

Lorentz Invariance Violation: The latest Fermi results and the GRB/AGN complementarity

J. Bolmont LPNHE - Université Pierre & Marie Curie

Content

Introduction

- The formalism in use
- Propagation vs. intrinsic lags
- The latest Fermi results
 - The three methods in use
 - Acounting for intrinsic lags
 - Results
- Conclusions and prospects
 - GRB/AGN complementarity
 - Future developments

Introduction

The formalism in use

- QG related effects should appear at $E \sim O(E_P = 1.2 \times 10^{19} \text{ GeV})$
- These effects include deformation or violation of Lorentz Invarience
- For E << E_P, a series expansion is expected to be possible, giving:

$$c'=c\left(1\pm\xirac{E}{E_{
m P}}\pm\zeta^2rac{E^2}{E_{
m P}^2}
ight)~~$$
 at the 2nd order

- Depending on their energies, photons travel at different speeds
- Tiny modifications can add-up over very large propagation distances and lead to measurable delays
 → use of variable and distant sources (GRBs, AGN flares)
- We consider two photons with energie E₁ and E₂ emitted at the same time and detected at times t₁ and t₂.

• At the first order :
$$\frac{\Delta t}{\Delta E} \approx \frac{\xi}{E_{\rm P}H_0} \int_0^z dz' \frac{(1+z')}{\sqrt{\Omega_m (1+z')^3 + \Omega_A}}$$

• At the second order:
$$\frac{\Delta t}{\Delta E^2} \approx \frac{3\zeta}{2E_{\rm P}^2 H_0} \int_0^z dz' \frac{(1+z')^2}{\sqrt{\Omega_m (1+z')^3 + \Omega_\Lambda}}$$

 $\Delta t = t_1 - t_2$ $\Delta E = E_1 - E_2$ $\Delta E^2 = E_1^2 - E_2^2$ $\Omega_{\Lambda} = 0.7$ $\Omega_m = 0.3$

The formalism in use

- QG related effects should appear at $E \sim O(E_P = 1.2 \times 10^{19} \text{ GeV})$
- These effects include deformation or violation of Lorentz Invarience
- For E << E_P, a series expansion is expected to be possible, giving:

$$c'=c\left(1\pm\xirac{E}{E_{
m P}}\pm\zeta^2rac{E^2}{E_{
m P}^2}
ight)~~$$
 at the 2nd order

- Depending on their energies, photons travel at different speeds
- Tiny modifications can add-up over very large propagation distances and lead to measurable delays
 → use of variable and distant sources (GRBs, AGN flares)
- We consider two photons with energie E₁ and E₂ emitted at the same time and detected at times t₁ and t₂.

At the second order:

$$\frac{\Delta t}{\Delta E} \approx \frac{\zeta}{E_{\rm P}H_0} \int_0^z dz' \frac{(1+z')}{\sqrt{\Omega_m (1+z')^3 + \Omega_\Lambda}} \quad \mathbf{k}$$
$$\frac{\Delta t}{\Delta E^2} \approx \frac{3\zeta}{2E_{\rm P}^2 H_0} \int_0^z dz' \frac{(1+z')^2}{\sqrt{\Omega_m (1+z')^3 + \Omega_\Lambda}}$$

 $\Delta t = t_1 - t_2$ $\Delta E = E_1 - E_2$ $\Delta E^2 = E_1^2 - E_2^2$ $\Omega_{\Lambda} = 0.7$ $\Omega_m = 0.3$

QG Effects vs. Source Effects

- BUT : Emission processes or the structure of the source can introduce a time lag too !
- It is necessary to separate the two effects \rightarrow population studies

www.nasa.gov/fermi

Space

Telescope

The latest Fermi results

«Constraints on Lorentz Invariance Violation with Fermi-LAT observations of GRBs»

- V.Vasileiou, F. Piron, J. Cohen-Tanugi (LUPM Montpellier)
- A. Jacholkowska, JB, C. Couturier (LPNHE Paris)
- J. Granot (Open Univ. of Israel)
- F. Stecker (NASA GSFC)
- 🗧 F. Longo (INFN Trieste)

Accepted for publication by PRD arXiv:1305.1553

Overview

- Use of LAT data
 - 20 MeV 300 GeV
 - High effective area
 - Low background
 - Good energy recontruction accuracy (~10 % at 10 GeV)
- 4 GRBs are analyzed
 - 090510, 090902B, 090926A, 080916C
 - Known redshifts (from 0.9 up to 4.3)
 - Variability time scale down to tens of ms
 - Maximum energy detected: 31 GeV
 - ~100 events/GRB above 100 MeV
- - Complementarity in sensitivity
 - Reliability of the results

RICAP'13 - Roma - 22-24 May 2013

Method #1: PairView

- Calculate the spectral lags l_{i,j} between all pairs of photons i and j in a dataset
- The distribution of l_{i,j} values peaks approximatly at the true value of τ.
 - ➡ Histogram
- The peak position is determined using a Kernel Density Estimate of the distribution.
 - Smooth curve
- The KDE peak gives the estimate for τ .
 - Dashed line

 $l_{i,i}$

 t_i

 E^n_{\cdot}

Method #2: Sharpness Maximization Technique

- LIV spectral dispersion smears light-curve structure and decrease sharpness
- Apply an inverse dispersion to the data to maximize the sharpness
 - Smooth curve
- The sharpness peak gives the estimate for τ.

The sharpness S is defined by the formula on the right, where t'_i is the modified detection time of the ith photon and ρ is a parameter selected using simulations

$$\mathcal{S}(\tau_n) = \sum_{i=1}^{N-\rho} \log\left(\frac{\rho}{t'_{i+\rho} - t'_i}\right)$$

Method #3: likelihood fit

Study of the correlation between the arrival time and the energy of the photons

- Method used by Lamon et al. for INTEGRAL, by Martinez and Errando for MAGIC and by Abramowski et al. for H.E.S.S.
- We use the following form for the probability density function:

$$P(t,E) = N \int_0^\infty A(E_S) \, \Gamma(E_S) \, G(E - E_S, \sigma(E_S)) \, F_S(t - \tau E_S) \, dE_S$$

where $\Gamma(E_S)$ is the emitted spectrum, $G(E-E_S, \sigma(E_S))$ is the smearing function in energy, $A(E_S)$ is the acceptance of the detector and F_S is the emission time distribution at the source

- Here we assume linear and quadratic effects with a time-lag parameter τ expressed in s/GeV (s/GeV²)
- The likelihood function is then given by the product

$$L = \prod_{i} P_i(t, E)$$

over all photons in the studied sample

The maximum of the likelihood gives the time-lag τ_{I} (τ_{q}) in s/GeV (s/GeV²)

. Bolmont - LPNHE

RICAP'13 - Roma - 22-24 May 2013

Results

- Three methods → three points for each GRB
- Markers \rightarrow best estimate of τ
- 90% (99%) CL intervals

All confidence intervals are compatible with 0 dispersion

Constraints with the 3 methods are in good agreement

Accounting for Source-Intrinsic Effects

It is probable the measured lag has two components:

$\tau = \tau_{INT} + \tau_{LIV}$

where τ_{INT} is the intrinsic dispersion (due to the source) and τ_{LIV} is the LIV-induced dispersion

There is no good model available to predict the value of τ_{INT} .

A conservative modelization of τ_{INT} is used.

We assume the observations are dominated by source effects

- The PDF of τ_{INT} is chosen to match τ allowed by the data
 - Average of 0
 - Width matching the width of τ
- τ_{INT} is modelled to reproduce the allowed range of possibilities for τ
 - Worst case scenario
 - \rightarrow Less stringent limits on τ_{LIV}

Most conservative limits on T_{LIV}

95% CL lower limits on EQG

- Subluminal case, Left: linear LIV, Right: quadratic LIV
- Horizontal lines: previous published limits: Fermi (Abdo et al. 2009), H.E.S.S. (Abramowski et al. 2011)
- Bars: average constraint accounting for GRB-intrinsic effects
- Current limits improved by a factor 2-4

. Bolmont - LPNHE

RICAP'13 - Roma - 22-24 May 2013

95% CL lower limits on EQG

- Subluminal case, Left: linear LIV, Right: quadratic LIV
- Horizontal lines: previous published limits: Fermi (Abdo et al. 2009), H.E.S.S. (Abramowski et al. 2011)
- Bars: average constraint accounting for GRB-intrinsic effects
- Current limits improved by a factor 2-4

Over the Planck scale for 090510, even accounting for intrinsic effects

RICAP'13 - Roma - 22-24 May 2013

. Bolmont - LPNHE

Conclusions and prospects

Summary of the last Fermi results

Paper available: arXiv/1305.3463

- 30 pages
- Detailed description of procedures, systematics, verification tests
- Accepted by PRD
- 4 bright GRBs analysed
- 3 different methods used

$$E_{QG,1} > 7.6 E_{Pl}$$

 $E_{QG,2} > 1.3 \times 10^{11} GeV$

- The most stringent and robust constraints for linear and quadratic LIV so far
- Linear LIV has reached the Planck scale boundary
- Quadratic LIV still need to be improved

GRB/AGN Complementarity

- Comparison between Vasileiou et al. results (ML) and previous results obtained with AGNs
- AGNs → high statistics with ground-based instruments BUT low redshift (EBL) and low statistics with satellites
- GRBs → high statistics with space instruments BUT lower energies and no detection from the ground

Low energies, large distance

What's next ?

CTA

- Start around 2018
- Large energy range coverage (~10 GeV 100 TeV) with different sizes of telescopes
 - Overlap with satellites
- Sensitivity increased by a factor 10
 - More sources discovered
- Dedicated pointing strategy for transient source discoveries
 - More sources discovered that can be used for LIV searches
- Linear LIV has reached the physicaly meaningful bound of the Planck scale
- In the future, the effort should be put on constraining the quadratic LIV !
 - Ground-based detectors and satellites will need to work together to make the energy range as large as possible (GeV TeV)
 - Necessary work on source effects

Grazie mille !

