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Motivation

Heavy-ion collision experiments leads to production of
quark-gluon plasma.
The main goal of this experiment to explore QCD phase
diagram,phase transitions and investigate physical
properties, e.g. viscosity, EoS, thermal conductivity, etc.
of QGP.
To extract the viscosity of QGP people fit the measured
elliptic flow from experiment with viscous hydrodynamics
simulation.
In our work we found that magnetic field can change the
elliptic flow.
Motivation of the work is to show effects of magnetic field
on elliptic flow.
This is important for determination of viscosity of QGP. It
also provides a way to determine initial stage magnetic
field.
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Production of Magnetic Field in HIC

No magnetic field in the case of central collisions.
Fluctuations??
Magnetic field generates in the non-central collisions along
the y-axis at the center.
Magnitude of magnetic field at the center can be ∼ 1015

Tesla (∼ 0.1 GeV2)
(104 times stronger than mag. field of a magnetar).
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Production of Magnetic Field in HIC
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Survival of Magnetic Field due to conducting plasma

Medium forms at thermalization time τ0 < 1 fm (uncertain)
in the presence of time varying magnetic field.
Quick thermalization and large conductivity of the plasma
may protect magnetic field (of high magnitude) from decay.

Ref.: Kirill Tuchin, Phys. Rev. C, 88, 024911 (2013).

  

Figure: Time evolution of the magnetic field created by a point unit
charge at the center in vacuum (blue) and in plasma of conductivity
σ=5.8 MeV (red).
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Fluid which we are considering

In heavy-ion collisions there is spatial temperature profile
vary from center (200-300 MeV) to zero in vacuum(outer).
Conductivity also vary with the temperature. From lattice
calculation conductivity of QGP is given by,

σQGP = 0.04T (1)

For simplicity we are considering ideal MHD fluid which
has infinite conductivity everywhere.
So we have electrically neutral, infinitely conducting fluid in
the magnetic field.
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Ideal Relativistic Magneto-Hydrodynamics

Dynamics of ideal relativistic magnetized fluid is governed
by the equations,

Ideal RMHD Equations
Energy-momentum conservation equation

∂α

(
(ε+ pg + |b|2)uαuβ − bαbβ + (pg +

|b|2

2
)ηαβ

)
= 0 (2)

Maxwell’s equations

∂α(uαbβ − uβbα) = 0 (3)
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Ideal Relativistic Magneto-Hydrodynamics

EoS pg = ε/3.
Metric: ηαβ = diag(−1,1,1,1).
Fluid four velocity: uα = γ(1, ~v) ; uαuα = −1.
Four-vector bα is related with the magnetic field and fluid
velocity by,

bα = γ

(
~v .~B,

~B
γ2 + ~v(~v .~B)

)
(4)

uαbα = 0

|b|2= bαbα =
|~B|2

γ2 + (~v .~B)2 (5)

Total pressure of the plasma is sum of thermal pressure pg

and magnetic pressure |b|
2

2 ; p = pg + |b|2
2 .

p = pg +
|~B|2

γ2 + (~v .~B)2 (6)
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Algorithm for solving RMHD Equations

For computational purpose, the RMHD equations can be
conveniently put in the following conservational form,1

∂U
∂t

+
∑

K

∂F k (U)

∂xk = 0, (7)

where vector of conservative variables,
U = (mx ,my ,mz ,Bx ,By ,Bz ,E) .
Three components of momentum,

mk = (
4
3
εγ2 + B2)vk − (~v .~B)Bk . (8)

The total energy density,

E =
4
3
εγ2 − pg +

~B2

2
+

v2B2 − (~v .~B)2

2
(9)

1A. Mignone and G. Bodo, Mon. Not. R. Astron. Soc. 368,
1040 (2006).
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Algorithm for solving RMHD Equations

and F k are the fluxes along the xk = (x , y , z) directions,

F x (U) =



mxvx − Bx
bx
γ + p

mxvx − Bx
by
γ

mxvx − Bx
bz
γ

0
Byvx − Bxvy
Bzvx − Bxvz

mx


F y ,z(U) are similarly defined by appropriate change of
indices.
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Algorithm for solving RMHD Equations

U evolve with time following the conservation equation.
Independent variables, V = (~v ,pg , ~B), are required when
computing the fluxes.
To recover V from U, define : W = 4

3εγ
2 and S = ~m.~B,

E = W − pg +

(
1− 1

2γ2

)
|~B|2− S2

2W 2 (10)

|~m|2= (W + |~B|2)2
(

1− 1
γ2

)
− S2

W 2 (2W + |~B|2) (11)

In the beginning of each time step, ~m, ~B and S are known.
γ in terms of W (only unknown) is,

γ =

(
1− S2(2W + |~B|2) + |~m|2W 2

(W + |~B|2)2W 2

)− 1
2

(12)
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Algorithm for solving RMHD Equations

From EoS,

pg(W ) =
W
4γ2 (13)

Unknown quantity W can be found out from,

f (W ) = W − pg +

(
1− 1

2γ2

)
|~B|2− S2

2W 2 − E = 0 (14)

This equation is solved using Newton-Raphson method to
get W.
Once W has been computed, one can get back γ and pg .
Velocities can be found by expression of mk ,

vk =
1

(W + |~B|2)

(
mk +

S
W

Bk

)
(15)
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Simulation details

We have performed (3+1)-d simulation on lattice
200× 200× 200 with lattice sapcing of 0.1 fm.
We perform low energy collisions with

√
s = 20 GeV and

with Cu nuclei.
Because of computational limitations we have taken radius
of copper as 4.0 fm with skin 0.4 fm.
Optical Glauber and Glauber Monte-Carlo like initial
energy density are taken into account for the simulations.
We have taken EOS of ideal relativistic gas pg = ρ/3 and
zero chemical potential for simplicity.
Initial central temperature set to be ∼ 180 MeV.
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Simulation details

Magnetic field produced by two oppositely moving, uniform
charged spheres with appropriate Lorentz γ factor is taken
as the initial magnetic field profile at time τ0 after the
collision.
We use Leap-Frog 2nd order method to solve ideal RMHD
equations numerically in (3+1)D, with system size 20 fm.
Initial fluid velocity in the transverse plane taken to be zero.
We have taken longitudinal velocity profile ∝ z with
suitable maximum velocity at the edge of the plasma.
We have done our calculation in central rapidity bin.
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Simulation details

We have Fourier analysed azimuthal distribution function,

r(φ) =
δP(φ)

P
=

P(φ)− P
P

=
∑

n

(
an cos(nφ)+bn sin(nφ)

)
(16)

where,

an =
1
π

∫ 2π

0
r(φ) cos(nφ) dφ,bn =

1
π

∫ 2π

0
r(φ) sin(nφ) dφ

(17)
Flow coefficients,

v rms
n =

√
a2

n + b2
n (18)

With fluctuations, elliptic flow = v rms
2

Without fluctuations, elliptic flow = a2
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Enhancement of elliptic flow due to magnetic field

In MHD different kinds of wave motion are possible due to
transverse deformation of magnetic lines.
When magnetic field lines (frozen in the plasma) expand
perpendicular to the direction of the manetic field, it cost
energy, and feel tension, and try to become straight again.
By this EoS becomes stiffer perpendicular to magnetic field
cause larger sound speed.
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Enhancement of elliptic flow due to magnetic field

When we write MHD equations for the perturbations (from
equilibrium value) of energy density, velocity and magnetic
field , MHD equations provide three sound velocities for
plane wave solution with wave vector ~k ,

1 When ~k⊥~B , MHD equations gives magnetosonic wave of
velocity,

c2
⊥ = c2

s + v2
A (19)

2 When ~k‖~B , MHD equations gives magnetosonic wave of
velocity,

c2
‖ = c2

s (20)

3 When ~k‖~B⊥~v , then transverse wave called Alfvén wave
moves with velocity v2

A.
where,

cs =

(
∂p
∂ε

)1/2

, vA ∼

(
B2

0
8πε

)1/2

(21)
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Enhancement of elliptic flow due to magnetic field

The solution of hydrodynamics equations in small velocity
approximation gives initial fluid velocity for gaussian energy
density profile,2

vx =
c2

s x
σ2

x
t , (22)

vy =
c2

s y
σ2

y
t (23)

σx and σy are the the widths of the transverse distribution.

2J-Y Ollitrault, Eur. J. Phys. 29 (2008) 275-302.
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Enhancement of elliptic flow due to magnetic field

Ideal Relativistic Magnetohydrodynamics Simulation result :
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Enhancement of elliptic flow due to magnetic field

Ideal Relativistic Magnetohydrodynamics Simulation result :
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Low impact parameter magnetic field well inside the plasma
region, hence argument of sound speed holds true.
High impact parameter extension of magnetic field much
outside the plasma region. Lenz’s law opposes the expansion
of the conducting fluid in x-direction.
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Enhancement of magnetic field due to fluctuation
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Deformed Nuclei collisions
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Deformed Nuclei collisions
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Dynamo Like effects in Heavy-ion collisions

Superfluid vortices may be possible at FAIR and NICA3

Symmetry breaking pattern from QGP to CFL phase,
SU(3)c × SU(3)L × SU(3)R × U(1)B → SU(3)c+L+R × Z2.
This allows Superfluidity and superfluid vortex.
Vortices (turbulence) are known to strongly increase
magnetic field, the so-called Dynamo effect.
We studied evolution of magnetic field in the presence of
vortex configuration.
We see strong increase in the magnetic field in the
presence of vortices.
Dynamo effect for ideal MHD may be possible in strong
flux-folding regime as expected in the presence of
vortices.4

3A. Das, S.S. Dave, S. De, and A.M. Srivastava, arXiv: 1607.00480.
4S. I. Vainshtein & Ya. B. Zel’dovich, 1972 Sov. Phys. Usp. 15 159.



Motivation Magnetic Field in Heavy-ion Collisions Relativistic Magneto-Hydrodynamics Equations Algorithm and Simulation details Results Conclusion

Dynamo Like effects in Heavy-ion collisions
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Conclusion

Magnetic field can change ellipic flow with dependence on
the impact parameter of the collisions. It can be very
important in the study of viscosity of QGP and provides
signal of presence of magnetic field.

We found that magnetic field can get enhanced in the
presence of fluctuations.

Deformed nuclei can give very interesting possibility in the
magnitude and profile of magnetic field like qudrupolar field
configuration which can give beam focussing.

Dynamo like effects are possible in low energy heavy-ion
collisions in the presence of superfluid phase (Superfluid
vortex) in ideal MHD limit.
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Thank You !!



Appendix

εp Plot

εp =
T xx

pl − T yy
pl

T xx
pl + T yy

pl
=

v2
x − v2

y

v2
x + v2

y + 1
2γ2

(24)
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Appendix

Central magnetic field vs impact parameter

In heavy-ion collisions initial magnetic field decreases with
time very fast in vacuum.
It is not very clear at what time we will have thermalized
plasma in which magnetic lines get frozen.
We have calculated initial magnetic field profile at two
different times and show results for both the field values.
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Survival of Magnetic Field due to conducting plasma

Magnetic field genrated by a moving charge particle in
vacuum, with velocity v along z-axis is given by,

~H =
eγ
4π

v |~b − ~b′|φ̂
(|~b − ~b′|+γ2(vt − z)2)

3
2

(26)

where ~b is an observation point and ~b′ is charge point.
Magnitude of Magnetic field (∝ γ) is very high at time t = 0.
But it decays very quickly at t 6= 0, because of presence of
γ2 in the denominator also.
So in vacuum magnetic field decays very quickly.
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Enhancement of elliptic flow due to magnetic field

Since flow velocity is directly proportion to square of sound
speed, asymmetry in the sound velocity can cause
asymmetry in the flow.5

So elliptic flow can arise becasue of magnetic field even in
the azimuthally symmetric plasma region.
Other calculation support this result.6

5R.K. Mohapatra, P.S. Saumia, Ajit M Srivastava, Mod.Phys.Lett. A,
26, 2477-2486 (2011).

6Kirill Tuchin, J. Phys. G: Nucl. Part. Phys. 39 025010 (2012).
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Deformed Nuclei collisions
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