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The atomistic route: elementary particles

Leukippos, 5th century B.C.

Demokritos, circa 460 - 370 B.C.

1896: J J Thomson ! the electron
1917-19: E Rutherford ! the proton
1932: J Chadwick ! the neutron
...
modern particle physics: the Standard Model
(1950-2000) ... + Higgs (2012)



Di↵erent phases of matter and many body physics

1937 L Landau, 1950 V L Ginzburg and L Landau:
classification of phases and phase transitions based on local order

parameters and symmetries of the system

I solid-liquid phases

I ferro- and antiferro-magnetism

I superconductivity and
superfluidity



New discoveries and a shift of paradigm

the fractional quantum Hall e↵ect
(1982 D Tsui and H Störmer)

a smorgasbord of new (gapped)
phases but no symmetries to
explain them!

New concepts had to be developed to understand the new phases:

I the order is not local! m = h�z
i i ! � = hQi2� �

z
i i

I no broken symmetry, yet there are (continuous) phase
transition ! new symmetries emerge in the new phases

I excitations in the new phases take on unprecedented
properties: fractional charge and fractional statistics (anyons)



Frustrated magnetism: Gate to new exciting physics

)

I emergent symmetries
(e.g., Coulomb phases)

I new phases of matter
(e.g., spin liquids and
topological order)

I novel (e↵ective) d.o.f.
(e.g., anyons, monopoles)

A classic(al) example : emergent monopoles in spin ice



Outline

I brief introduction to frustrated magnetism

I spin ice:

• emergent gauge symmetry in a short-ranged toy model

• dipolar spin ice and magnetic monopole excitations

I e↵ective Coulomb liquid description is key to understand both
thermodynamic and dynamic properties

I conclusions and outlook



Conventional vs frustrated Ising models

I Consider classical Ising spins, pointing either
up or down: �i = ±1

I Uniform exchange interaction (strength J):

H = J
X

hiji

�i�j

I J < 0: ferromagnetic – spins align
I J > 0: antiferromagnetic – spins antialign
I . . . but only where possible: ‘frustration’

=) What happens instead?

degeneracy: a large (oft-extensive) number of
lowest energy states



Nearest-neighbour spin ice Anderson 1956

a toy model: the classical nearest-neighbour Ising antiferromagnet
on the pyrochlore lattice:

H = J
X

hiji

�i�j ⇠ J

2

 
4X

i=1

�i

!2

I energy minimised when
P

i �i = 0 ) 2in-2out ice rules

I degeneracy: for a single tetrahedron
⇣
4
2

⌘
= 6 ground states



Zero-point entropy on the pyrochlore lattice

I Pyrochlore lattice = corner-sharing
tetrahedra

H
pyro

=
J
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X

tet
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I Pauling estimate of ground state
entropy S0 = lnN

gs

:
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I microstates vs. constraints;
N spins, N/2 tetrahedra



Mapping from ice to spin ice

I in ice, water molecules retain their identity

I hydrogen near oxygen $ spin pointing in

150.69.54.33/takagi/matsuhirasan/SpinIce.jpg



Is spin ice ordered or not?

No order as in ferromagnet

I extensive degeneracy

Not disordered like a paramagnet

I ice rules ) ‘conservation law’

Consider magnetic moments ~µi as a (lattice) ‘flux’ vector field

I Ice rules , r · ~µ = 0 ) ~µ = r⇥ ~A

I Simplest assumption: free field
S = (K/2)

R |r⇥ A|2 dr3
I Local constr. ) emergent gauge struct.

! algebraic spin corr. ⇠ 3 cos2 ✓�1
r3

! structure factor (saddle point)



Elementary excitations I

Ising spins:

! excitation = spin reversal
! two defective tetrahedra

they can be separated at no energy cost!
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Spin ice vs. conventional ferromagnets

1D: domain walls are ‘point-
like’ and deconfined

� 2D: defects are confined
(extended domains with
boundary energy cost)

for instance, intrinsically di↵erent magnetisation processes (at low
energies):

domain growth and coarsening $ point-like defect motion

and similarly for specific heat, thermal transport, etc.
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Spin Ice (Dy2Ti2O7 and Ho2Ti2O7) Harris + Bramwell 1997

⌘ local [111] crystal field ⇠ 200 K
) Ising spins

⌘ large spins (15/2 and 8)
) classical limit (small exchange ⇠ 1 K)

⌘ large magnetic moment ⇠ 10µB

) long range dipolar interactions

[ credit: STFC ]

Single crystals



Frustration leads to (classical) degeneracy

dipolar interactions minimised by
2-in, 2-out ice rules ) local constraint

Gingras et al. , Shastry et al. 1999-2001

Ramirez et al. 1999

Fennell et al. 2009

six ground states per

tetrahedron:

Ngs = 2N
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extensive degeneracy



Elementary excitations: emergent magnetic monopoles

magnetic Coulomb
interaction

E (r) = �µ0

4⇡

q2m
r

⌘ deconfined monopoles
⌘ charge qm = ±2|~µ|/a

[monopoles in H , not B]

CC, Moessner, Sondhi, Nature 451, 42 (2008)



Magnetic monopoles? r · ~M vs. r · ~H
no violation of r · ~B = 0

I ~B = ~H + ~M

I ~M is confined to the spins

I where a ‘Dirac string’
ends: r · ~M 6= 0

) defective tetrahedra (r · ~M 6= 0) are sources and sinks of
the magnetic field ~H: r · ~H = �r · ~M

Unique setting!

(i) rare instance of fractionalisation in 3D

(ii) magnetic charges and network of ‘Dirac strings’ in 3D!

(iii) sources and sinks of magnetic field ) the monopoles couple
to external probes (e.g., muons, SQUIDs, NMR-active nuclei)



Spin ice as a Coulomb liquid CMS ’08-’12

,
+ Coulomb interactions

+ entropic interactions

+ kinematic constraints



Consistent (and key!) to understand thermodynamic properties

liquid-gas phase diagram CMS 2008

mag. corr.: pinch-points(*)
Fennel et al 2009, Kadowaki et al 2009

(*) note: both ice rules and long-range dipolar correlations contribute
to pinch points! Sen, Moessner, Sondhi 2012

Debye-Hückel heat cap. Morris et al. ’09

mag. corr.: “Dirac” strings
Morris et al. 2009



Monopoles act as facilitators of spin dynamics

magnetic response , monopole motion
e.g., Ryzhkin 2005, Jaubert et al. 2009

) ⌧ ⇠ ⌧0/⇢(T )

T . 1 K: paucity of monopoles
(⇢ ⇠ e�4.35/T ) ) ⌧ ⇠ ⌧0 e4.35/T
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Fig. 2: Relaxation time scales � in Dy2Ti2O7 : experiment and simulation. The experimental data
(�) are from Snyder & al. [3]. The Arrhenius law (red line) represents the free di�usion of topological defects
for the nearest neighbour model. The relaxation time scale of the Dirac string network driven by Metropolis
dynamics of magnetic monopoles has been obtained for fixed chemical potential (pink �) and with µ varying
slowly to match the defect concentration in dipolar spin ice (blue •). The temperature scale is fixed without any
free parameters. Inset : Same data shown in the low temperature region.

We have tested this idea by directly simulating a Coulomb gas of magnetically charged particles
(monopoles), in the grand canonical ensemble, occupying the sites of the diamond lattice. The magnetic
charge is taken as qi = ±q. In the grand canonical ensemble the chemical potential is an independent va-
riable, whose value in the corresponding magnetic experiment is unknown. In a first series of simulations
we have estimated it numerically by calculating the di�erence between the Coulomb energy gained by
creating a pair of neighbouring magnetic monopoles and that required to produce a pair of topological
defects in the dipolar spin ice model, with parameters taken from reference7, giving a configurationally
averaged estimate µ/kB = 8.92 K. In a second series of simulations µ was taken as the value required to
reproduce the same defect concentration as in a simulation of dipolar spin ice at temperature T . Here
µ varied by 3% only, with the same mean value as in the first series, showing that our procedure is
consistent. The chemical potential used is thus not a free parameter. As the Coulomb interaction is long
ranged, we treat a finite system using the Ewald summation method20,21. The monopoles hop between
nearest neighbour sites via the Metropolis Monte Carlo algorithm, giving di�usive dynamics, but with a
further local constraint : in the spin model a 3 in - 1 out topological defect can move at low energy cost
by flipping one of the three in spins, the direction of the out spin being barred by an energy barrier of
8 Jeff . An isolated monopole can therefore hop to 3 out of 4 of its nearest neighbour sites only, dictated
by an oriented network of constrained trajectories similar to the ensemble of classical “Dirac string”2 of
overturned dipoles15. The positively charged monopoles move in one sense along the network while the
negative charges move in the opposite direction (see figure 1b). The network is dynamically re-arranged
through the evolution of the monopole configuration. The vacuum for monopoles in spin ice thus has
an internal structure ; the Dirac strings which, in the absence of monopoles, satisfy the ice rules at each
vertex. This structure is manifest in the dynamics and influences the resulting time scales. In fact the
characteristic time scale that we compare with experiment comes from the evolution of the network of
Dirac strings rather than from the monopoles themselves. Indeed, the monopole autocorrelation time,
as extracted from the monopole density - density correlation function22 turns out to be small for this
range of temperature. We locally define the string network by an integer � = ±1, giving the orientation
of the Dirac string along each bond of the diamond lattice and define the autocorrelation function

C(t) =
1
N

�

i

�i(t)�i(0), (2)



Thermal quenches CC, Moessner, Sondhi 2010

sudden quench from a defect-rich phase ! evolution reduces
number of defects: reaction-annihilation system A+ B ! 0

Ising model vs. spin ice

I defects are pointlike in d = 3; density vanishes only for T ! 0

I kinematic constraints due to the underlying spin configuration

, interplay of large- and lattice-scale physics



Field quenches Mostame, CC, Moessner, Sondhi, PNAS 2014

novel setting: reaction di↵usion processes of emergent topological
defects + long Coulomb range interactions + kinematic constraints

I [111] saturated phase , fully packed monopoles (ionic crystal)

I field quench (, chem. pot.): ⇢
eq

exponentially small at low T

~B
*
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Field quenches Mostame, CC, Moessner, Sondhi, PNAS 2014

triangular spins cannot flip in sat. phase!
I initial behaviour: direct

annihilation of
neighbouring pairs

d⇢

dt
= � 3

⌧0
⇢2(t)

! ⇢(t) = [1 + 3(t/⌧0)]
�1
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Field quenches Mostame, CC, Moessner, Sondhi, PNAS 2014

I intermediate behaviour:
di↵usion annihilation
processes with long-range
Coulomb interactions

I polarisation of triangular
spins , dimensional
reduction



Field quenches Mostame, CC, Moessner, Sondhi, PNAS 2014

I long time behaviour:
activated dynamics

controlled by Zeeman
and Coulomb barriers
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Conclusions

I frustration in spin ice leads to a degenerate ground state with
emergent gauge symmetry and magnetic monopole excitations

I e↵ective Coulomb liquid description is key to understanding
the low-temperature properties of spin ice beyond Monte
Carlo simulations (e.g., phase diagram, spec. heat, mag. suscept.)

I new exciting directions:
I rich playground to study out-of-equilibrium phenomena in

Coulomb interacting systems
I ‘electrolyte physics’ in regimes not accessible in conventional

electrolytes (see Bramwell, Holdsworth, Moessner, et al.)

I tuneable magnetic disorder through Oxygen stoichiometry
(to appear in Nat. Mat.)

I quantum spin ice and classical $ quantum crossover:
microscopic modelling of spin dynamics

(collaboration with B.Tomasello and J.Quintanilla)
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