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The atomistic route: elementary particles

Leukippos, 5" century B.C.

Demokritos, circa 460 - 370 B.C.

1896: J J Thomson — the electron
1917-19: E Rutherford — the proton
1932: J Chadwick — the neutron

modern particle physics: the Standard Model
(1950-2000) ... + Higgs (2012)



Different phases of matter and many body physics

1937 L Landau, 1950 V L Ginzburg and L Landau:
classification of phases and phase transitions based on local order
parameters and symmetries of the system

» solid-liquid phases
» ferro- and antiferro-magnetism

» superconductivity and
superfluidity



New discoveries and a shift of paradigm

the fractional quantum Hall effect
(1982 D Tsui and H Stérmer)

Ry h/ed

a smorgasbord of new (gapped) |
phases but no symmetries to epat ||
explain them!
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New concepts had to be developed to understand the new phases:

» the order is not local! m=(o7) = T = ([l;e, 07)

» no broken symmetry, yet there are (continuous) phase
transition — new symmetries emerge in the new phases

> excitations in the new phases take on unprecedented
properties: fractional charge and fractional statistics (anyons)



Frustrated magnetism: Gate to new exciting physics

> emergent symmetries
(e.g., Coulomb phases)

> new phases of matter
(e.g., spin liquids and
topological order)

» novel (effective) d.o.f.
(e.g., anyons, monopoles)

A classic(al) example : emergent monopoles in spin ice




QOutline

> brief introduction to frustrated magnetism

> spin ice:

e emergent gauge symmetry in a short-ranged toy model

e dipolar spin ice and magnetic monopole excitations

» effective Coulomb liquid description is key to understand both
thermodynamic and dynamic properties

» conclusions and outlook



Conventional vs frustrated Ising models

» Consider classical Ising spins, pointing either
up or down: o; = +1

» Uniform exchange interaction (strength J):

— m— -
— -
- == m
— m— -

H=J Z gio;j
(i)
» J < 0: ferromagnetic — spins align
» J > 0: antiferromagnetic — spins antialign
» ... but only where possible: ‘frustration’
= What happens instead? ?

degeneracy: a large (oft-extensive) number of
lowest energy states



Nearest-neighbour spin ice Anderson 1956

a toy model: the classical nearest-neighbour Ising antiferromagnet
on the pyrochlore lattice:

i=1

4 2
H = JZU;UJ- ~ % (Za;)
(if)

> energy minimised when ). 0; = 0 = 2in-2out ice rules

» degeneracy: for a single tetrahedron <g) = 6 ground states



Zero-point entropy on the pyrochlore lattice

» Pyrochlore lattice = corner-sharing
tetrahedra

Hpyro = %Z (Z a,->2

tet i€tet

» Pauling estimate of ground state
entropy So = In Ng:

» microstates vs. constraints;
N spins, N /2 tetrahedra



Mapping from ice to spin ice

> in ice, water molecules retain their identity

» hydrogen near oxygen <> spin pointing in
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"two-in, two-out”
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Is spin ice ordered or not?

No order as in ferromagnet

> extensive degeneracy

Not disordered like a paramagnet

» ice rules = ‘conservation law’

Consider magnetic moments //; as a (lattice) ‘flux’ vector field

> lcerules V- =0 = f=VxA
» Simplest assumption: free field
S=(K/2) [|V x AP dr?

> Local constr. = emergent gauge struct.

3cos? -1
3

— algebraic spin corr. ~ =

— structure factor (saddle point)

(hh,0)



Elementary excitations |

Ising spins:

— excitation = spin reversal
— two defective tetrahedra




Elementary excitations |

Ising spins:

— excitation = spin reversal
— two defective tetrahedra




Elementary excitations |

Ising spins:

— excitation = spin reversal
— two defective tetrahedra

they can be separated at no energy cost!




Elementary excitations |

Ising spins:

— excitation = spin reversal
— two defective tetrahedra

they can be separated at no energy cost!




Spin ice vs. conventional ferromagnets

1D: domain walls are ‘point-

like’ and deconfined
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like’ and deconfined

> 2D: defects are confined

(extended domains
boundary energy cost)

with
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Spin ice vs. conventional ferromagnets

1D: domain walls are ‘point-

like’ and deconfined

> 2D: defects are confined GOddadeSSdadadnd
= : : . [ i e
(extended domains with = =p =P G = = ——p —p
boundary energy cost =P P s - e e =P =P

u Yy gy ) — > mm m= m= = m= = ==

for instance, intrinsically different magnetisation processes (at low
energies):

domain growth and coarsening <+ point-like defect motion

and similarly for specific heat, thermal transport, etc.



Spin Ice (DyQTi207 and HOQTi207) Harris + Bramwell 1997

» local [111] crystal field ~ 200 K
= Ising spins

» large spins (15/2 and 8)
= classical limit (small exchange ~ 1 K)

» large magnetic moment ~ 10 ug
= long range dipolar interactions

[ credit: STFC |

Single crystals




Frustration leads to (classical) degeneracy

dipolar interactions minimised by
2-in, 2-out ice rules = local constraint

Gingras et al. , Shastry et al. 1999-2001

1.0+ oo ® o ® s0000e
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z;m» Dy,Ti,0, A six ground states per
g . . tetrahedron:
T0| o Ramirez et al 1990\ B b U 6\ "2
oz Paulings loo Entropy S, 3 Y’ E N s = 2N <>
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Temperature (K) S = N |n §
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extensive degeneracy




Elementary excitations: emergent magnetic monopoles

E(r) = Am r

—.
magnetic Coulomb ~ \\\§ U /Y )
interaction { 1 7
.

—
» deconfined monopoles \1 \6§ \N

» charge gm = £2|/i|/a
.
S mmm—N > s% «[

[monopoles in H, not B] { Pl

CC, Moessner, Sondhi, Nature 451, 42 (2008) N ’



Magnetic monopoles? V- M vs. V-H

no violation of V- B = 0 7
- ' ‘;&
» M is confined to the spins \

> where a ‘Dirac string’

ends:V-/Vl;éO / }

= defective tetrahedra (V - M # 0) are sources and sinks of
the magnetic field H: V-H=-V-M

Unique setting!
(i) rare instance of fractionalisation in 3D
(ii) magnetic charges and network of ‘Dirac strings’ in 3D!

(iii) sources and sinks of magnetic field = the monopoles couple
to external probes (e.g., muons, SQUIDs, NMR-active nuclei)



Spin ice as a Coulomb liquid CMS '08-12

5 A
s
)

+ Coulomb interactions

+ entropic interactions

+ kinematic constraints

NEREN




Consistent (and key!) to understand thermodynamic properties

low monopole
density

(chemical potential)

magnetic s (Tesia)

.
experiment (Aoki et al)
high monopole
it density
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mag. corr.: pinch-points(*)
liquid-gas phase diagram CMS 2008 Fennel et al 2009, Kadowaki et al 2009

(*) note: both ice rules and long-range dipolar correlations contribute
to pinch pOintS! Sen, Moessner, Sondhi 2012
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Monopoles act as facilitators of spin dynamics

g;‘r actiyated
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Thermal quenches CC, Moessner, Sondhi 2010

sudden quench from a defect-rich phase — evolution reduces
number of defects: reaction-annihilation system A+ B — 0
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Ising model Vs. spin ice

» defects are pointlike in d = 3; density vanishes only for T — 0
» kinematic constraints due to the underlying spin configuration

< interplay of large- and lattice-scale physics



Field quenCheS Mostame, CC, Moessner, Sondhi, PNAS 2014

novel setting: reaction diffusion processes of emergent topological
defects + long Coulomb range interactions + kinematic constraints

» [111] saturated phase < fully packed monopoles (ionic crystal)

» field quench (& chem. pot.): peq exponentially small at low T

— I




Field quenches

Mostame, CC, Moessner, Sondhi, PNAS 2014

novel setting: reaction diffusion processes of emergent topological
defects + long Coulomb range interactions + kinematic constraints

» [111] saturated phase < fully packed monopoles (ionic crystal)

» field quench (& chem. pot.): peq exponentially small at low T
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Field quenCheS Mostame, CC, Moessner, Sondhi, PNAS 2014

» initial behaviour: direct
annihilation of

triangular spins cannot flip in sat. phase!

(] [ ) [ ) neighbouring pairs
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() ()




Field quenCheS Mostame, CC, Moessner, Sondhi, PNAS 2014

» initial behaviour: direct
annihilation of

triangular spins cannot flip in sat. phase!

(] [ ) [ ) neighbouring pairs
(] () o ()
() () ()

o ()

() ()




Field quenCheS Mostame, CC, Moessner, Sondhi, PNAS 2014

» initial behaviour: direct
annihilation of

triangular spins cannot flip in sat. phase!

(] [ ) [ ) neighbouring pairs
(] () o ()
() () ()
()
() ()
(] () () ()
() () (J ()




Field quenCheS Mostame, CC, Moessner, Sondhi, PNAS 2014

> initial behaviour: direct
annihilation of
neighbouring pairs
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Field quenCheS Mostame, CC, Moessner, Sondhi, PNAS 2014

> intermediate behaviour:
diffusion annihilation
processes with long-range
Coulomb interactions

» polarisation of triangular
@ spins < dimensional
reduction
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Field quenCheS Mostame, CC, Moessner, Sondhi, PNAS 2014

L=6, H=0.20 Tesla, > long time behaviour:
L e nitial decay ] activated dynamics
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Conclusions

» frustration in spin ice leads to a degenerate ground state with
emergent gauge symmetry and magnetic monopole excitations

> effective Coulomb liquid description is key to understanding
the low-temperature properties of spin ice beyond Monte
Carlo simulations (e.g., phase diagram, spec. heat, mag. suscept.)

> new exciting directions:
» rich playground to study out-of-equilibrium phenomena in
Coulomb interacting systems
» ‘electrolyte physics’ in regimes not accessible in conventional
eIectrontes (see Bramwell, Holdsworth, Moessner, et al.)
» tuneable magnetic disorder through Oxygen stoichiometry
(to appear in Nat. Mat.)
» quantum spin ice and classical <+ quantum crossover:
microscopic modelling of spin dynamics
(collaboration with B.Tomasello and J.Quintanilla)
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