XIIth Meeting on B Physics Tensions in Flavour Measurements Napoli, 22-24 May 2017

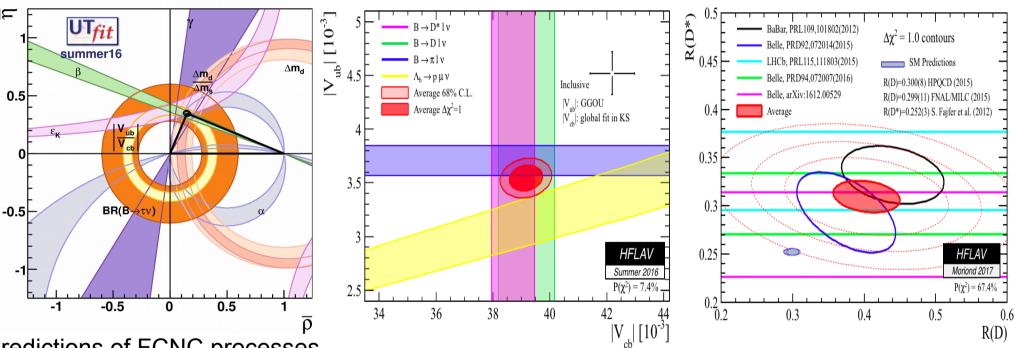
Puzzles in |V_{ub}| and |V_{cb}| Towards a solution?

Laboratori Nazionali fi Frascati

XII B Physics Meeting

<u>LHCb</u>

Why $|V_{cb}|$ and $|V_{ub}|$?


 $|V_{xb}|$: crucial inputs To indirect search of New Physics

J

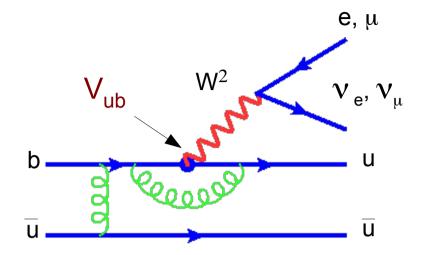
 $|V_{cb}|$ and $|V_{ub}|$ discrepancy between different determinations: 3o effect

 $\Gamma(B \to D^{(*)} \tau \nu_{\tau})$ $\overline{\Gamma(B \to D^{(*)} \ell \nu_{\ell})}$

Enhanced respect to SM Predictions (~4 σ)

Predictions of FCNC processes $\propto |V_{tb}V_{ts}| \approx |V_{cb}|^2 [1 + O(\lambda^2)]$

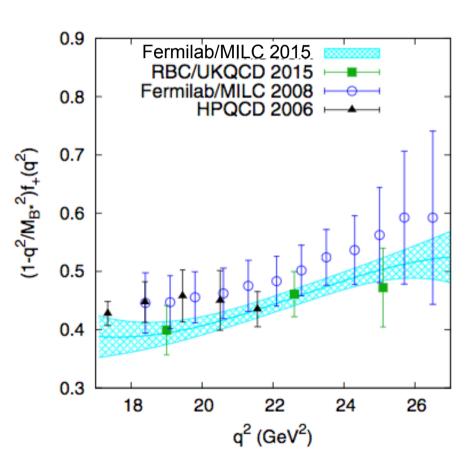
Kaon physics $\epsilon_K \approx x |V_{cb}|^2 + \dots$

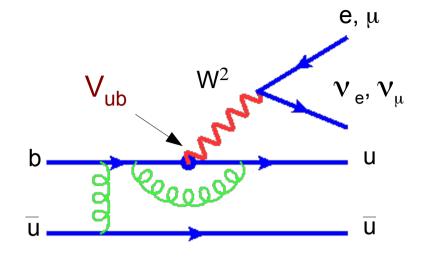

 $|V_{ub}|$ opposite to angle β : compare Tree with loops

XII B Physics Meeting

Semileptonic measurements provide Form-Factors, crucial for SM predictions on R(D)-R(D*)

Study of $B \rightarrow D^{**}$ crucial to constrain backgrounds in $|V_{ub}|$ inclusive $|V_{cb}|$ and R(D)-R(D^{*}) determinations


Exclusive $B \rightarrow \pi \ell \nu$


• For massless leptons only one Form Factor

$$\frac{\mathrm{d}\mathcal{B}(B \to \pi \ell \nu)}{\mathrm{d}q^2} = |V_{ub}|^2 \frac{G_F^2 \tau_B}{24\pi^3} p_\pi^3 |f_+^{B\pi}(q^2)|^2$$

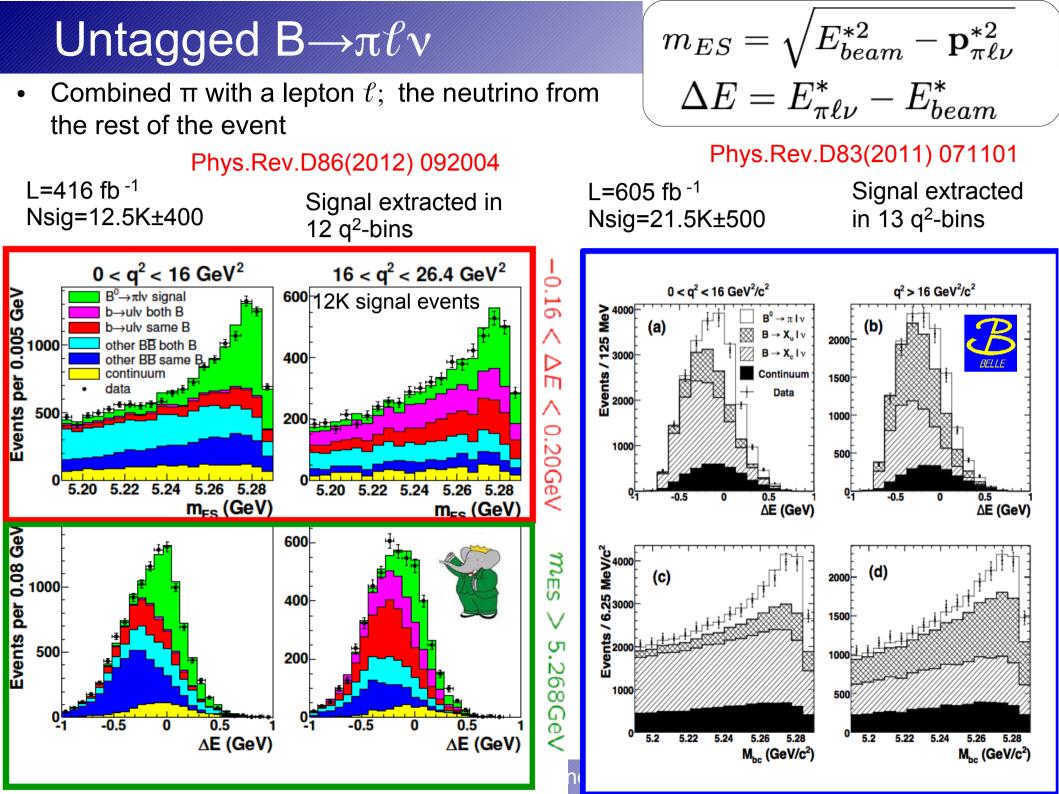
- Lattice QCD (UKQCD, FNAL,...)
 - Works at high q²
 - Unquenched calculations (2+1, 2+1+1)
 - Other mesons $(\rho, \omega,...)$ difficult on lattice
- Light Cone Sum Rules
 - Reliable at low q²
 - Works for both pseudo-scalars and vector decays

Exclusive $B \rightarrow \pi \ell \nu$

- Lattice QCD (HPQCD, FNAL,...)
 - Works at high q²
 - Unquenched calculations (2+1, 2+1+1)
 - Other mesons (ρ , ω ,...) difficult on lattice
- Light Cone Sum Rules
 - Reliable at low q²
 - Works for both pseudo-scalars and vector decays

• For massless leptons only one Form Factor

$$\frac{\mathrm{d}\mathcal{B}(B \to \pi \ell \nu)}{\mathrm{d}q^2} = |V_{ub}|^2 \frac{G_F^2 \tau_B}{24\pi^3} p_\pi^3 |f_+^{B\pi}(q^2)|^2$$

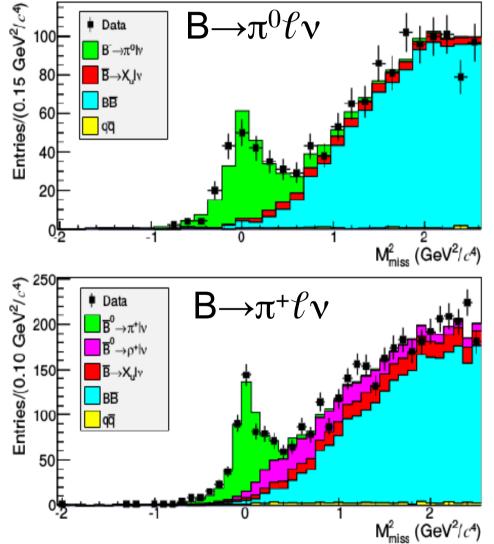

Strategies for |V_{ub}| extraction

• Measure ΔBr in regions where theory is reliable $|V_{ub}|^2 = \frac{\Delta Br}{\widetilde{\alpha}}$

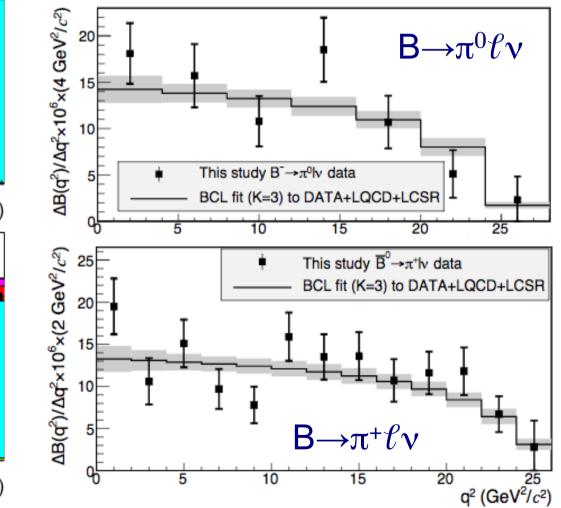
$$|\Delta b|^2 = \frac{\Delta DT}{\tau_B \Delta \widetilde{\Gamma}_{theory}}$$

- Simultaneous fit to data and theory
 - Measure ΔBr in bins of q^2
 - |V_{ub}| and form factor shape from a fit to data and theory
 - Exploiting the recent lattice calculations in many points at high q²

XII B Physics Meeting

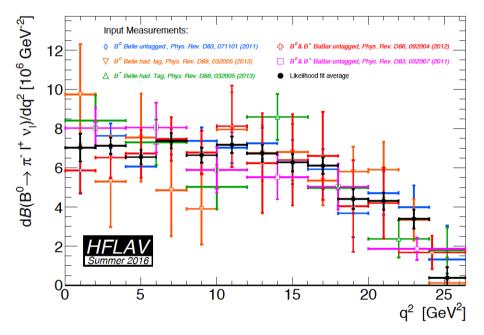

Tagged $B \rightarrow \pi \ell \nu$

Phys.Rev.D83(2011) 071101



• Using the hadronic tag

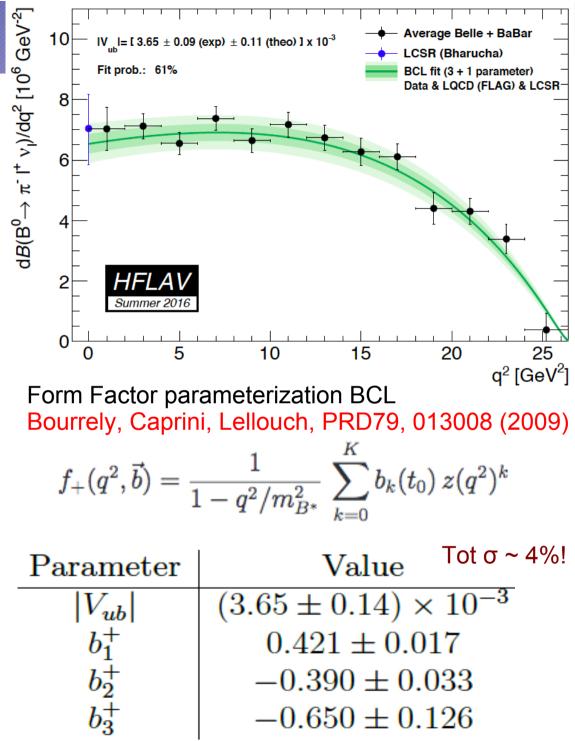
L=711 fb⁻¹ N(B $\rightarrow \pi^2 \ell \nu$) ~ 500, N(B $\rightarrow \pi^0 \ell \nu$) ~ 200


- Reduce combinatorial backgrounds
- Improve kinematic resolution
 - Signal B direction determined by B_{tag}

XII B Physics Meeting

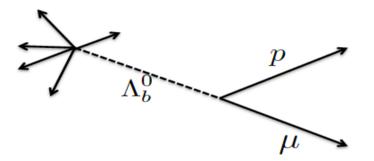
HFLAV average

- Include the most precise measurements
 - Partial Br averaged with a likelihood fit


Theoretical inputs:

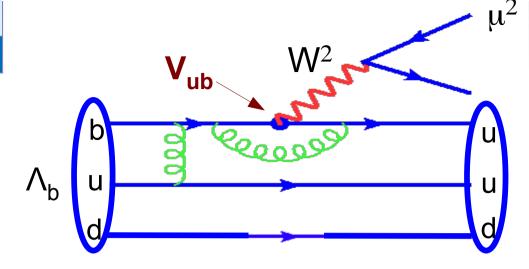
- Lattice QCD at high q²

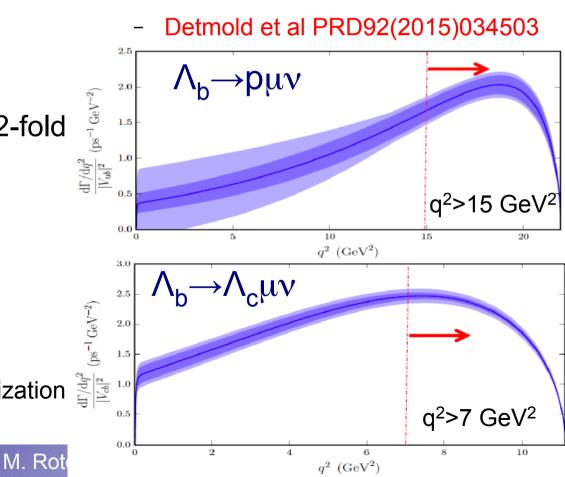
HFLAG average of FNAL/MILC + HPQCD


Eur.Phys.J. C77 (2017) no.2, 112

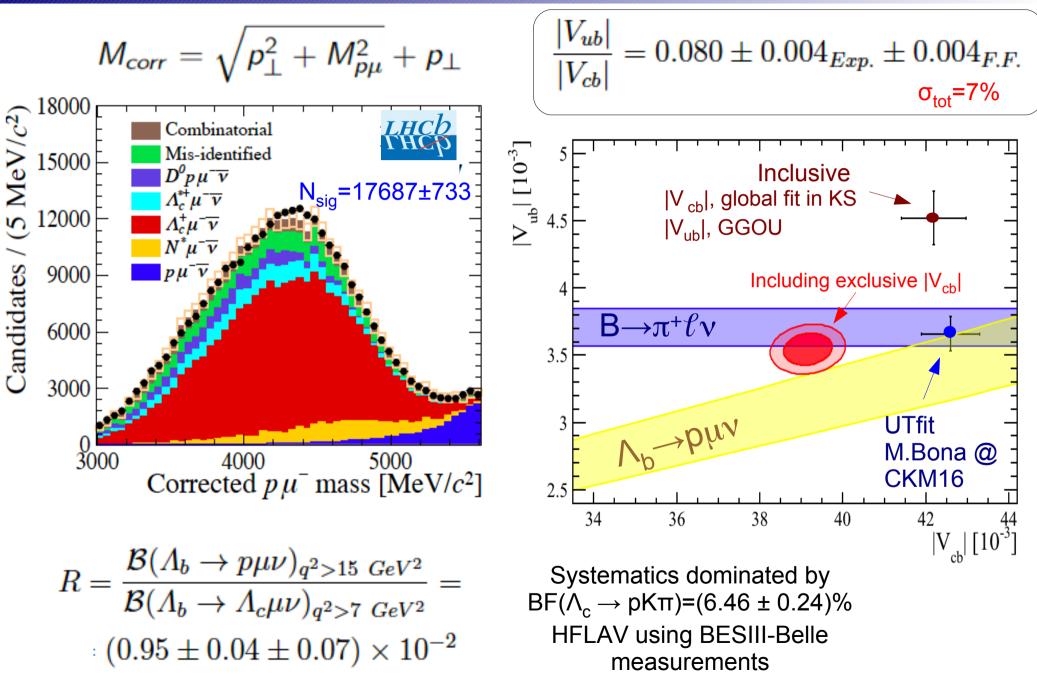
- LCSR ta q²=0 Bharucha, JHEP 1205 (2012) 092

V_{ub} at LHCb


- B-baryons provide complementary informations to B-mesons
- Copious production of $\Lambda_{\rm b}$

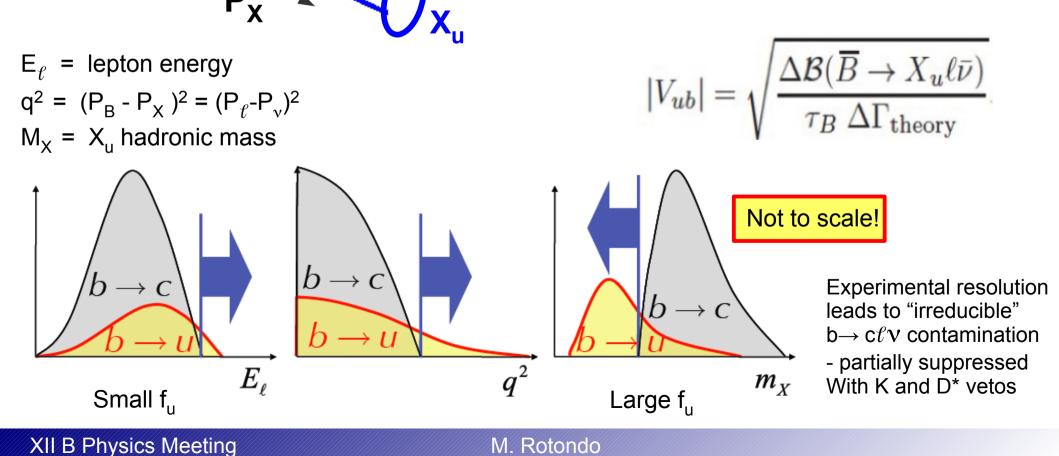

- Kinematic constraints allow the determination of the p_{Ab} (modulo 2-fold ambiguity)
- Large background from $\Lambda_b \rightarrow \Lambda_c \mu \nu$

XII B Physics Meeting


• LHCb determines (in the high q² region) the ratio $R_{exp} = \frac{\mathcal{B}(\Lambda_b \to p\mu\nu)}{\mathcal{B}(\Lambda_b \to \Lambda_c \mu\nu)} \bullet^{\operatorname{Signal}} \operatorname{Normalization}_{\mathbb{F}}$

Precise F.F.calculation on L-QCD

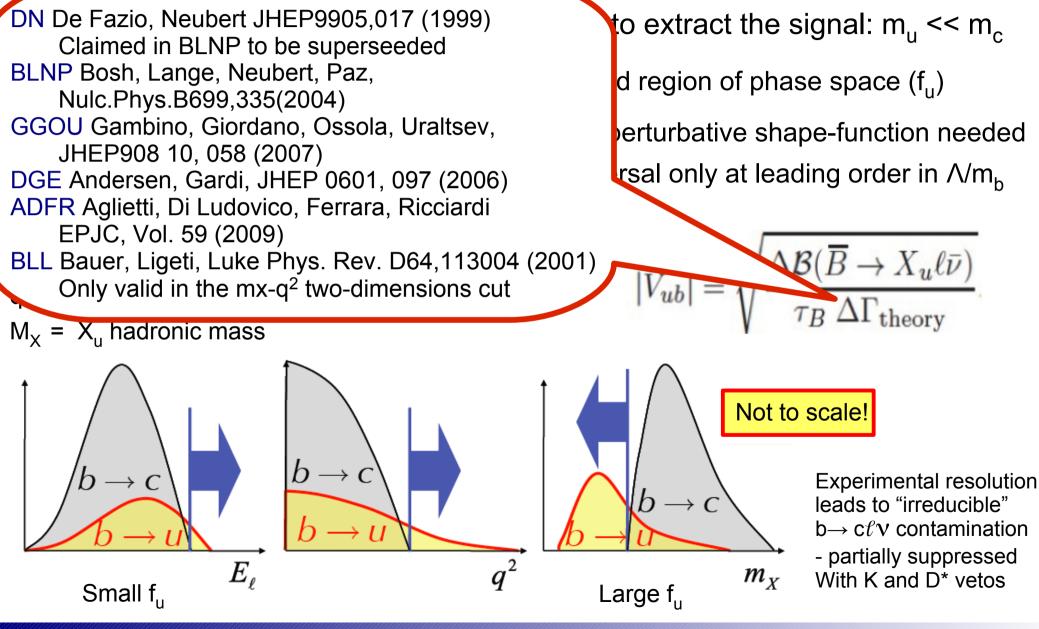
$\Lambda_b \rightarrow p\mu v \text{ signal \& } |V_{ub}|$



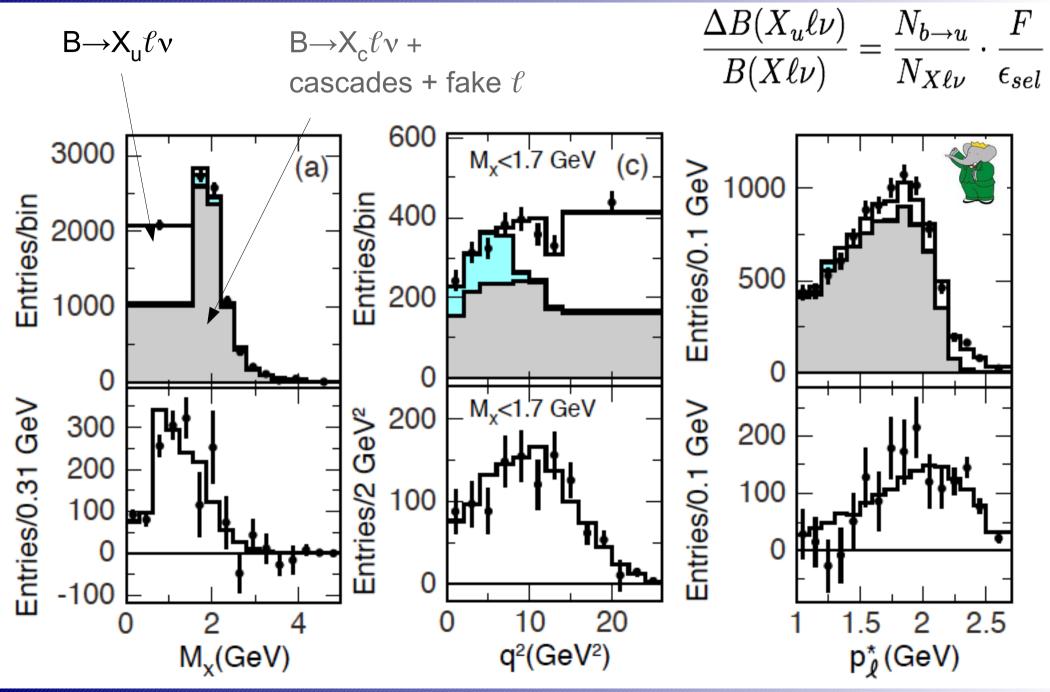
XII B Physics Meeting

|V_{ub}| from inclusive decays

 $\frac{\Gamma(b \to c\ell\nu)}{\Gamma(b \to u\ell\nu)} \approx 50$


- e Large
 e Kiner
 e C
- Large background from $B{\rightarrow} X_c \ell \nu$
 - Kinematics to extract the signal: m_u << m_c
 - Cut limited region of phase space (f_u)
 - Non perturbative shape-function needed
 - Universal only at leading order in A/m_b

|V_{ub}| from inclusive decays


 $\frac{\Gamma(b \to c \ell \nu)}{\Gamma(b \to u \ell \nu)} \approx 50$

• ℓ • Large background from $B \rightarrow X_c \ell v$

XII B Physics Meeting

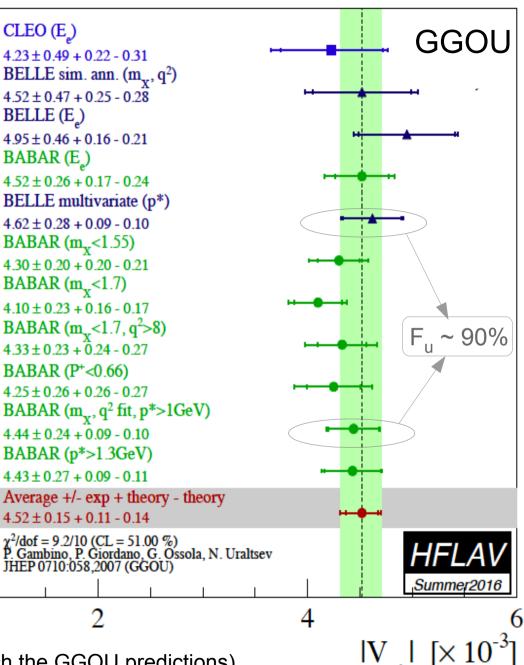
Fit results in limited regions of phase space

XII B Physics Meeting

M. Rotondo

Phys.Rev. D86 (2012) 032004

Status of inclusive Vub


Most recent measurements is dated 2012

- Consistency between difference acceptance regions
- Calculations agree with each other

Framework	$ V_{ub} [10^{-3}]$
BLNP	$4.44 \pm 0.15 \substack{+0.21 \\ -0.22}$
DGE	$4.52 \pm 0.16 \substack{+0.15 \\ -0.16}$
GGOU	$4.52 \pm 0.15 \substack{+0.11 \\ -0.14}$
ADFR	$4.08 \pm 0.13 \substack{+0.18 \\ -0.12}$
BLL $(m_X/q^2 \text{ only})$	$4.62 \pm 0.20 \pm 0.29$

- Correlated uncertainties
 - HQE parameters m_b , m_u^2 : from • Global Fit for inclusive |V_{cb}|
 - Common experimental tools: EvtGen, • JETSET X_{II} hadronisation, $b \rightarrow c \ell v$
- $|V_{ub}|$ is calculated from partial rates measured with only one signal model

(Belle multivariate, adjust the signal model to match the GGOU predictions)

XII B Physics Meeting

M. Rotondo

CLEO (E)

BELLE (E)

BABAR (E)

 $423 \pm 0.49 \pm 0.22 - 0.31$

 $4.52 \pm 0.47 \pm 0.25 - 0.28$

 $4.95 \pm 0.46 \pm 0.16 - 0.21$

 $4.52 \pm 0.26 \pm 0.17 - 0.24$

 $4.62 \pm 0.28 \pm 0.09 - 0.10$ BABAR (m, <1.55) $4.30 \pm 0.20 \pm 0.20 - 0.21$ BABAR (m, <1.7) $4.10 \pm 0.23 \pm 0.16 - 0.17$

 $4.33 \pm 0.23 \pm 0.24 - 0.27$

 $4.44 \pm 0.24 \pm 0.09 - 0.10$

 $4.43 \pm 0.27 \pm 0.09 - 0.11$

 $4.52 \pm 0.15 \pm 0.11 - 0.14$

BABAR (P⁺<0.66) $4.25 \pm 0.26 \pm 0.26 - 0.27$

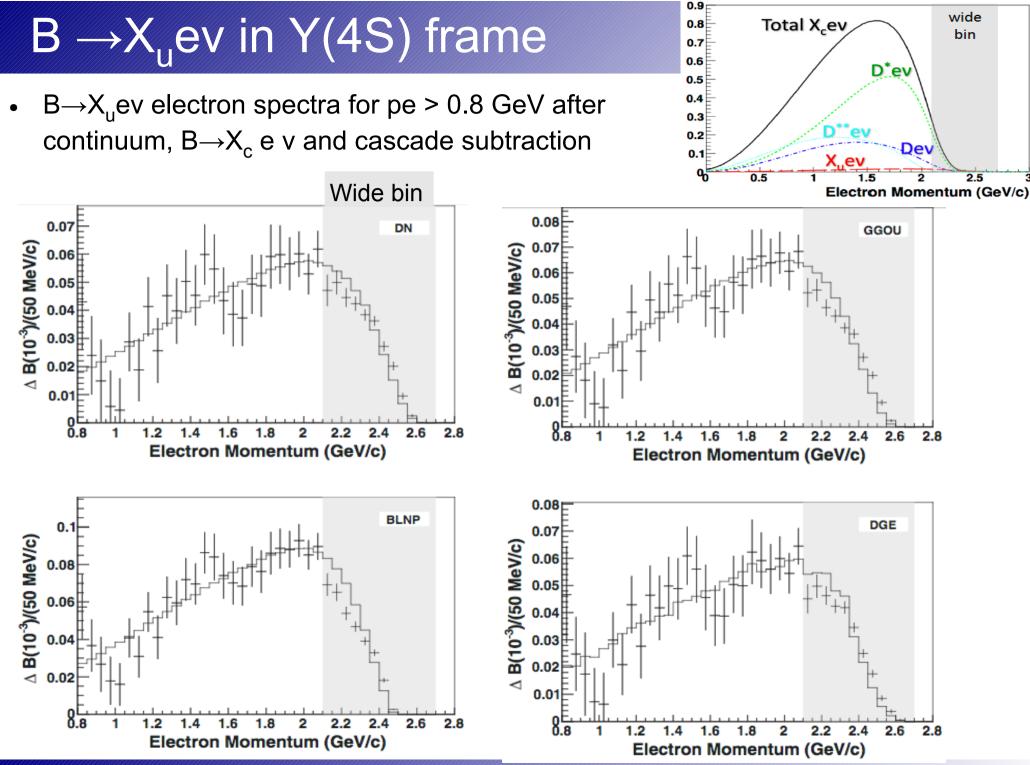
New inclusive |V_{ub}|

Inclusive electron spectrum measurement • Data

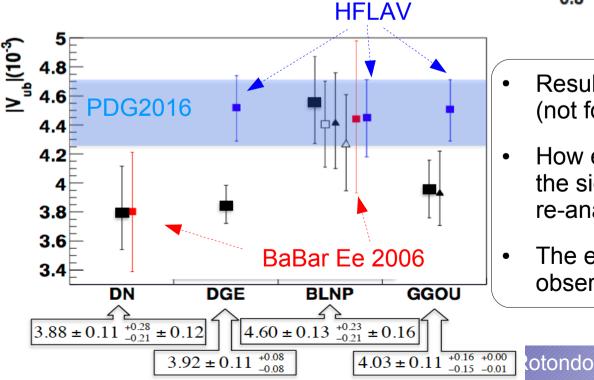

Dataset: 467M Y(4S)

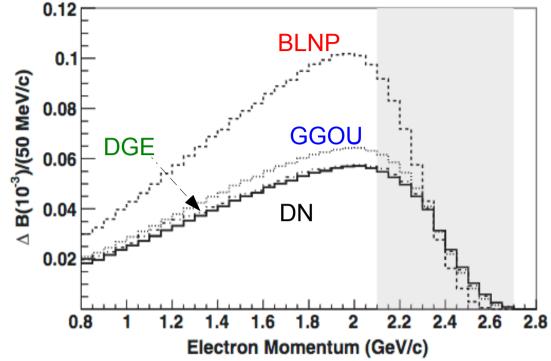
Phys.Rev.D 95,

072001 (2017)


Fit Strategy

- Fit simultaneously on-Y(4S) and off-Y(4S)
 - 5 separate $b \rightarrow c$ components
 - Secondary leptons $b \rightarrow c \rightarrow e$
 - b→X_u e v
- Spectrum range [p_{min}, 2.7] GeV, p_{min} from 0.8 GeV

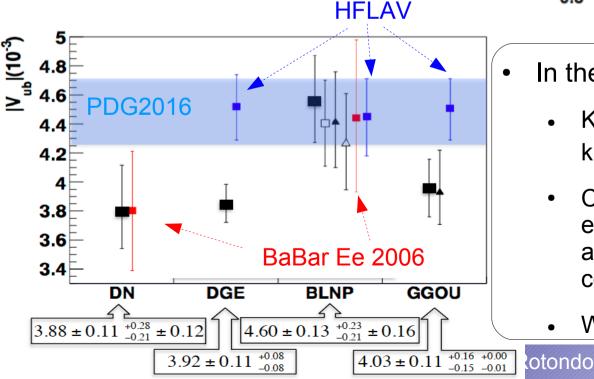

Signal model obtained mixing known existing exclusive final states with calculations for $b \rightarrow X_u e v$ (Hybrid model). Four different calculations considered for $b \rightarrow X_u e v$ Inclusive spectrum

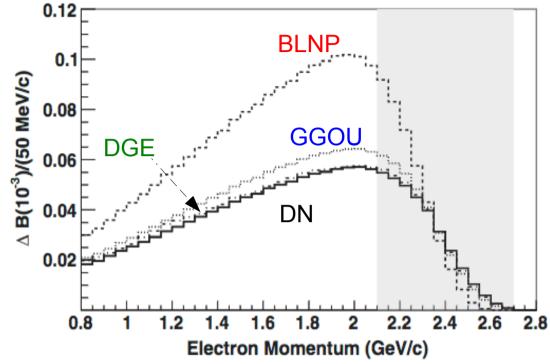


XII B Physics Meeting

Results on total rate and |V_{ub}|

- Highest sensitivity to $B \rightarrow X_u ev$ in the wide bin 2.1-2.7 GeV
- Models make different predictions for the fractional rate in this bin
 - The normalization of the B→X_uev is fixed by this bin!
- This dependence on the signal model could impact any measurement that extends in the $B \rightarrow X_u ev$ region





- Results are lower than previous measurement (not for BLNP!)
- How existing analyses would be affected by the signal model is difficult to predict without re-analysing old data!
- The effect could be smaller than the one observed here!

Results on total rate and |V_{ub}|

- Highest sensitivity to $B \rightarrow X_u ev$ in the wide bin 2.1-2.7 GeV
- Models make different predictions for the fractional rate in this bin
- The normalization of the B→X_uev is fixed by this bin!
- This dependence on the signal model impact any measurement that extends in the $B \rightarrow X_u ev$ region

- In the future it will be crucial to improve
 - Knowledge about B→X_c composition and kinematics: rates and FFs for D/D*/D**...
 - Constrain the signal model measuring exclusive B→nπ ev: up to now resonant and non-resonant contributions are combined in an ad-hoc procedure
 - WA, X_u hadronisation...

IV _{cb}| inclusive

 HQE is the successful tool to include perturbative and nonperturbative QCD corrections that allow to connect measurements of semileptonic B-meson decays to |V_{cb}|²

$$\begin{split} \Gamma_{sl} = & \Gamma_0 \Big[1 + a^{(1)} \frac{\alpha_s(m_b)}{\pi} + a^{(2,\beta_0)} \beta_0 \Big(\frac{\alpha_s}{\pi} \Big)^2 + a^{(2)} \Big(\frac{\alpha_s}{\pi} \Big)^2 \\ & + \Big(-\frac{1}{2} + p^{(1)} \frac{\alpha_s}{\pi} \Big) \frac{\mu_\pi^2}{m_b^2} + \Big(g^{(0)} + g^{(1)} \frac{\alpha_s}{\pi} \Big) \frac{\mu_C^2(m_b)}{m_b^2} \\ & + d^{(0)} \frac{\rho_D^3}{m_b^3} - g^{(0)} \frac{\rho_{LS}^3}{m_b^3} + \text{higher orders} \Big] \end{split}$$

No new experimental results since 2010

	Experiment	Hadron moments <m<sup>n_X></m<sup>		Lepton moments $\langle E^n \rangle$		References	
heme:	BaBar	n=2 c=0.9,1.1,1.3,1.5 n=4 c=0.8,1.0,1.2,1.4 n=6 c=0.9,1.3 [1]		n=0 c=0.6,1.2,1.5 n=1 c=0.6,0.8,1.0,1.2,1.5 n=2 c=0.6,1.0,1.5 n=3 c=0.8,1.2 [1,2]		[1] Phys.Rev. D81 (2010) 032003 [2] Phys.Rev. D69 (2004) 111104	
<mark>)14)</mark> om sum- (2009))	Belle	n=4 c=0.7,0.9,1.3 [3]		n=0 c=0.6,1.4 n=1 c=1.0,1.4 n=2 c=0.6,1.4 n=3 c=0.8,1.2 [4]		[3] Phys.Rev. D75 (2007) 032005 [4] Phys.Rev. D75 (2007) 032001	
, Nandi	CDF	n=2 c=0.7 n=4 c=0.7 [5]				[5] Phys.Re	v. D71 (2005) 051103
(2015)	CLEO	n=2 c=1.0,1.5 n=4 c=1.0,1.5 [6]		•		[6] Phys.Rev. D70 (2004) 032002	
$r_{\neq\infty}^{2}/I_{\cap}^{2}$)	DELPHI	n=2 c=0.0 n=4 c=0.0 n=6 c=0.0 [7]		n=1 c=0.0 n=2 c=0.0 n=3 c=0.0 [7]		[7] Eur.Phys.J. C45 (2006) 35-59	
	Br(B ->	X _c lnu) (%)	IV _{cb}	l (10 ⁻³)	m _b ^{kin}	(GeV)	mu ² _{pi} (GeV ²)
HFLAV	10.65 +/-	/- 0.16 42.19		9 +/- 0.78 4.554 +/		/- 0.018	0.464 +/- 0.076

Latest fits in Kinetic Scheme:

Gambino, Schwanda PhysRevD 89,014022 (2014) Include charm-quark mass from sumrule results (PRD80,074010 (2009))

Alberti, Gambino, Healey, Nandi PhysRevLett 114,061802 (2015) - Includes corrections of

 $O(\alpha_0^2 \Lambda_{f \neq \infty}^2 / I_{\cap}^2)$

M. Rotondo

XII B Physics Meeting

Exclusive |V_{cb}| and Form Factors

• $B \rightarrow D\ell v$ and $B \rightarrow D^*\ell v$ provide clean way to extract $|V_{cb}|$

Assuming $m_{\ell} = 0$

$$\mathsf{B} \to \mathsf{D}^* \ell \nu \qquad \frac{d\Gamma}{dw} = \frac{G_F^2 m_{D^*}^3}{48\pi^3} (m_B - m_{D^*})^2 \sqrt{w^2 - 1} \, \chi(w \mathcal{F}^2(w) V_{cb})^2$$

$$\rightarrow \mathsf{D}\ell\nu \qquad \frac{d\Gamma}{dw} = \frac{G_F^2 m_D^3}{48\pi^3} (m_B + m_D)^2 (w^2 - 1)^{3/2} \mathcal{G}^2(w) V_{cb}|^2$$

$$w = \frac{m_B^2 + m_D^2 - q^2}{2m_B m_D}$$

w=0 $\checkmark \frac{\nu}{D} \xrightarrow{B} \frac{\ell}{D}$
w_{max} $\checkmark D \xrightarrow{B} \frac{\ell}{D}$

Form Factor Parameterizations

• BGL Boyd, Grinstein, Lebed Phys.Rev.Lett 74, 4603 (1995)

$$f_i(z) = rac{1}{P_i(z)\phi_i(z)}\sum_{n=0}^N a_{i,n}z^n, \qquad z(w) = rac{\sqrt{w+1}-\sqrt{2}}{\sqrt{w+1}+\sqrt{2}}$$

Coefficient $a_{i,n}$ free parameters The analyticity of the OPE assure bounds on the sum of the $a_{i,n}^2$

• CLN Caprini, Lellouch, Neubert Nucl.Phys.B530, 153 (1998)

$$\mathcal{G}(z) = \mathcal{G}(1)(1 - 8\rho^2 z + (51\rho^2 - 10)z^2 - (252\rho^2 - 84)z^3)$$

 $\mathsf{R} \setminus \mathsf{D} \mathscr{P} \mathsf{v}$

Higher order coefficient connected with the slope ρ^2

$$B \to D^* \ell \nu$$

$$h_{A_1}(w) = h_{A_1}(1) \left[1 - 8\rho^2 z + (53\rho^2 - 15)z^2 - (231\rho^2 - 91)z^3 \right],$$

$$R_1(w) = R_1(1) - 0.12(w - 1) + 0.05(w - 1)^2,$$

$$R_2(w) = R_2(1) + 0.11(w - 1) - 0.06(w - 1)^2,$$

B –

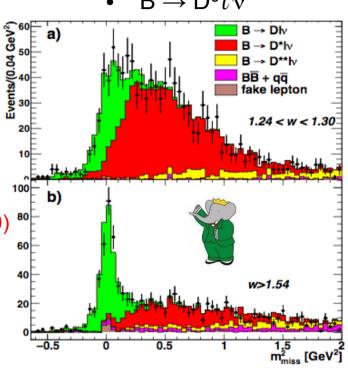
Exclusive |V_{cb}| and Form Factors

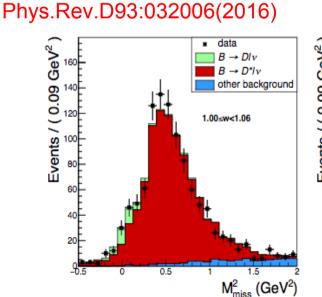
Assuming $m_{\ell} = 0$ t |V_{cb}| $w = \frac{m_B^2 + m_D^2 - q^2}{2m_B m_D}$ $B \rightarrow D^* \ell v$ $|V_{cb}|^2$ Unquenched lattice FF calculation available only at zero-recoil w=0 MILC/FNAL Phys.Rev.D89, 115404 (2014) $F(1) = 0.906 \pm 0.013$ Quenched calculation extends to w=1.1De Vitiis et al, Nucl. Phys.B807 (2009) 373 ns LCSR at w_{max} Faller et al. Eur.Phys.J C60(2009) 603 Coefficient a_{i.n} free parameters $B \rightarrow D \ell \nu$ The analyticity of the OPE assure Unquenched lattice FF calculation also at moderately bounds on the sum of the a_{in}^2 large recoil MILC/FNAL Phys.Rev.D92, 034506 (2015) 8) $B \rightarrow D^* \ell v$ HPQCD Phys.Rev.D92, 054510 (2015) $h_{A_1}(1) ig[1 - 8
ho^2 z + (53
ho^2 - 15) z^2 ig]$ $-\left(231
ho^2-91)z^3
ight]\,,$ $R_1(w) = R_1(1) - 0.12(w-1) + 0.05(w-1)^2$ Higher order coefficient connected with the slope ρ^2 $R_2(w) = R_2(1) + 0.11(w-1) - 0.06(w-1)^2$ XII B Physics Meeting M. Rotondo

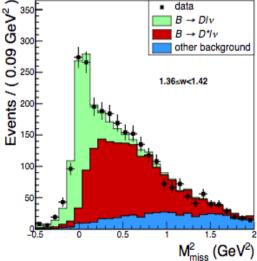
$B \rightarrow D \ell v$

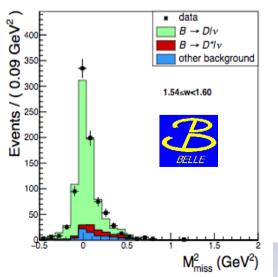
- State of the art performed by BaBar and Belle with hadronic B tagging: improve kinematic resolution and reduce combinatorial backgrounds • $B \rightarrow D^0 \ell v$
- Use both $B \to D^0 \ell \nu \in K \int B \to D^+ \ell \nu$
- Signal extract in 10 bins of w from M_{miss}²

Improved Hadronic B Tag based on NeuroBayes

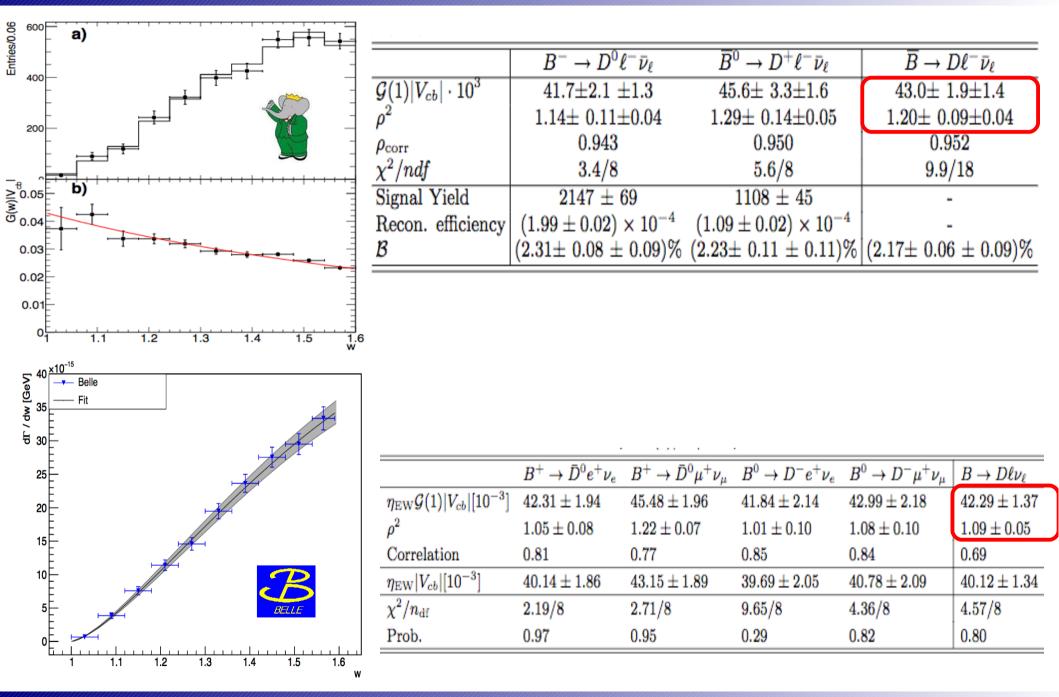

Largest background

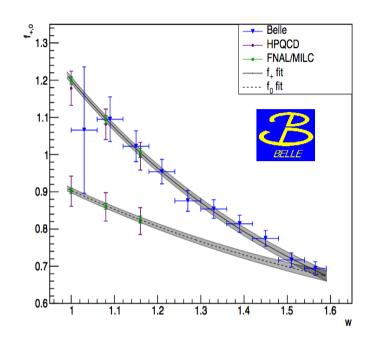

Belle used 771M $B\overline{B}$


Fit ~17000 signal events


- $B \rightarrow D^* \ell v$

BaBar used 460M BB Fit ~3200 signal events Phys.Rev.Lett.104:011802(2010)

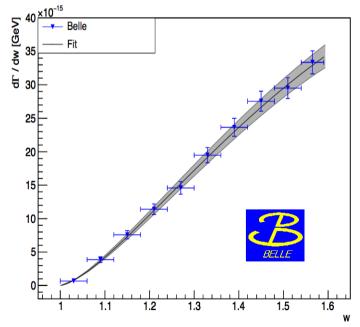




G(1)|V_{cb}|: results at B-Factories

XII B Physics Meeting

G(1)|V_{cb}|: effect of the parameterization

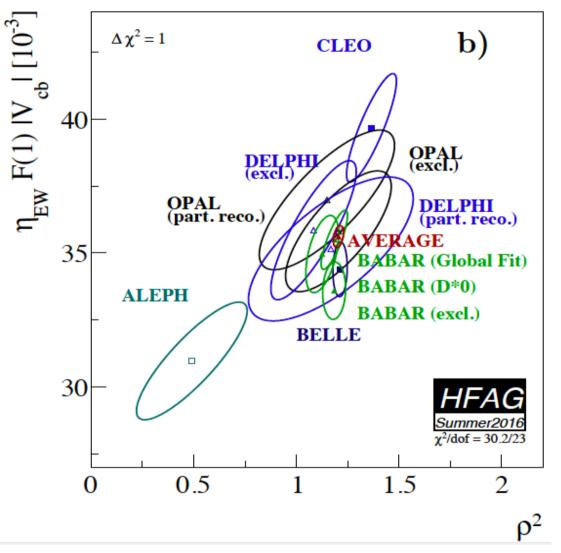

Combined fit with Lattice data beyond zero-recoil using BGL parameterization

Series truncated at n=3

Lattice data	$\eta_{ m EW} V_{cb} [10^{-3}$	$[\lambda] = \chi^2/n_{ m df}$	Prob.
FNAL/MILC 15	40.96 ± 1.23	6.01/10	0.81
HPQCD 32	41.14 ± 1.88	4.83/10	0.90
FNAL/MILC & HPQCD 15, 32	41.10 ± 1.14	11.35/16	0.79

With the most recent FF normalization FNAL/MILC'15 $G(1)=1.0541 \pm 0.0083$

CLN fit: $|V_{cb}| = (39.86 + - 1.33) \times 10^{-3}$ BGL fit: $|V_{cb}| = (40.83 + - 1.13) \times 10^{-3}$



Critical discussion on the FF parameterizations, using both Belle and BaBar data reported in Bigi, Gambino Phys.Rev.D 94,094008(2016)

	$B^+ \to \bar{D}^0 e^+ \nu_e$	$B^+ ightarrow ar{D}^0 \mu^+ u_\mu$	$B^0 \to D^- e^+ \nu_e$	$B^0 ightarrow D^- \mu^+ u_\mu$	$B \to D \ell \nu_\ell$
$\eta_{ m EW} {\cal G}(1) V_{cb} [10^{-3}]$	42.31 ± 1.94	45.48 ± 1.96	41.84 ± 2.14	42.99 ± 2.18	42.29 ± 1.37
$ ho^2$	1.05 ± 0.08	1.22 ± 0.07	1.01 ± 0.10	1.08 ± 0.10	1.09 ± 0.05
Correlation	0.81	0.77	0.85	0.84	0.69
$\eta_{\rm EW} V_{cb} [10^{-3}]$	40.14 ± 1.86	43.15 ± 1.89	39.69 ± 2.05	40.78 ± 2.09	40.12 ± 1.34
$\chi^2/n_{ m df}$	2.19/8	2.71/8	9.65/8	4.36/8	4.57/8
Prob.	0.97	0.95	0.29	0.82	0.80

XII B Physics Meeting

$B \rightarrow D^* \ell v$: HFLAV average

Unfortunately these old data cannot be Re-analysed with a different parameterization

- Most recent calculation is from Belle in 2010
- All based on CLN parameterization
- Two are based on a 4-dimensional fit
 - BaBar, Phys.Rev.D77:032002,2008
 - Belle Phys.Rev.D82:112007,2010

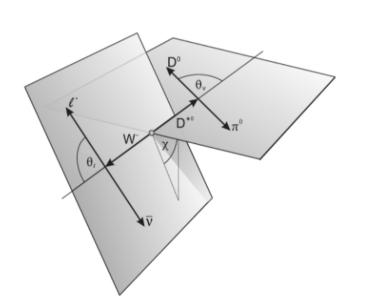
 $\eta_{\rm EW} \mathcal{F}(1) |V_{cb}| = (35.61 \pm 0.43) \times 10^{-3} ,$ $\rho^2 = 1.205 \pm 0.026 ,$ $R_1(1) = 1.404 \pm 0.032 ,$ $R_2(1) = 0.854 \pm 0.020 ,$

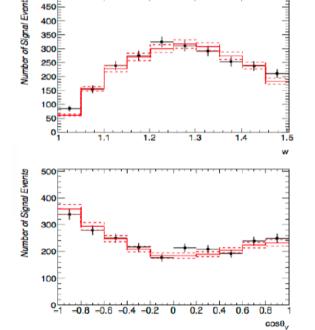
Only published unquenched calculation available is at zero-recoil from FANL/MILC

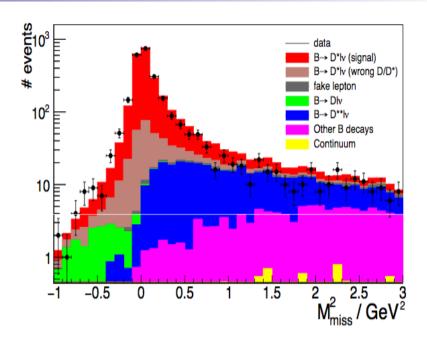
Bailey et al., Phys.Rev.D89,114504(2014)

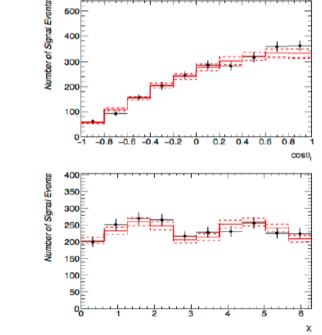
$$|V_{cb}| = (38.71 \pm 0.47_{exp} \pm 0.59_{th}) \times 10^{-3}$$

 3σ from inclusive determination

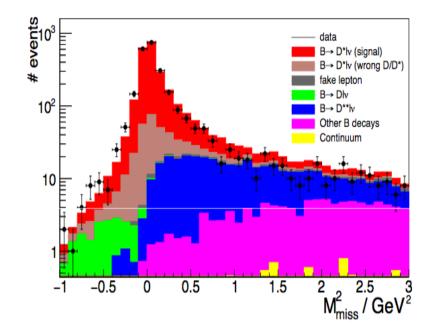

XII B Physics Meeting

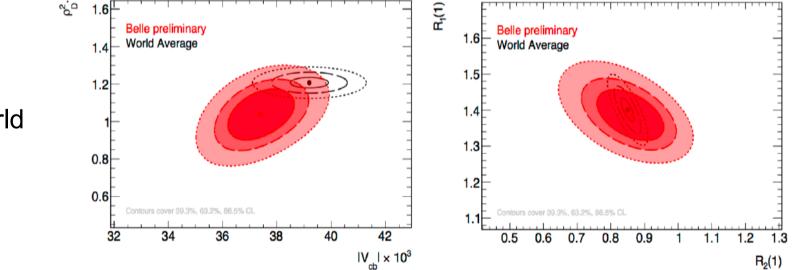

$B \rightarrow D^* \ell \nu$: news from Belle





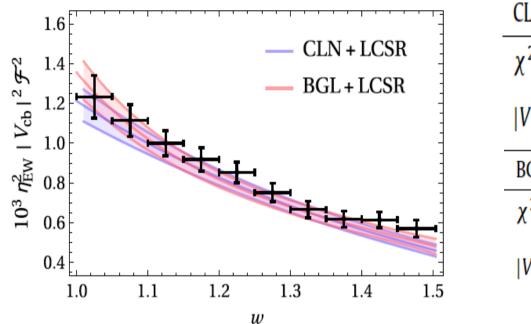
- With the hadronic tag, similar to $B \rightarrow D$
- Signal extracted from the missing mass distribution by a unbinned maximum likelihood fit
- Yields extracted in 4x10 bins of w and 3 angular variables: statistical correlations determined with bootstrapping technique
- For the first time published the Unfolded distributions


XII B Physics Meeting


$B \rightarrow D^* \ell v$: news from Belle

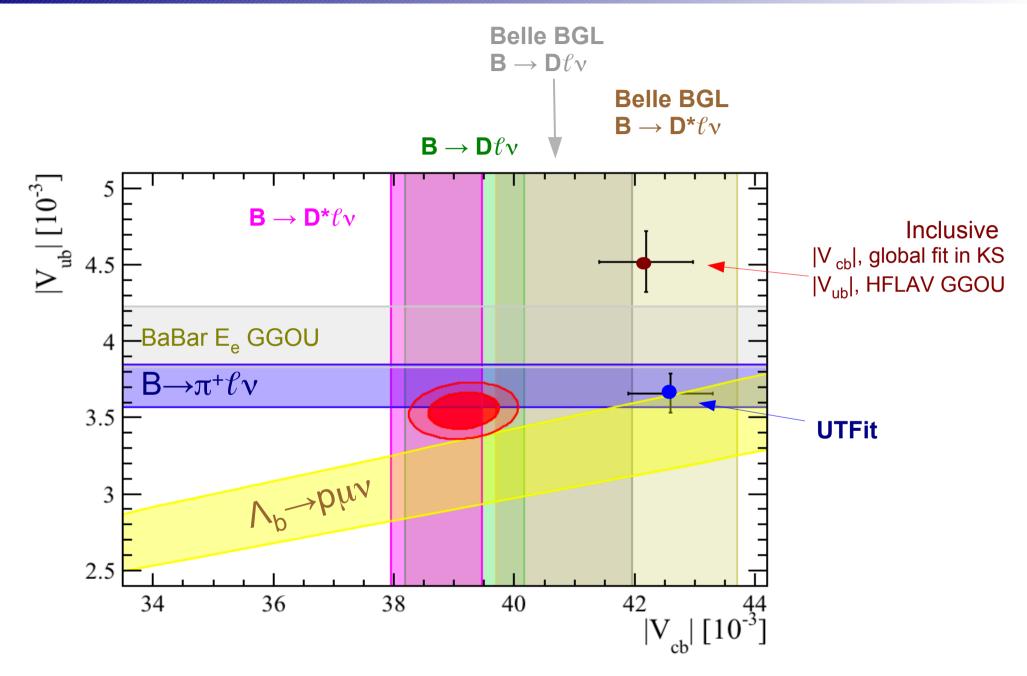
ArXiv:1702.01521

- With the hadronic tag, similar to $B \rightarrow D$
- Signal extracted from the missing mass distribution by a unbinned maximum likelihood fit
- Yields extracted in 4x10 bins of w and 3 angular variables: statistical correlations determined with bootstrapping technique
- For the first time published the Unfolded distributions



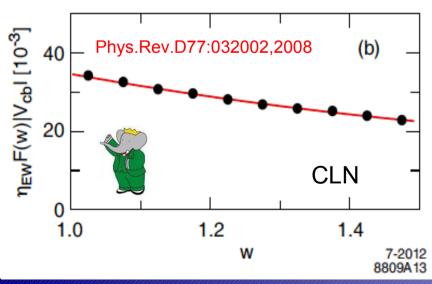
 Belle fit with CLN parameterization consistent with world average

Model independent analysis

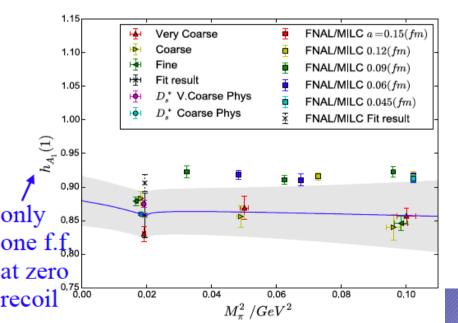

- Bigi, Gambino, Schacht Phys.Lett B 769 (2017) 441: Critical analysis of parameterization with the Belle data

CLN Fit:	Data + lattice	Data + lattice + LCSR		
χ^2/dof	34.3/36	34.8/39		
$ V_{cb} $	0.0382 (15)	0.0382 (14)		
BGL Fit:	Data + lattice	Data + lattice + LCSR		
χ^2/dof	27.9/32	31.4/35		
		1		

- This result points to a systematic difference between CLN and a modelindependent parameterization
- Similar analysis in Grinstein, Kobach arXiv.1703.0817, who claimed
 - "strong possibility that the tension between inclusive and exclusive |Vcb|
 is due to the use of the CLN parameterization..."


New global picture ?

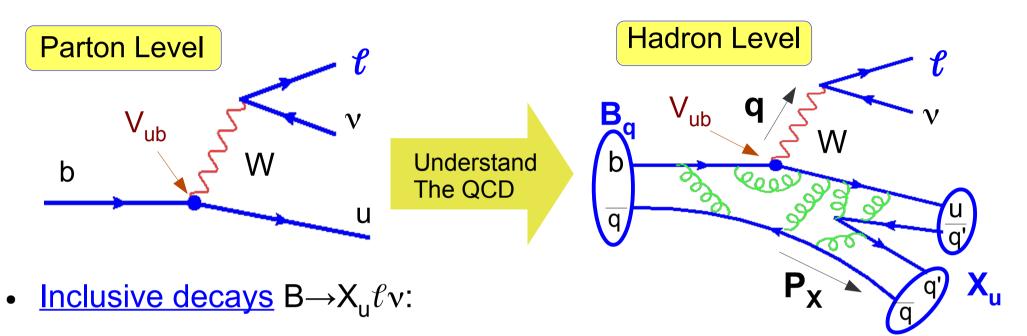
XII B Physics Meeting


Remarks

- CLN can be affected by underestimated uncertainties
 - An uncertainty of "better than 2%" on the FF quoted in CLN paper, with the increasing precision, cannot be neglected anymore
- It is crucial to move to a model-independent parameterization, CLN is too constrained
 - Unfortunately existing HFLAV average uses measurements based on CLN
- But the difference BGL-CLN of about ~8% on |V_{cb}| from the recent Belle data, cannot be considered the only systematic missed in the existing average that fill the gap with the inclusive: CLN fit well old precise data!

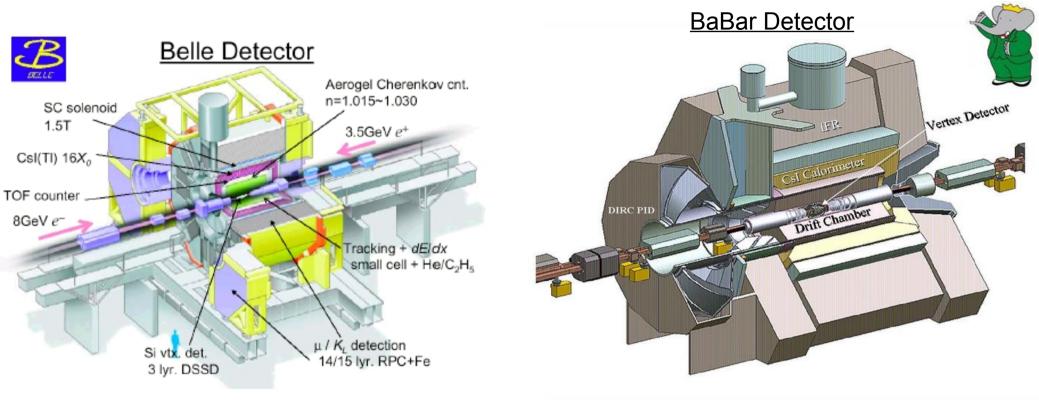
Remarks

- CLN can be affected by underestimated uncertainties
 - An uncertainty of "better than 2%" on the FF quoted in CLN paper, with the increasing precision, cannot be neglected anymore
- It is crucial to move to a model-independent parameterization, CLN is too constrained
 - Unfortunately existing HFLAV average uses measurements based on CLN
- But the difference BGL-CLN of about ~8% on |V_{cb}| from the recent Belle data, cannot be considered the only systematic missed in the existing average that fill the gap with the inclusive: CLN fit well old precise data!


- We should not neglect that there is only one lattice calculation for F(1)
- Recently HPQCD F(1)=0.862(35) C.Davie at CKM2016
 - Lower than FNAL/MILC!
 - HQSum-Rule, F(1) = 0.86(2)
- Calculations at non-zero recoil could be desirable

Conclusione

- Exclusive Vub
 - huge progressed on lattice
 - LHCb is a new player: opened the route to $B_s \rightarrow K \ell \nu$ (cleanest on Lattice!)
- Inclusive Vub
 - It is still a puzzle: internally consistent but above CKM fit and exclusive
 - Partial rates that include the b→c region depends on the signal model: crucial to consider this and use the same model for both signal extraction and |Vub|
 - Theory/parameters uncertainties dominate: need to constrain the SF (global fit Vcblike from spectra measurements: SIMBA, NNVUB)
- Inclusive Vcb
 - Everything consistent and it gives inputs to Vub/SF: it would be desirable an update of the 1S scheme framework
- Exclusive Vcb
 - General agreement to move to model independent FF parameterizations
 - New Lattice-FF calculation for B→D* (even a non-zero recoil) are on the way from MILC/FNAL and HPQCD


XII B Physics Meeting

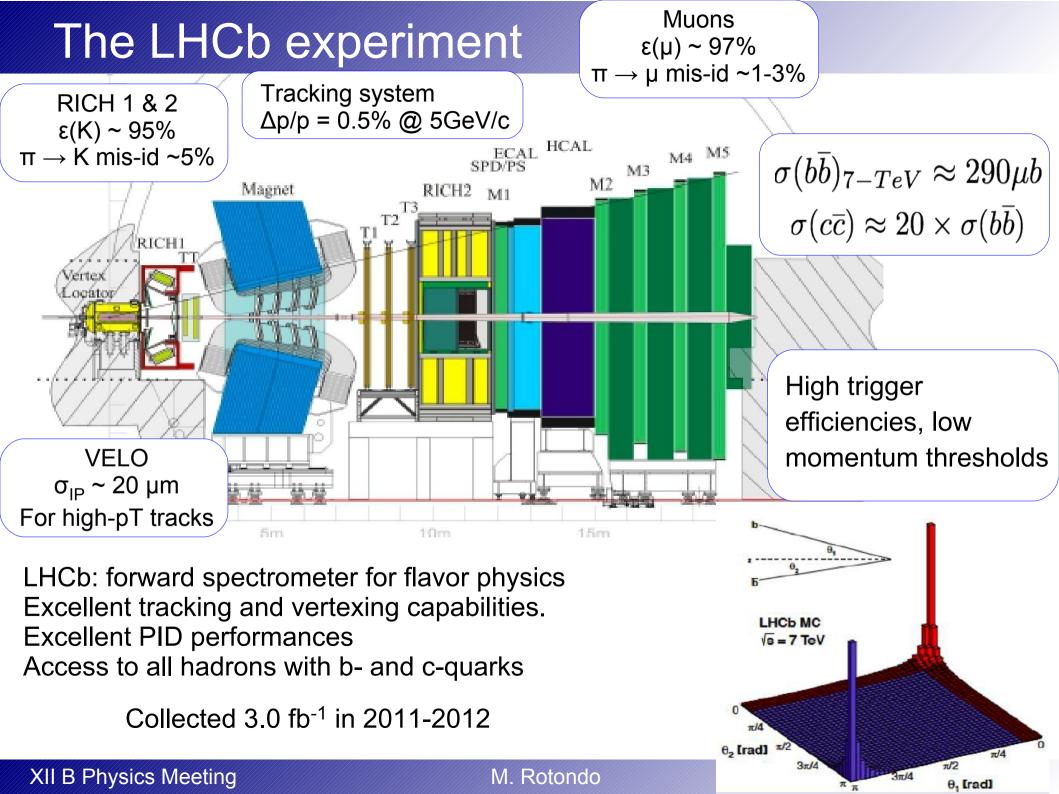
Semileptonic Decays

- QCD corrections to parton level decay rate
- Operator Production Expansion in α_s and Λ/m_b
- Exclusive decays $B \rightarrow \pi/\rho \ell \nu$:
 - QCD correction parameterized in the Form Factors
 - Lattice-QCD, LCSR

Experiments: B-Factories

@ KEK Japan: 1999-2009

@ SLAC: 1999-2008

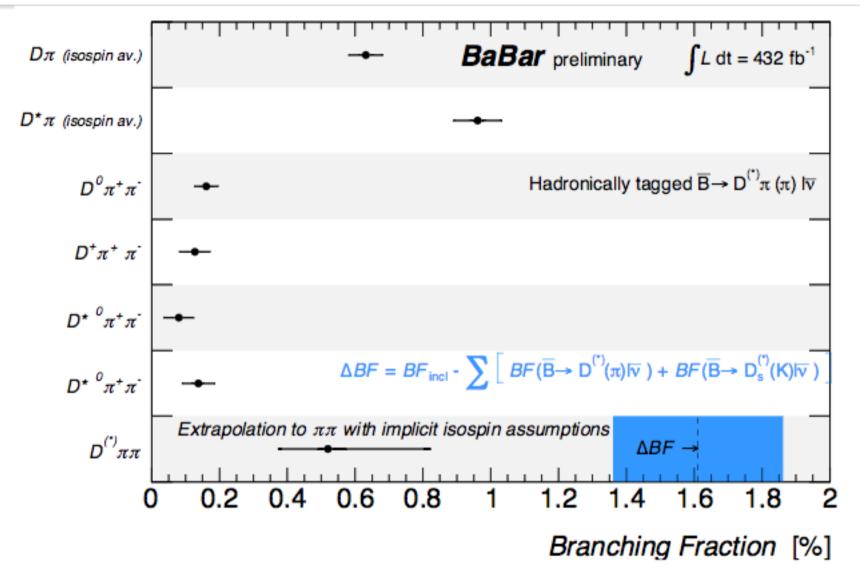

B-Factories: hermetic detectors, low background, access (mainly) at B^{0/+}

About $(771 + 467)x10^6$ e⁺e⁻ \rightarrow Y(4S) \rightarrow BB events in the Belle+BaBar data Belle and KEK is being upgraded

Belle-II aims to collect 50ab⁻¹ by 2024

XII B Physics Meeting

The gap problem


charm state X_c	$\mathcal{B}(B \to X_c \ell \bar{\nu})$ [%]
D	2.29 ± 0.09
D *	5.43 ± 0.17
$\sum D^{(*)}$	7.71 ± 0.19
$D_0^* o D\pi$	0.41 ± 0.08
$D_1^* o D^* \pi$	0.45 ± 0.09
$D_1 o D^*\pi$	0.43 ± 0.03
$D_2^* ightarrow D^{(*)} \pi$	0.41 ± 0.03
$\sum D^{**} o D^{(*)} \pi$	1.70 ± 0.12
$D_s^{(*)-}K^+$	0.06 ± 0.01
$D\pi$	0.66 ± 0.08
$D^*\pi$	0.87 ± 0.10
$\sum D^{(*)}\pi$	1.53 ± 0.13
$\sum D^{(*)} + \sum D^{**} \rightarrow D^{(*)}\pi + D^{(*)-}_{s}K^{+}$	9.47 ± 0.22
$\sum D^{(*)} + \sum D^{(*)}\pi + D^{(*)-}_{s}K^{+}$	9.30 ± 0.23
inclusive X_c	10.98 ± 0.14

Inclusive – Σ exclusive = (1.51 ± 0.26) %

From T.Lueck @EPS2015

XII B Physics Meeting

Status of the "gap"

• gap reduced from $\approx 7\sigma$ to $\approx 3\sigma$

extrapolation to full ${\cal B}$ assumed $\Gamma(D^{(*)}\pi^+\pi^-\ell
u)/\Gamma(D^{(*)}\pi\pi\ell
u) = 0.50\pm 0.17$

From T.Lueck @EPS2015

XII B Physics Meeting