Holographic Charge Oscillations

Mike Blake - DAMTP

arXiv:1412.2003 with Aristomenis Donos and David Tong

Basic Questions

• Can we see finite density fermionic physics in holography?

Yes, by adding fermions...

Liu, McGreevy &Vegh, Sachdev etc...

Yes, by working in 1+1 dimensions...

Iqbal & Faulkner

 How about simply in the Reissner-Nordstrom black hole?

A Topical Example

- Power-law resistivities from Umklapp scattering require zero energy excitations at the lattice momentum
- Fermi surfaces provide a simple way to do this by scattering across a Fermi surface

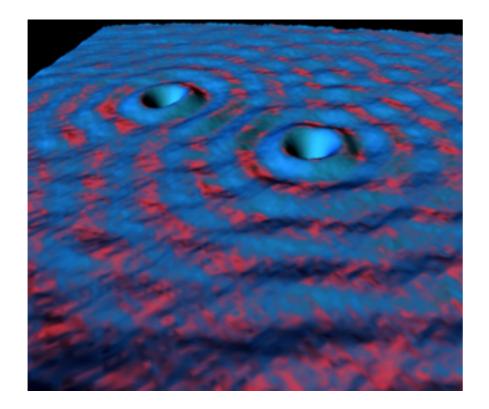
 $\sigma^{-1} \sim T^2$

 Reissner-Nordstrom produces similar physics through local criticality

Hartnoll & Hofman

Charge Oscillations

 Adding a charged impurity to a metal gives rise to Friedel oscillations



$$\delta \rho \sim \frac{1}{r^3} \cos(2k_F r)$$
$$(T=0)$$

M.F. Crommie, C.P. Lutz, D.M. Eigler, Nature 363, 524-527 (1993), IBM.

Heuristically occurs because of finite size of low energy excitations

Suppose we do the same in holography. We model an impurity via a chemical potential

$$\delta\mu = Ce^{-r^2/2R^2}$$

Then within linear response the induced charge density is

 $\delta\rho(k) = \chi(k)\mu(k)$

• Where $\chi(k)$ is the static susceptibility

$$\chi(k) = \langle J_t(k) J_t(-k) \rangle |_{\omega=0}$$

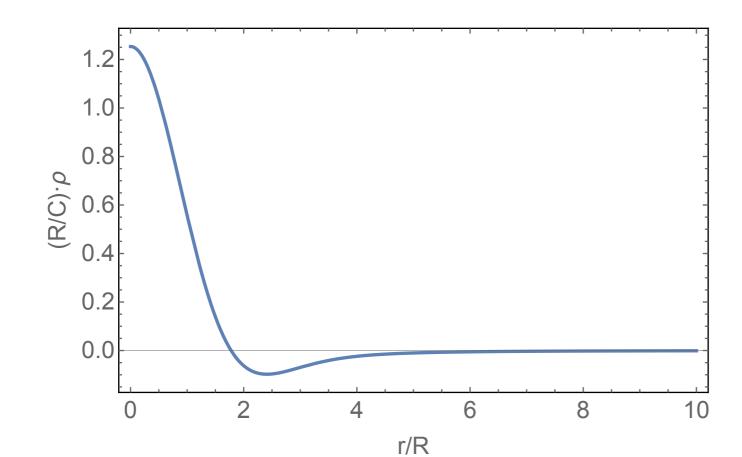
(See also Horowitz, Iqbal, Santos and Way)

Screening in AdS4

In AdS4 conformal invariance fixes the scaling of the static susceptibility

$$\chi(k) \sim k$$

• For our Gaussian lump this gives the charge density

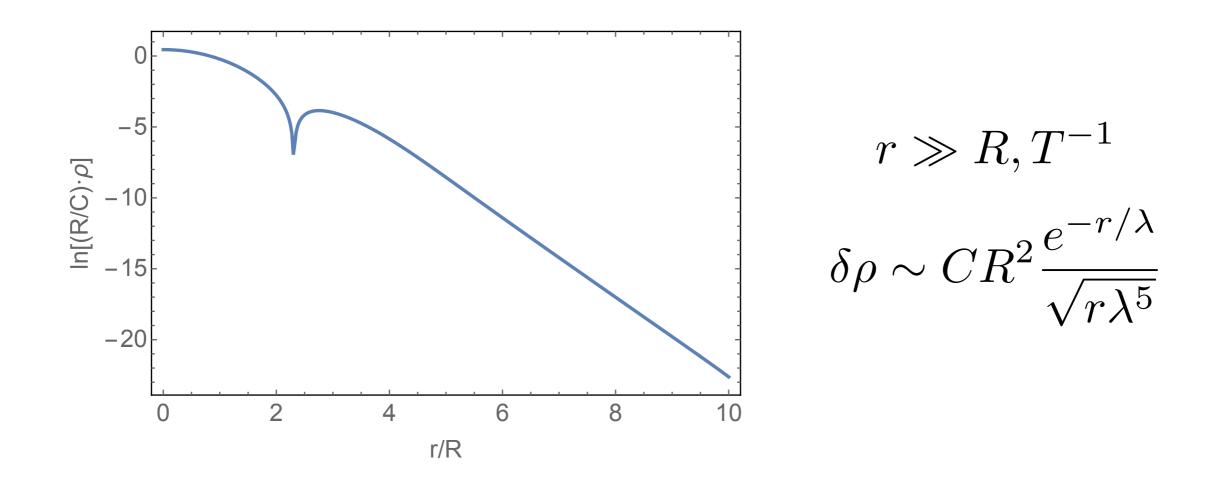


$$r \gg R$$

$$\delta \rho \sim C R^2 / r^3$$

Finite Temperature

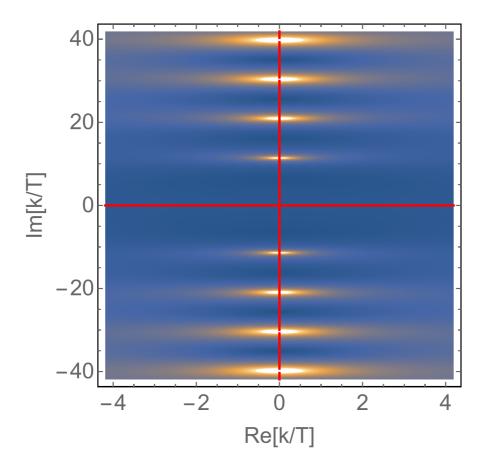
 $T \neq 0$



Here $\lambda \sim 1/T$ is the Debye screening length

Static Susceptibility

• The exponential fall-off can be understood by looking at $\chi(k)$ for complex k



$$\mathrm{Im}k_* = 1/\lambda \sim T$$

String of poles on the imaginary k axis.
Lowest pole dominates the large distance fall-off.

(c.f. quasinormal modes)

Screening in RN

• Turn on a background chemical potential

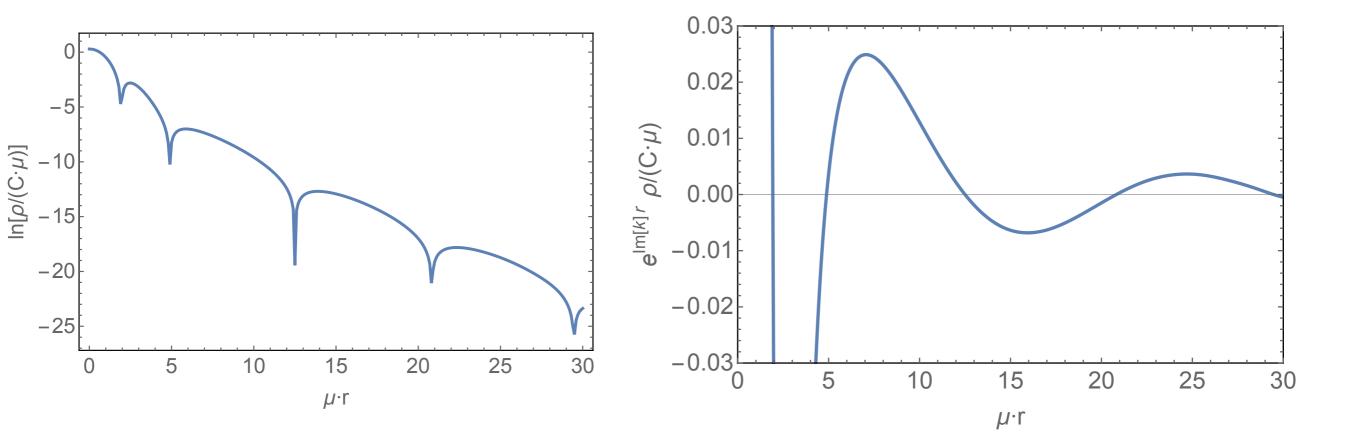
$$\mu = \mu_0 + C e^{-r^2/2R^2}$$

- At high $T/\mu_0 \gg 1$ the induced charge density falls off exponentially as in Schwarzchild.
- Remarkably there is a phase transition at

 $T_c \approx 0.33 \mu_0$

• For $T < T_c$ we begin to see oscillations in the charge density

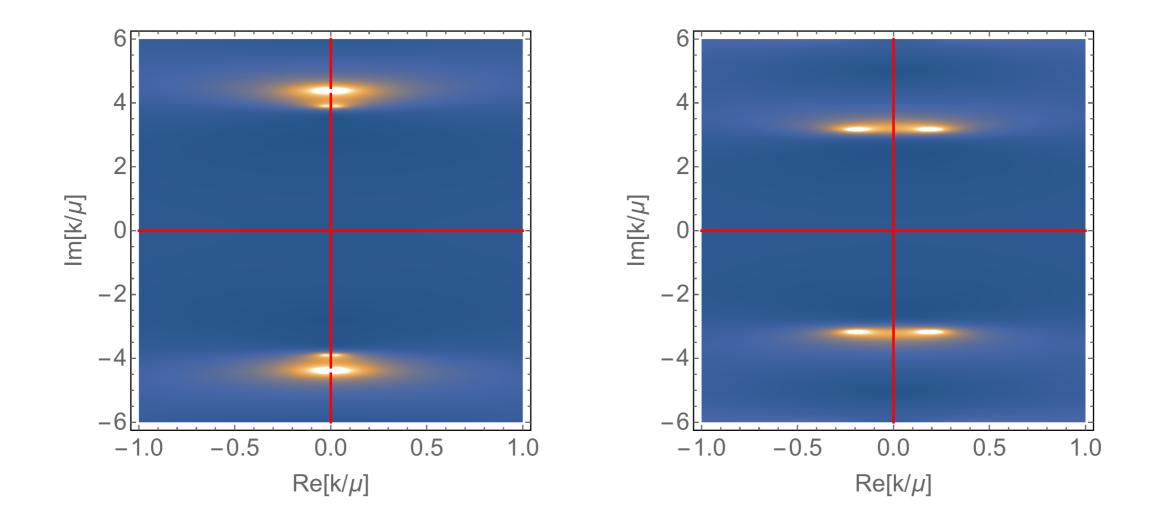
Holographic Charge Oscillations



$$\delta \rho \sim \frac{e^{-r/\lambda}}{\sqrt{r}} \cos(r/\xi)$$

$$r \gg R, T^{-1}, \mu^{-1}$$

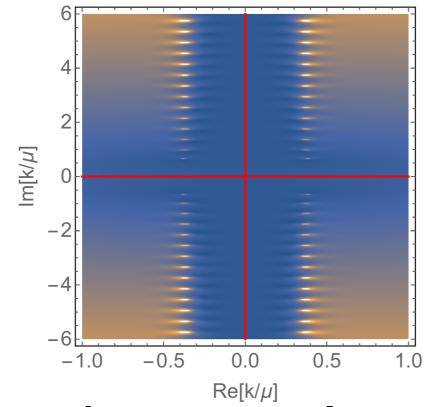
RN Static Susceptibility



$T > T_c$

 $T < T_c$

• At T=0, the poles coalesce into a branch cut.



• The branch cut terminates at a complex momentum

$$k_*/\mu_0 = 1/2\sqrt{2} + i/2$$

In contrast to Friedel oscillations, ours remain exponentially damped.

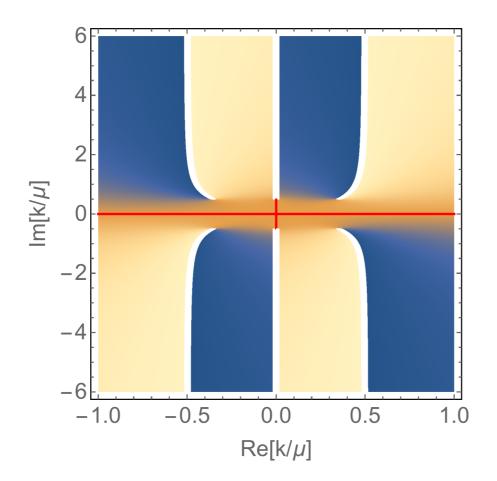
Local Criticality

- Remarkably, this branch cut seems to directly arise from the local criticality.
- In the IR $J_t(k)$ couples to operators of dimension

$$\delta_{\pm}(k) = \frac{1}{2} + \nu_{\pm}(k)$$
$$v_{\pm} = \frac{1}{2}\sqrt{5 + 8(k/\mu_0)^2 \pm 4\sqrt{1 + 4(k/\mu_0)^2}}$$

• Because of the square roots ν_{\pm} have branch cuts in the complex k plane

• The branch cut in $\chi(k)$ is numerically found to arise from a branch cut in $\nu_{-}(k)$



• The branch cut terminates at the point

$$\nu_-(k_*) = 0$$

Comments

- We studied the effect of a charged impurity on the RN geometry.
- We found that below a critical temperature, the induced charged density exhibited oscillations.
- This is another example of the connection between Fermi-surface physics and local criticality.

Open Questions

• Can we get a power law fall-off to these oscillations?

c.f. charge density wave instabilities

Is holography suggesting the existence of a complex Fermi momentum at strong coupling?
Can we make sense of this in

field theory? In $\mathcal{N} = 4$ Super-Yang-Mills? Thank you!