering of incoming quarks and gluons

Collision overlap zone:

Full overlap-> "central" collisions (Non-complete overlap -> "peripheral" collisions (


ıs 🦲

Grazia Luparello

3

Interview Nuclear collision and QGP expansion

• **Pre-thermal processes**: scattering of incoming quarks and gluons

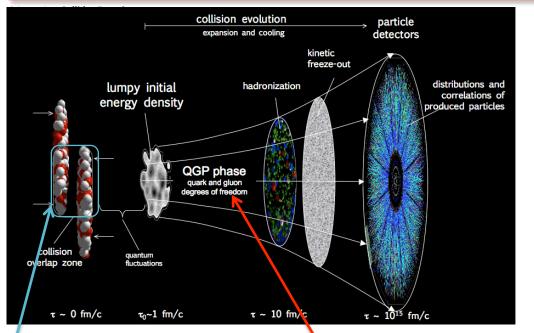
Thermalization

Equilibrium is established (t~1 fm/c= $3*10^{-24}$ s)

Same conditions of the Universe ~10µs after the Big Bang

Collision overlap zone:

Full overlap-> "central" collisions (Non-complete overlap -> "peripheral" collisions (


is 🔘

27/02/2018

Grazia Luparello

INFN Nuclear collision and QGP expansion

Same conditions of the Universe ~10µs after the Big Bang

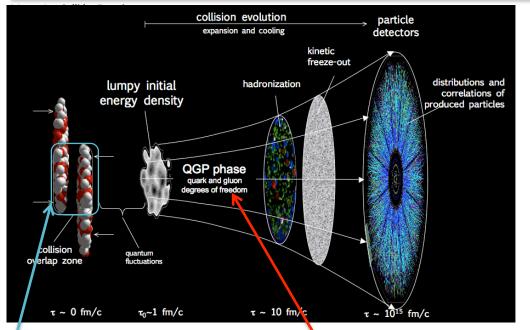
Collision overlap zone:

Full overlap-> "central" collisions (Non-complete overlap -> "peripheral" collisions

s 🦲

Grazia Luparello

• **Pre-thermal processes**: scattering of incoming quarks and gluons


Thermalization

Equilibrium is established (t~1 fm/c= $3*10^{-24}$ s)

• **QGP expansion and cooling** (t~10 fm/c) Described by an almost perfect fluid dynamics

INFN Nuclear collision and QGP expansion

Same conditions of the Universe ~10µs after the Big Bang

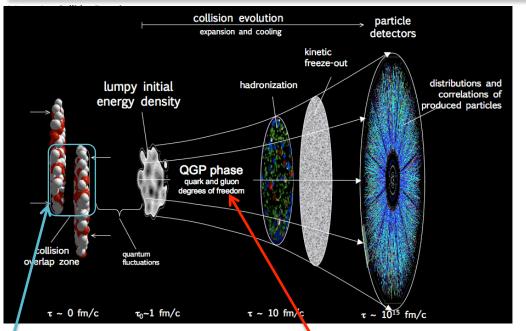
Collision overlap zone:

Full overlap-> "central" collisions () Non-complete overlap -> "peripheral" collisions

27/02/2018

Grazia Luparello

• **Pre-thermal processes**: scattering of incoming quarks and gluons


Thermalization

Equilibrium is established (t~1 fm/c= $3*10^{-24}$ s)

- **QGP expansion and cooling** (t~10 fm/c) Described by an almost perfect fluid dynamics
- Hadronization, Chemical freeze-out Inelastic interactions cease, particle abundances frozen

Interview Nuclear collision and QGP expansion

Same conditions of the Universe ~10µs after the Big Bang

Collision overlap zone:

Full overlap-> "central" collisions () Non-complete overlap -> "peripheral" collisions

• **Pre-thermal processes**: scattering of incoming quarks and gluons

Thermalization

Equilibrium is established (t~1 fm/c= $3*10^{-24}$ s)

• **QGP expansion and cooling** (t~10 fm/c) Described by an almost perfect fluid dynamics

• Hadronization, Chemical freeze-out Inelastic interactions cease, particle abundances frozen

• Kinetic freeze-out Elastic interactions cease, particle dynamics (spectra) frozen

Grazia Luparello

Heavy-Ion collisions

- Study the QCD phase diagram in the laboratory
- Create and characterize the Quark Gluon Plasma

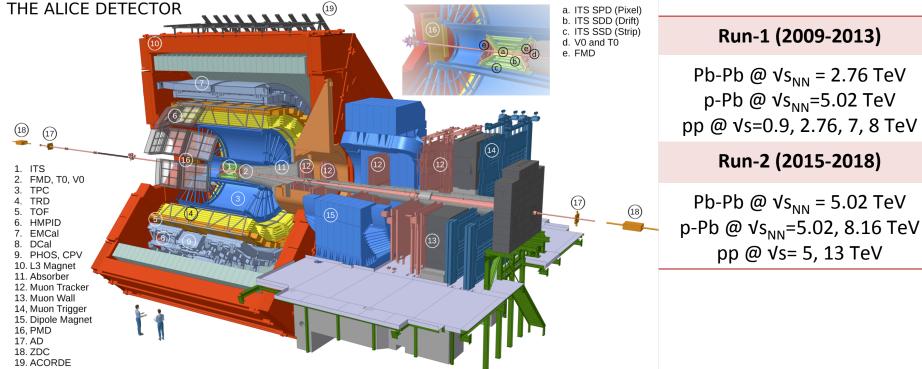
- Heavy-Ion collisions
 - Study the QCD phase diagram in the laboratory
 - Create and characterize the Quark Gluon Plasma

- pp collisions
 - Provide reference data to check differences wrt to heavy-ion collisions

- p-Pb collisions
 - Control experiment, "Cold Nuclear Matter" effects

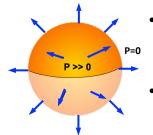
- Heavy-Ion collisions
 - Study the QCD phase diagram in the laboratory
 - Create and characterize the Quark Gluon Plasma

- pp collisions
 - Provide reference data to check differences wrt to heavy-ion collisions


- p-Pb collisions
 - Control experiment, "Cold Nuclear Matter" effects

Intriguing similarities between pp /p-Pb/Pb-Pb collisions:

traditional signatures of Quark Gluon Plasma formation in heavy-ion collisions observed also in smaller systems (pp, and p-Pb) **Collectivity in small systems?**



Light particle production

A Large Ion Collider Experiment

High precision p_{τ} distributions of π , K, p ٠ ITS, TPC, TOF and HMPID for particle identification dy) (GeV/c)⁻ (GeV/*c*)⁻¹ 10 n 5-10% x 2 10⁵ dy) 60-70% x 2 0^{−104} dp)/V₂p 80-90% 80-90% d²N/(dp_T ALICE Preliminary **ALICE Preliminary** Pb-Pb $s_{NN} = 5.02 \text{ TeV}$ Pb-Pb $\sqrt{s_{NN}} = 5.02 \text{ TeV}$ 10 10 1⊧ 10^{-1} 10 10^{-2} 10^{-2} 10^{-3} 10 10 Uncertainties: stat. (bars), svs. (boxes) Uncertainties: stat. (bars), sys. (boxes) 10^{-5⊥} 10^{-5} 12 10 12 8 10 p_{τ} (GeV/c) p_{τ} (GeV/c)

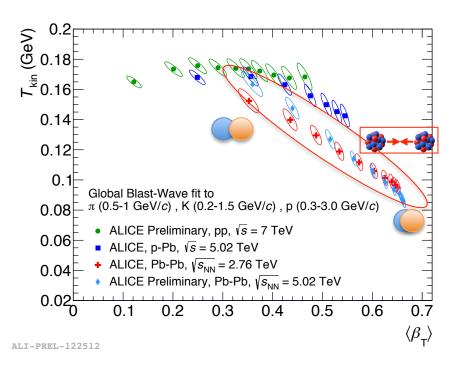
- Random thermal + collective motion driven by pressure gradient
- Particles move in a **common velocity field**

Hardening of the spectra consistent with a radial collective flow: common velocity gives larger momentum boost to heavier particles $p = \gamma m \beta$

Particle spectra consistent with collective expansion

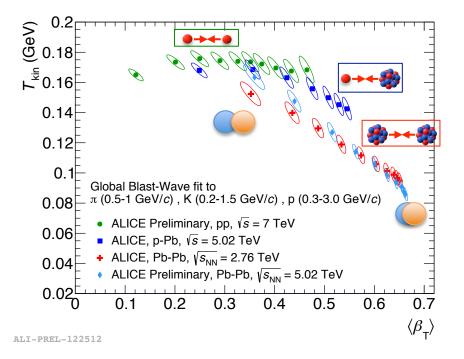
Common radial velocity $\langle \beta_T \rangle$ and **kinetic freeze-out temperature** (T_{kin}) extracted via a simultaneous fit to the π , K, p spectra with the Blast-Wave model

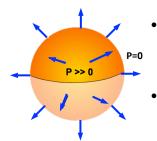
P=0

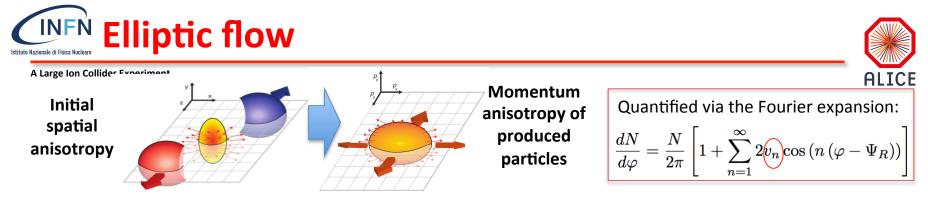

P >> 0

Particles move in a **common** velocity field

gradient


Random thermal + collective motion driven by pressure

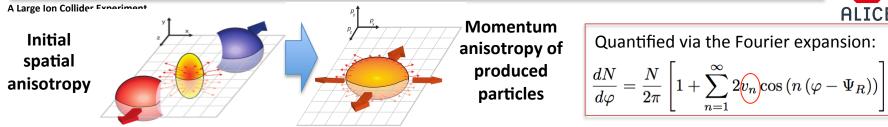


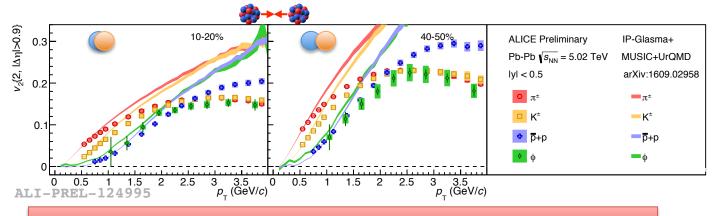


- Random thermal + collective motion driven by pressure gradient
- Particles move in a **common** velocity field

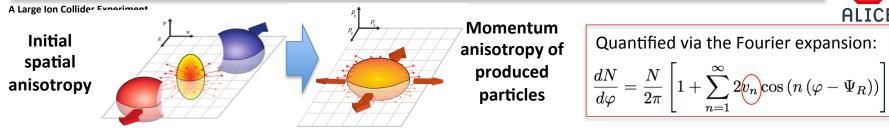
Common radial velocity $\langle \beta_T \rangle$ and **kinetic freeze-out temperature** (T_{kin}) extracted via a simultaneous fit to the π , K, p spectra with the Blast-Wave model

Particle spectra consistent with collective expansion

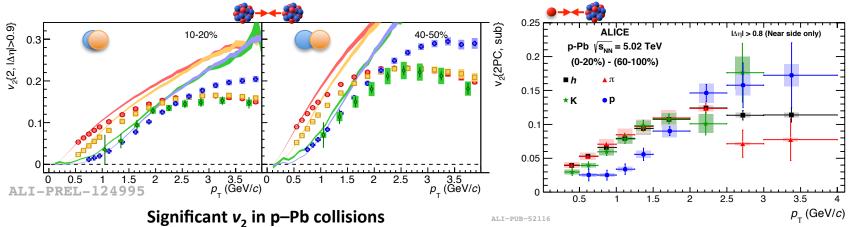



• **v₂ elliptic flow**: related to the geometry of the overlap zone, sensitive to the thermalization of the system

• **v₂ elliptic flow**: related to the geometry of the overlap zone, sensitive to the thermalization of the system



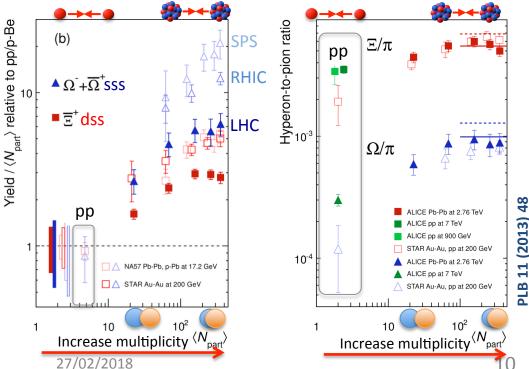
Mass ordering consistent with hydrodynamic expansion


Grazia Luparello

• **v₂ elliptic flow**: related to the geometry of the overlap zone, sensitive to the thermalization of the system

- Mass ordering just as in Pb–Pb
- Collectivity in high-multiplicity pp and p–Pb collisions?

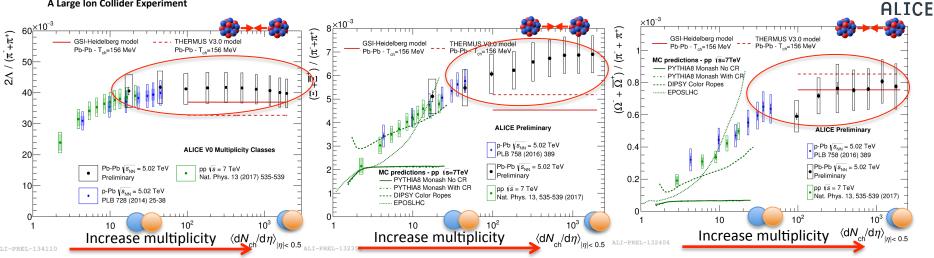
Grazia Luparello

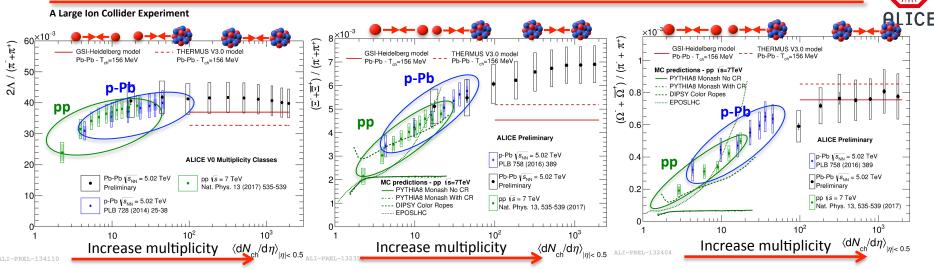

27/02/2018

Strangeness production in Pb-Pb collisions

A Large Ion Collider Experiment

 Strangeness enhancement originally proposed as a signature of QGP formation in nuclear collisions Rafelski & Muller, PRL 48 (1982) 1066


- Hyperon-to-pion ratio larger in Pb-Pb than in pp collisions and in agreement with thermal model expectations
- Enhancement increases with strangeness content


INFN Strangeness production: new results @ 5 TeV Istituto Nazionale di Fisica Nucleare

A Large Ion Collider Experiment

- Ratio of p_{T} -integrated yields to pions measured at both 2.76 TeV (not shown) and 5.02 TeV
- Strangeness increase compatible at the two energies
 - Apparently produced near thermal and chemical equilibrium

Strangeness production

- Increase of strangeness observed also in high multiplicity pp/p-Pb events:
 - At high multiplicity pp events the ratio reaches values similar to the ones in Pb-Pb
- No evident dependence on center-of-mass energy
 - Driven by final state rather than collision system or energy
- Traditional models (e.g. Pythia) fail to reproduce the data
 - Qualitative description only by models that introduce extra-mechanism providing 'coherence' (e.g DIPSY)

535-539

(2017)

Nature Phys.

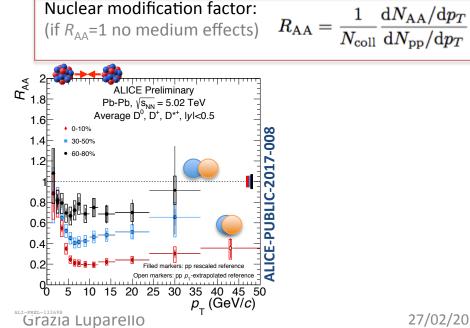
See also

Heavy-flavor production: D mesons

A Large Ion Collider Experiment

- Heavy quarks are produced in parton hard scatterings in the initial phases of the heavy-ion collision
- Flavor is conserved in strong interactions
 - Transported through the full system evolution -> Probe properties (opacity, transport) of the medium

Nuclear modification factor: (if $R_{AA}=1$ no medium effects) $R_{AA} = \frac{1}{N_{coll}} \frac{dN_{AA}/dp_T}{dN_{pp}/dp_T}$



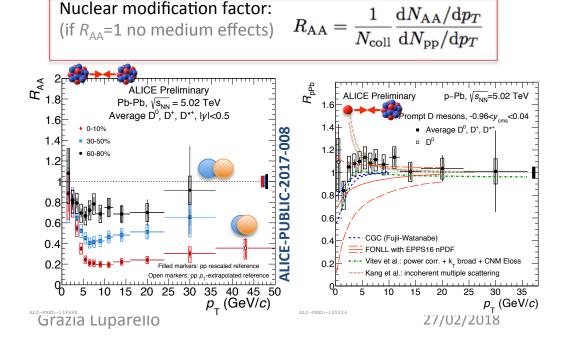
matter

INFN **Heavy-flavor production: D mesons**

A Large Ion Collider Experiment

- Heavy guarks are produced in parton hard scatterings in the . initial phases of the heavy-ion collision
- Flavor is conserved in strong interactions •
 - Transported through the full system evolution -> Probe properties (opacity, transport) of the medium

Strong suppression of D mesons in Pb–Pb collisions


matter

ALICE

Heavy-flavor production: D mesons

A Large Ion Collider Experiment

- Heavy quarks are produced in parton hard scatterings in the initial phases of the heavy-ion collision
- Flavor is conserved in strong interactions
 - Transported through the full system evolution -> Probe properties (opacity, transport) of the medium

 Strong suppression of D mesons in Pb–Pb collisions

multer

 No modification in p-Pb collisions

> Strong energy loss of charm quarks in the medium

ALICF

INFN **Heavy-flavor production: D mesons**

A Large Ion Collider Experiment

- Heavy quarks are produced in parton hard scatterings in the . initial phases of the heavy ion collision
- Flavor is conserved in strong interactions •
 - Transported through the full system evolution -> Probe properties (opacity, transport) of the medium

 $R_{
m AA} = rac{1}{N_{
m coll}} rac{{
m d}N_{
m AA}/{
m d}p_T}{{
m d}N_{
m pp}/{
m d}p_T}$ $R_{\rm AA}$ ALICE Preliminary 1.8 0-10% Pb-Pb, $\sqrt{s_{_{\rm NN}}}$ = 5.02 TeV |v| < 0.51.6 Average D⁰. D⁺. D⁺⁺ -008 1.4 + D⁺ 1.2 2 N Filled markers: pp rescaled reference Open markers: pp p_-extrapolated reference 0.8 0.6 0.4 0.2 35 30 40 45 50 *p*_ (GeV/*c*) ALI-PREL-133564 Grazia Luparello

Nuclear modification factor:

(if $R_{AA}=1$ no medium effects)

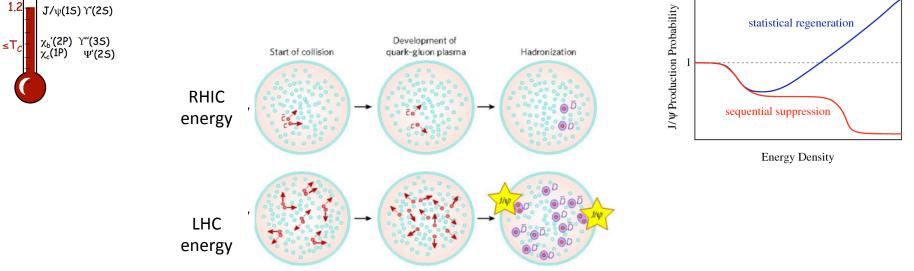
- Comparison of D⁺ with non-strange D mesons hints a lower D⁺ suppression
- **Coalescence + strangeness enhancement?**

Strong energy loss of charm quarks in the medium

multer

Heavy-flavor production: quarkonia

A Large Ion Collider Experiment


 T/T_c 1/(r) [fm⁻¹]

Y(15)

χ_b(1P)

2

- Binding energy dependent quarkonium suppression -> QGP thermometer Matzui and Satz, PLB 178 (1986) 416
 - Enhancement via (re)generation due to large c quark multiplicity at LHC

ALICE

Heavy-flavor production: quarkonia

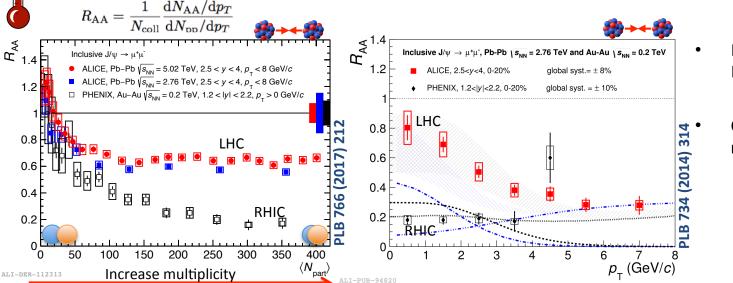
A Large Ion Collider Experiment

 T/T_c 1/ $\langle r \rangle$ [fm⁻¹]

Y(15)

χ_b(1P)

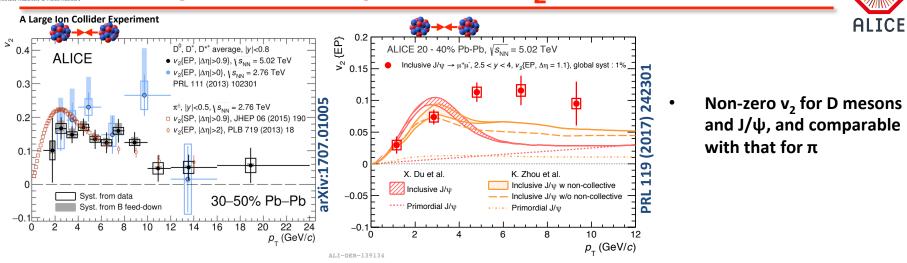
J/ψ(15) Υ (25)


χ_b'(2P) Υ''(3S) χ_c(1P) Ψ'(2S)

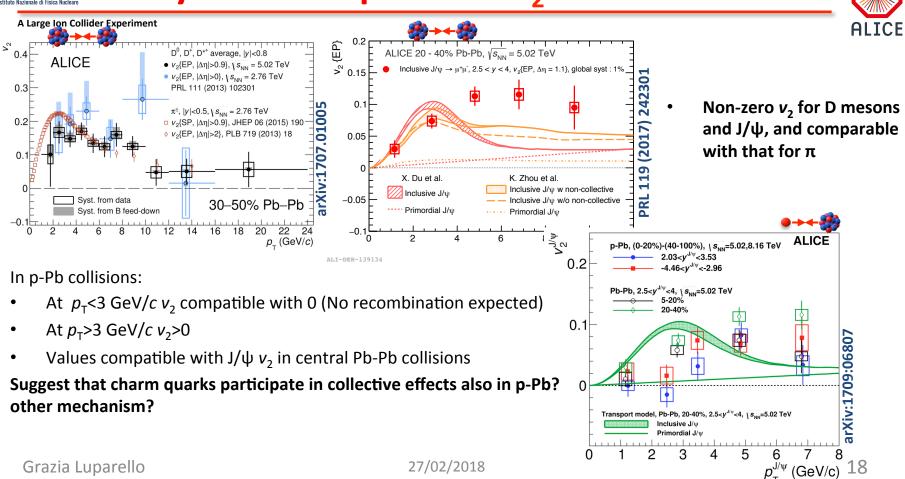
2

1.2

≤Tc

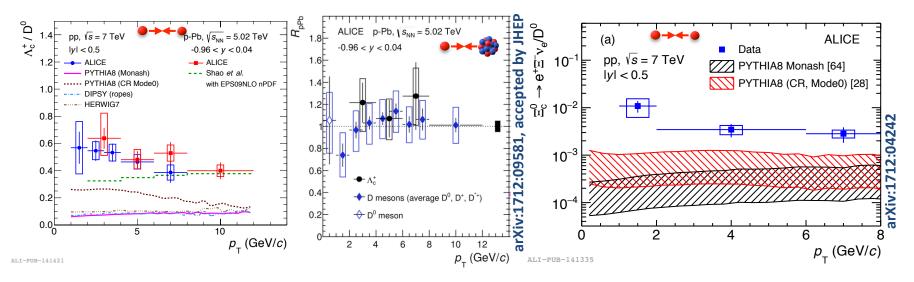

- Binding energy dependent quarkonium suppression -> QGP thermometer Matzui and Satz, PLB 178 (1986) 416
 - Enhancement via (re)generation due to large c quark multiplicity at LHC

- Larger suppression at RHIC than at LHC
- Compatible with regeneration scenario



Heavy-flavor elliptic flow v₂

Further signs of charm thermalization and recombination


INFN Heavy-flavor elliptic flow v_2

27/02/2018

- First mid-rapidity measurement of Λ_c in pp and p-Pb collisions at the LHC
 - Charmed baryon-to-meson ratio not reproduced by event generators
- Measurement of Ξ_c in pp collisions
- Constrains charm hadronization
- Benchmark for measurements in heavy-ion collisions

ALICE

Grazia Luparello

27/02/2018

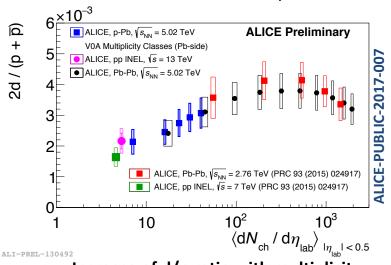
Major upgrade of ALICE apparatus during Long Shutdown 2 (2019-2020)

Goals: study rare low p_T probes (heavy flavour and quarkonia, low mass dielectrons, nuclei)

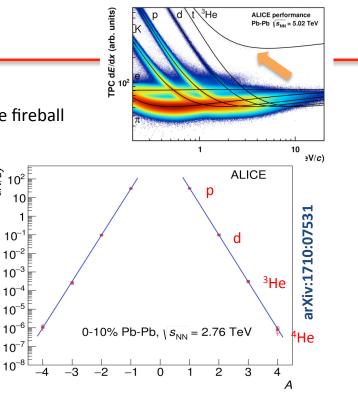
- Non triggerable probes -> Need continuous readout at 50 kHz (x50 faster)
- Improve tracking resolutions at low p_{T} and vertexing -> increase granularity and reduce material thickness
- Secondary vertex for measurements in the forward region
- Data taking during Run 3-4 (2021-2029) : aim at 10 nb⁻¹

Progress in the characterization of the QGP created in heavy-ion collisions Run 2 (Pb–Pb at 5 TeV): similar trends, more data \Rightarrow precise characterization

Early thermalization and strong collective behavior consistently described by hydrodynamic models Strangeness enhancement as predicted in a QGP medium Suppression of heavy flavor and high p_{T} particle production wrt to binary scaled pp collisions



Evidence of collective behaviour in p-Pb and high-multiplicity pp collisions Smooth strangeness enhancement from pp to p-Pb driven by event multiplicity Heavy flavors are NOT suppressed


More to come with the **upgrade**: high Pb-Pb luminosity and improved tracking

- Heavy-ion collisions are also factory for nuclei
- Production mechanism of compound objects inside the fireball
 - Coalescence or thermal production?

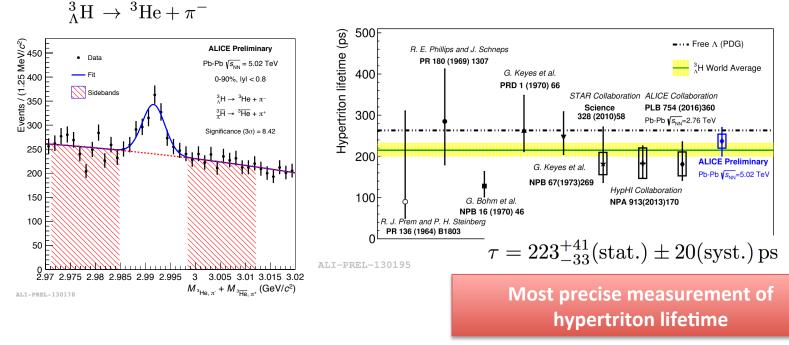
- Increase of d/p ratio with multiplicity expected from coalescence model
- Saturation at high multiplicities expected for thermal production

ALICE

 Yield compatible with exponential fall predicted by the thermal model with T_{chem} ~156 MeV

Mechanism of nuclei production not yet fully understood

Grazia Luparello


27/02/2018

dN/dy

Hyper-Nuclei production

A Large Ion Collider Experiment

- Heavy-ion collisions are also factory for hyper-nuclei
- Hypernucleus: nucleus containing at least an hyperon
- **Hypertriton** $({}^{3}_{\Lambda}He)$ is the lightest hypernuclus formed by (p,n, Λ)

Grazia Luparello

27/02/2018