

SPES Project

Selective Production of Exotic Species

Gianfranco Prete LNL-INFN On behalf of the SPES Collaboration

Workshop on Accelerator based Neutron Production

April 14th-15th, 2014 Laboratori Nazionali di Legnaro (Padova), Italy

SPES project strategy

- Develop a Neutron Rich ISOL facility delivering Radioactive Ion Beams at 10A MeV using the LNL linear accelerator ALPI as re-accelerator .
- Make use of a Direct ISOL Target based on UCx and able to reach 10¹³ Fission/s (fission is the main reaction mechanism to produce n-rich isotopes).
- Develop an applied physics facility based on the technology and the components of the ISOL facility. Applications in medicine and neutron production.

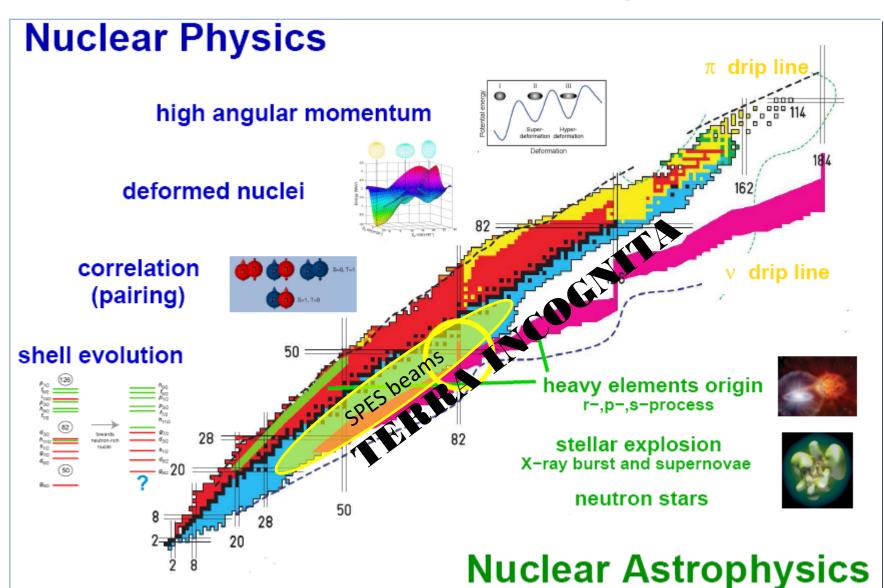
Exotic nuclei

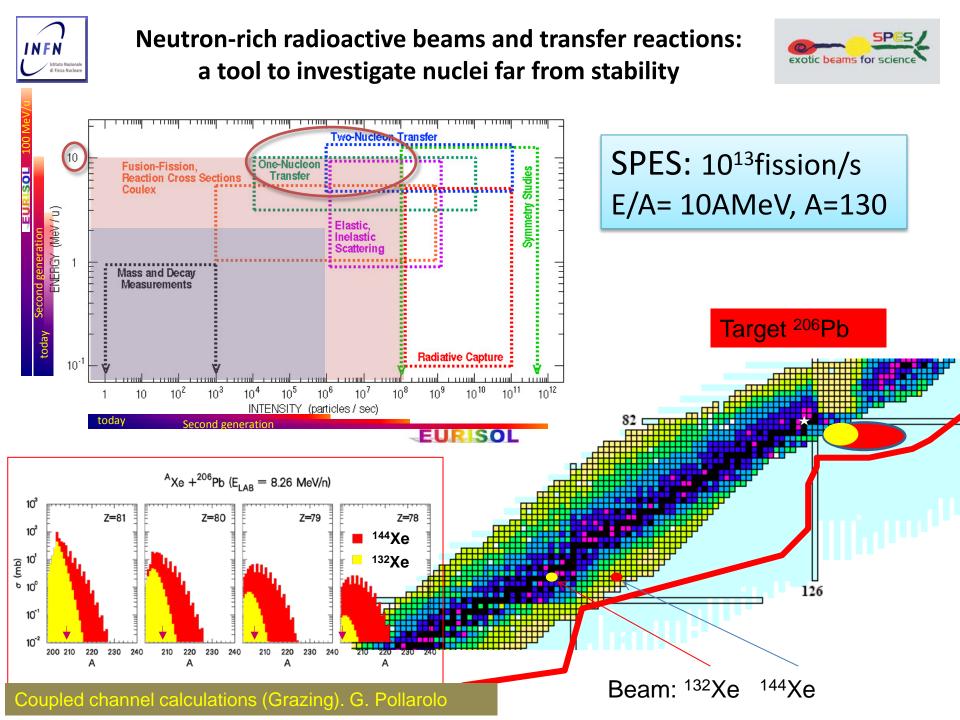
Production ISOL facility for Neutron rich nuclei by U fission 10^{13} f/s

Reacceleration high purity beam Reacceleration up to <a>10 MeV/u

Applications

Radioisotope produduction & Medical applications (LARAMED, partially funded)


Proton and neutron facility for applied physics (NEPIR, preliminary design)



Selective Production of Exotic Species

SPES scientific and technical collaboration

Second Generation ISOL facilities

European ISOL Roadmap toward

NATIONAL LEVEL

SPES Collaboration:

Acc.Techologies & Mechanics (Mi, Bo, LNS, LNL, Pv, Tn, Pa) Physics Programs & Detectors (Ba, Bo, Ct, Fi, Mi, LNL, LNS, Pd, Tn, Na) LEA Colliga → France-Italy

EUROPE

INTERNATIONAL LEVEL

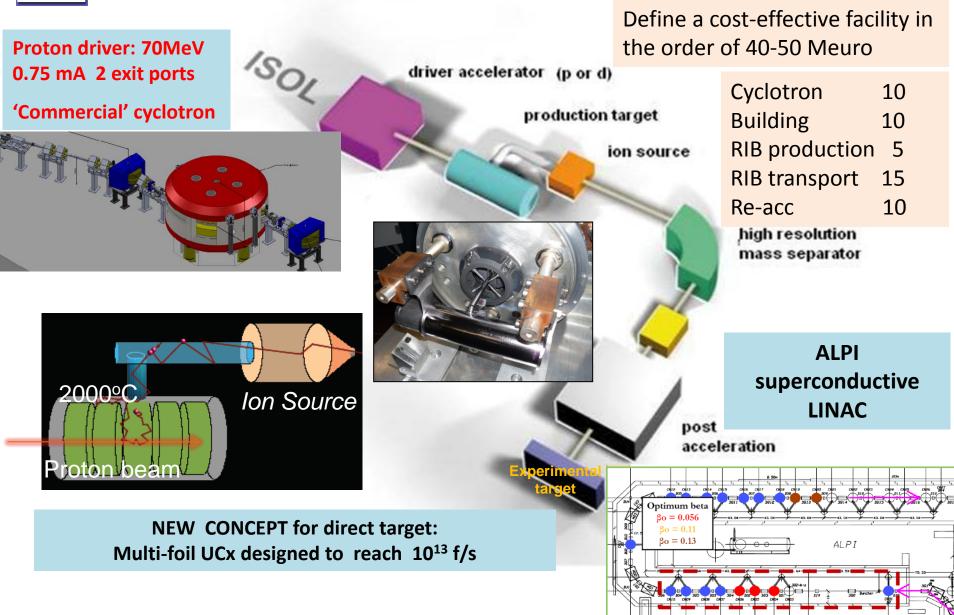
(SPES, SPIRAL2, ALTO, EXCYT, FRIB, Coll. on Det.)

ISOLDE (CERN)→SPES (Italy)

(Radioprotection and nuclear safety ; Charge Breeding , Laser Ion Sources (RILIS), Target development and material characterization, Spectrometers and mass selectors , superconducting cavities)

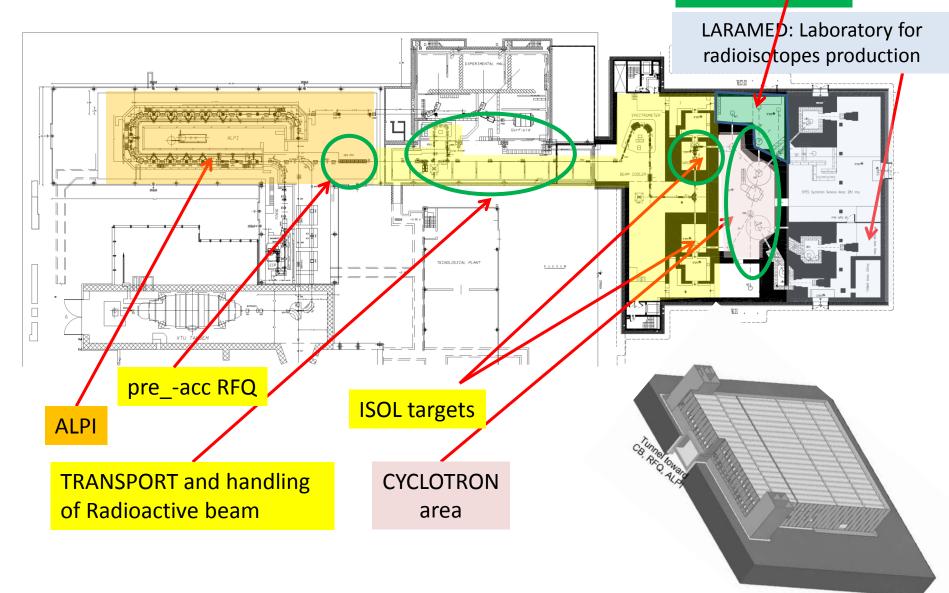
LEA (in preparation) → Poland-Italy

International collaboration on Innovative Itinerant Detectors & on experimental proposals to keep a qualified & competitive level AGATA, FAZIA, PARIS, NEDA, GASPARD Italy → France, England, Spain, Poland, Romania, Bulgaria, Turkey, Germany, Croatia, Sweden, Finland, Denmark.


> **WORLD** ORNL, iTHEMBA-Labs ELI_np RISP-KOREA

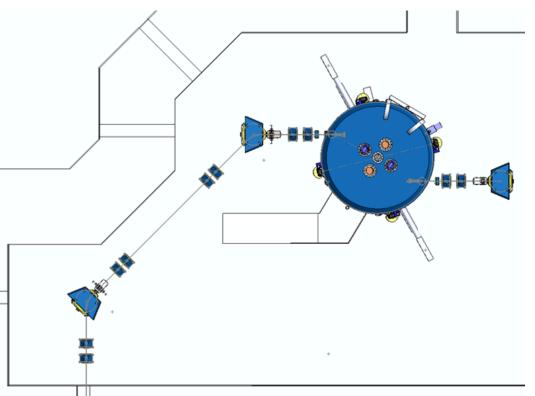
RIKEN, MSU-FRIBS, BARC, NEW DEHLI, DUBNA, MOSCA

The SPES choice for the ISOL facility



ALPI AND SPES LAYOUT

Neutrons: SEE, QMN


Cyclotron Schedule (2013-2014)

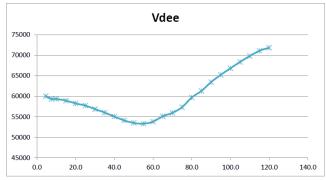
	203	13		2015		
	II	111	I	II	Ш	
Final Assembly and Testing						
Factory Commissioning						
Disassembly and Shipping						
Installation at LNL						
Commissioning at LNL						

The Contract with BEST Theratronics provides for:

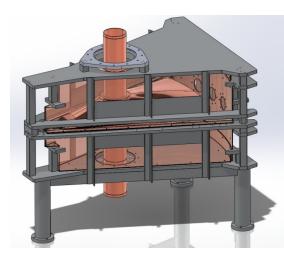
- Cyclotron
- Two exit channels
- High power beam transport line (up to SPES target)

Resonator tuned at: $f_o = 56.199600 MHz$

Input reflection coef: $S_{11} = -65 dB$ (average value -56dB)



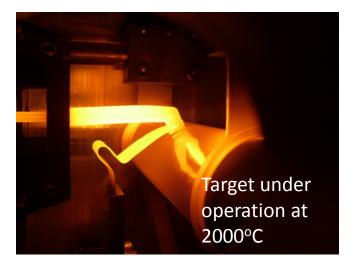
Quality factor loaded: $Q_l = 3156$ unloaded value expected to be approximate 6300.


The main magnet ready for the rf resonators

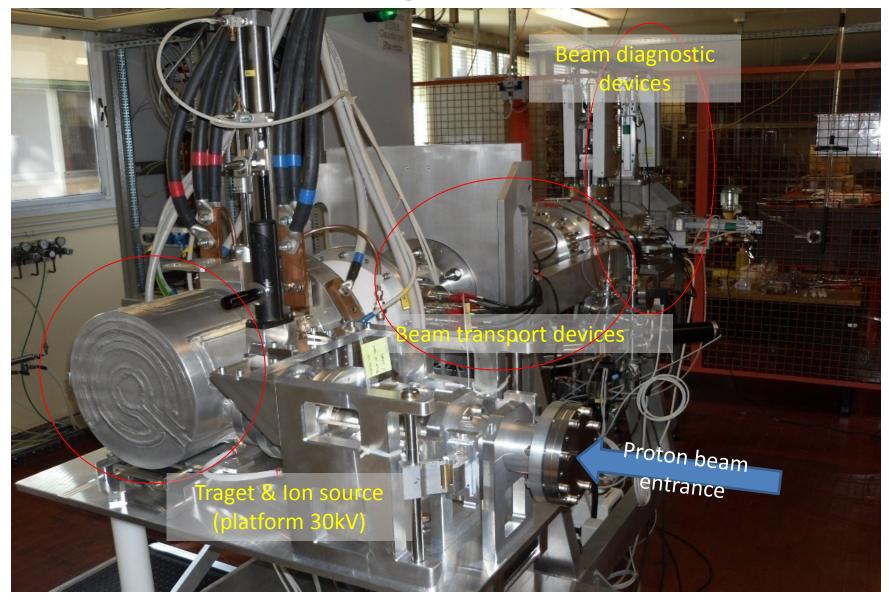
The D voltage distribution

 $\Delta f_{coarse} = 30.8 kHz/mm$ 161mm $\Delta f_{fine} = 30.0 kHz/mm \pm 10 mm$

The first rf resonator successfully tested inside the test stand

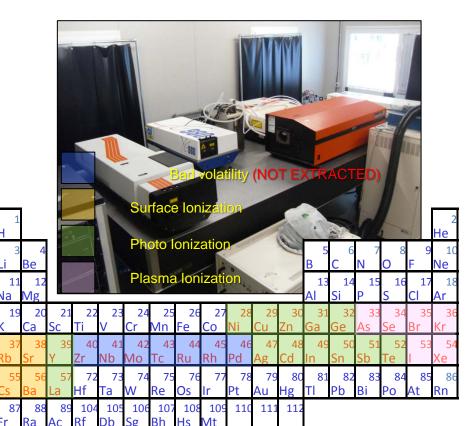

Technical highlights

SPES DIRECT TARGET CONCEPT to operate with 8 kW proton beam


- Direct Target carefully designed to reach 10¹³ fissions/s with 8 kW proton beam. (Thermo-mechanical considerations)
- Prototype under operation.
- Fully developed front-end following ISOLDE design.
- In beam test scheduled at iThemba labs. (May 2014, power test with proton beam)

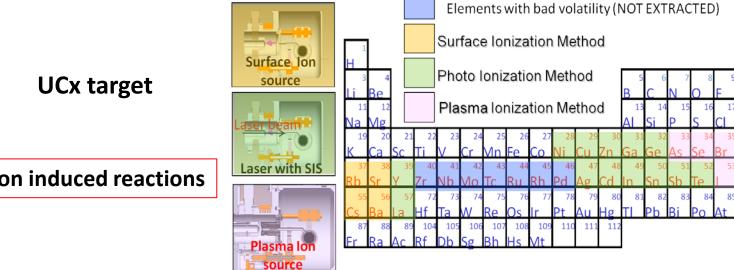
WP03: Ionization measurements

Front end running since June '10


Technical highlights

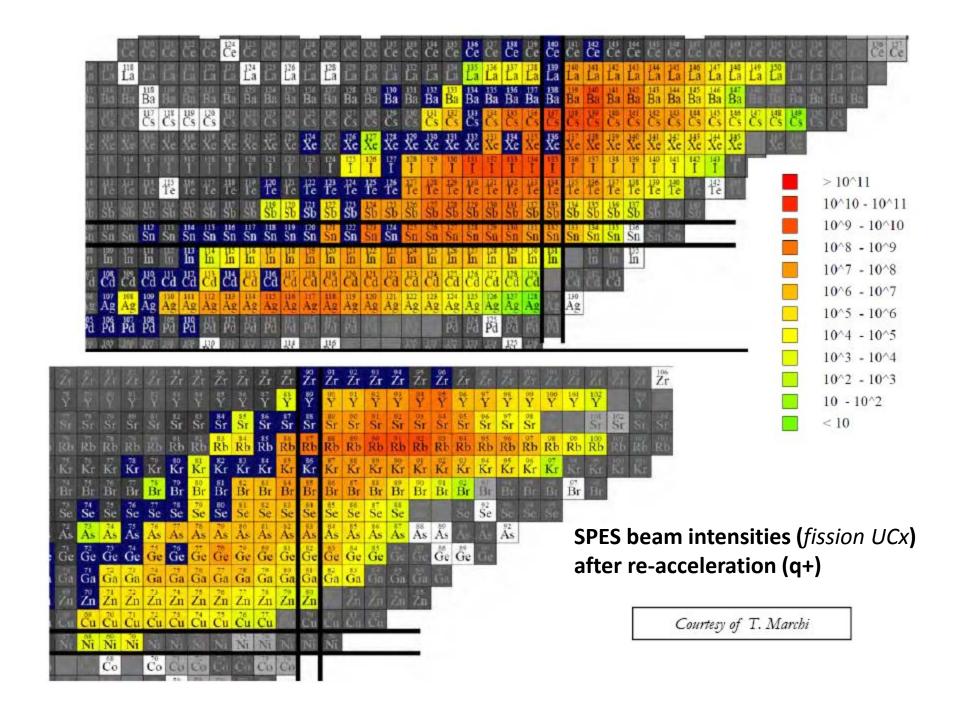
Ion sources and Laser laboratory

- Development of ion sources able to ionize the full set of produced isotopes. Pointing to SELECTIVE ionization.
- Surface ionization and plasma ion source was developed and are under laboratory test and characterization.
- A new laser laboratory was settled at LNL to develop the resonant laser ionization ion source. Work in collaboration with Pavia University, participation to ENSAR2 JRA.



SPES: Target materials & **Ionization Methods**

Main fission (p-> ²³⁸U) fragments


Proton induced reactions

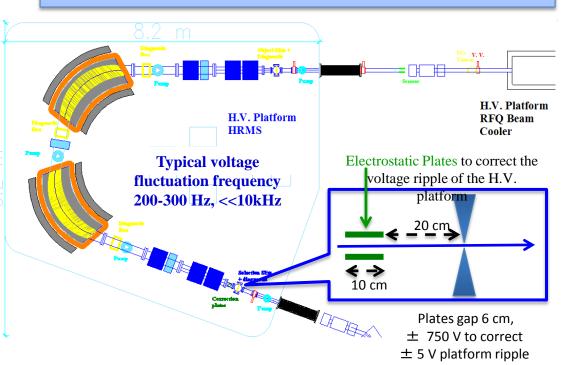
Other target materials

1 H]			B ₄ C													2 He
3 Li	4 Be		Al ₂ O ₃ LaCx								5 6 7 8 9 B C N O F					10 Ne	
11 Na	12 Mg		Z	rC		TaC						13 AI	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Min	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 R∪	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 1	54 Xe
55 Cs	56 Ba		72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 P1	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 A†	86 Rn
87 Fr	88 Ra			intha	nida												
			La	ппа	niue	5											1
		57 La	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Te	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu	
		89 Ac	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr	

7 Be* 10 Be* 21 Na* 22 Na* 22 Mg* 23 Mg* 24 AI* 25 AI* 26 AI* 29 P*

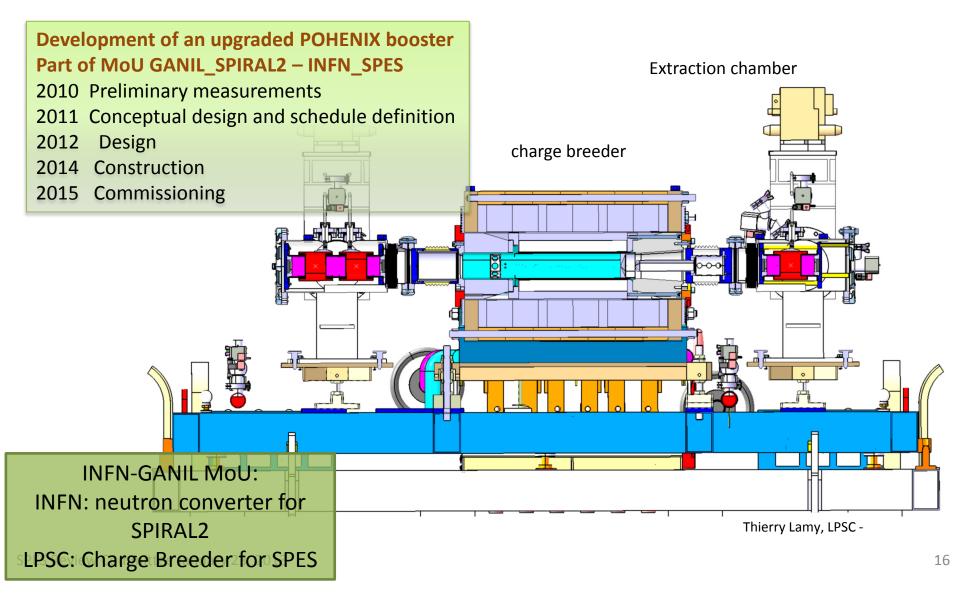

The target materials we are developing for the SPES ISOL facility, will allow to produce a variety of beams both in the neutron-rich and the neutron-poor area

HRMS physics design 🔬

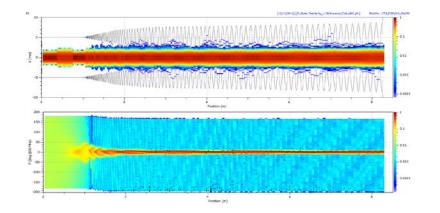


SPES RFQ Beam Cooler parameters

Mass Range	5-200 <u>amu</u>
Transverse Emittance Injected beam	30 π mm mrad @ 40 keV
Emittance Reduction factor	10 (max)
Buffer Gas	He @ 273 K
Beam Intensity	50-100 nA → x10 ¹¹ pps
Energy spread	< 5 <u>eV</u>
RF Voltage range	0.5 – 2.5 kV (1 kV at q=0.25)
RF Frequency range	1 -30 MHz (3.5 – 15 MHz at q=0.25)
RFQ gap radius (ro)	4 mm
RFQ Length (total)	700 mm
Pressure Buffer Gas (He) range	0.1 – 2.5 Pa
Ion energy during the cooling	100 -200 eV

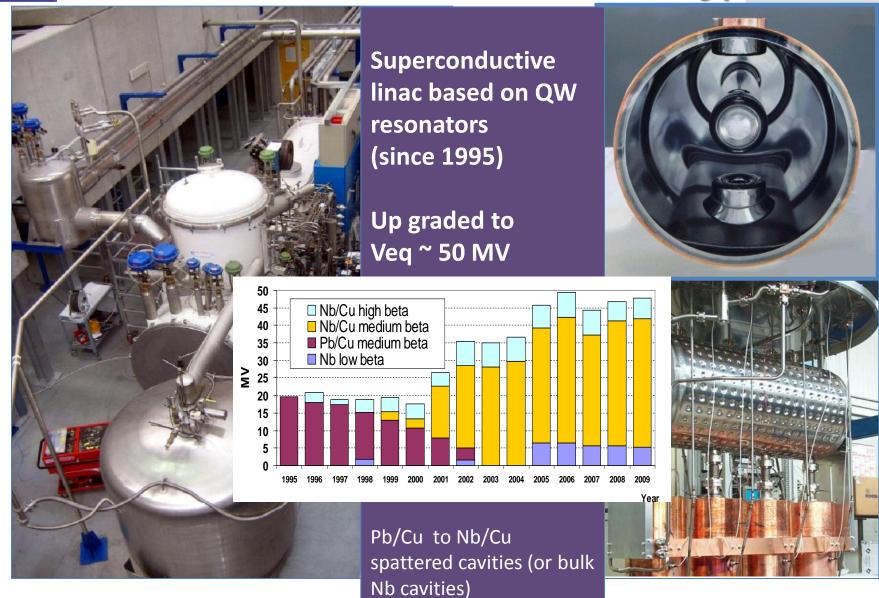

A scaled-up version of the separator designed by Cary Davids for CARIBU, Argonne 3° order effects analysis (LNS-LNL) Input parameters: Energy= 260 KeV $\Delta \theta$ =4 mrad ΔE = ± 1.3 eV Emittance=3 π mm mrad Mass resolution: 1/40000 (eng. design: 1/25000)

ECR Charge Breeder


NEW RFQ injector for ALPI

- Energy 5.7 -> 727.3 [β=0.0395] KeV/A (A/q=7)
- Beam transmission >95%, low RMS longitudinal emittance at output: 0.15 ns*keV/u.
- Length 695 cm (7 modules) intervane voltage 63.8 85.8 kV
- RF power (four vanes) 100 kW.
- Mechanical design and realization, taking advantage of IFMIF experience (LNL, INFN_Pd, Bo, To).

Mechanical layout of the RFQ tank module of about 1 meter.



Parameter (units)	Design Value
Operational mode	CW
Frequency (MHz)	80.00
Injection Energy (keV/u)	5.7 (β=0.0035)
Output Energy (keV/u)	727 (β=0.0395)
Accelerated beam current (µA)	100
Charge states of accelerated ions (Q/A)	7 – 3
Inter-vane voltage V (kV, A/q=7)	63.8 - 85.84
Vane length L (m)	6.95
Average radius R ₀ (mm)	5.33 – 6.788
Synchronous phase (deg.)	-90 – -20
Focusing strength B	4.7 – 4
Peak field (Kilpatrick units)	1.74
Transmission (%)	95
Output Long. RMS emittance (mmmrad) / (keVns/u)/(keVdeg/u)	0.055 / 0.15 / 4.35

The ALPI Superconductive-Linac

Energy from SPES Post-Accelerator as function of A/q

Preliminary results from alpi performances with 2 cavities as margin, Low Beta=5 MV/m, Medium Beta=4.3 MV/m, High Beta=5.5 MV/m

SPES CYCLOTRON

load work

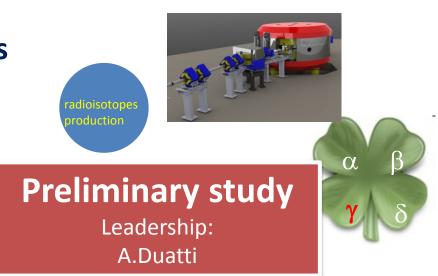
Radioisotope production area Neutron area ΞŒ Y SPECTROMETER EAM COOLER cyclotron manda or

2 weeks per shift Beam propagation 2 de

Beam preparation 2 days Beam on target 12 days

Beam on target \rightarrow 280 hours per shift

Each bunker will cool down for 14 days after target irradiation.

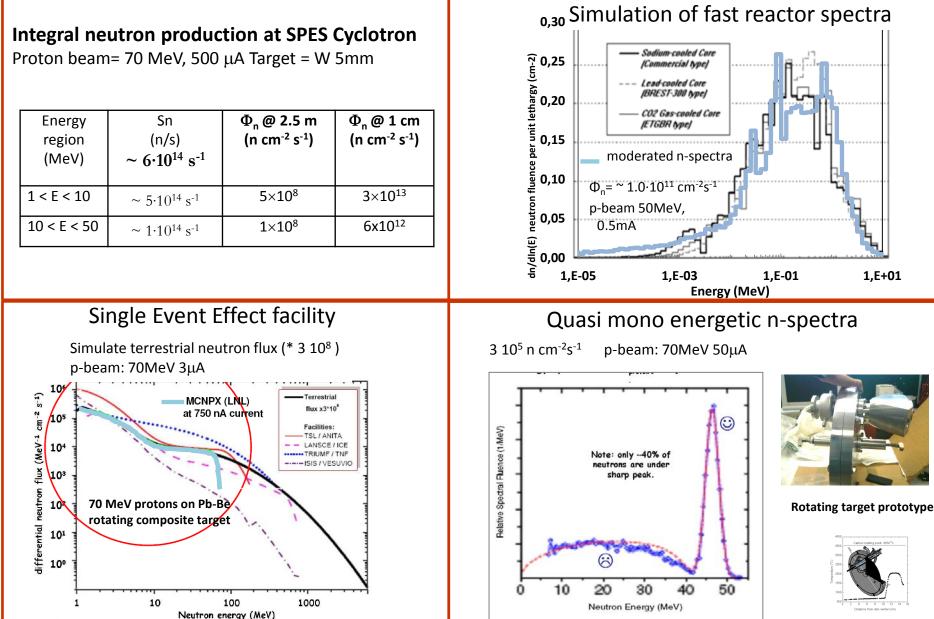

7 shifts for cyclotron maintenance

Expected Beam on target: 10600 hours per year

Over 5000 hours/year of proton beam available for applications

LARAMED project production of radionuclides

- Among applications, production of radionuclides of medical interest is particularly interesting.
- Aim is the production of
 - I. innovative radiopharmaceuticals (e.g. Sr-82, Cu-64, Cu-67)
 - II. traditional radiopharmaceutical with new approaches (Tc-99m)
- The model is the ARRONAX center in France at Nantes, where a similar cyclotron is in operation.
- By exploting the cyclotron and its building, a center for medical radioisotopes can be built, with a cost of 10-30 Meuros depending on the number of production lines.
- Partnership with industry is under discussion



Production of radioisotopes of medical interest at different proton energies

30 MeV		45	MeV	70 MeV			
Isotope	Half-Life	Isotope	Half-Life	Isotope	Half-Life		
Cu-64	12.7 h	Zn-62	9.2 h	Fe-52	8.3 h		
Y-86	14.6 h	Co-55	17.5 h	Xe-122	20.1 h		
Cu-67 *	2.58 d	Hg- 195m	41.6 h	Mg-28	21 h		
Sc-47	3.35 d	Bi-206	6.2 d	Ba-128	2.43 d		
I-124	4.2 d			Cu-67 *	2.58 d		
Tc-96	4.28 d			Ru-97	2.79 d		
Xe-127	36.4 d			Sn- 117m	13.6 d		
Y-88	106.7 d			Sr-82	25.4 d		
Ge-268	271 d						

SPES Schedule January 2014 🎆

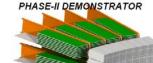
	2012	2013	2014	2015	2016	2017
Authorization to operate and safety	UCx 5μΑ	Full	UCx auth	orization		
ISOL Target-Ion Sources development						
ISOL Targets construction and installation						
Building Construction	Executive project	raw building construction				
Cyclotron Construction & commissioning			+			
RFQ development and Alpi up-grade						
Design of RIB transport & selection						
(HRMS, Charge Breeder, Beam Cooler)						
Construction and Installation of RIBs						
transfer lines , CB and spectrometers						
Complete commissioning and first exotic						
beam						

Second SPES International Workshop

26-28 May 2014 INFN Laboratori Nazionali di Legnaro

In definizione Programma preliminare . Ancora ufficiosamente aperta la fase di raccolta delle LoI. Oltre 60 interventi programmati

n. 10 Status Reports n. 36 LOIs

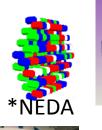

From:

Spagna, Francia, Norvegia, Svezia, Germania, Belgio, Italia, Polonia, Bulgaria, Russia, USA, etc

Covering:

Beta decay, nuclear moments, Coulex, Transfer, nulti-nucleon transfer, Fusion- evaporation, etc.

192 telescopes



*Fazia

SPES2010 Workshop (LNL- November 15th-17th, 2010) 24 Lol's for reaccelerated exotic beams

CHIMER

Europe/Rome 🔻 🛛 English 👻 🛛 Login

SPES: Work in progress

