The 3D Nucleon Structure

Barbara Pasquini
Università di Pavia \& INFN

How can we built up a multidimensional picture of the nucleon?

Charges

$\frac{1}{2 P^{+}}\left\langle p^{+}, \overrightarrow{0}_{\perp}, \Lambda^{\prime}\right| \bar{\psi}(0) \Gamma \psi(0)\left|p^{+}, \overrightarrow{0}_{\perp}, \Lambda\right\rangle$
Depend on
$\Lambda, \Lambda^{\prime}, \Gamma$: nucleon and quark polarizations

Vector: $\Gamma=\gamma^{+}$
Parton number

Axial: $\Gamma=\gamma^{+} \gamma_{5}$
Parton helicity

Tensor: $\Gamma=i \sigma^{+i} \gamma_{5}$
Parton transversity

Form Factors (FFs)

$$
\frac{1}{2 P^{+}}\left\langle p^{+}, \frac{\vec{\Delta}_{\perp}}{2}, \Lambda^{\prime}\right| \bar{\psi}(0) \Gamma \psi(0)\left|p^{+},-\frac{\vec{\Delta}_{\perp}}{2}, \Lambda\right\rangle
$$

Depend on
$\Lambda, \Lambda^{\prime}, \Gamma$: nucleon and quark polarizations
$\Delta \quad$: momentum transfer $\quad \vec{\Delta}_{\perp} \stackrel{\mathrm{FT}}{\longleftrightarrow} \vec{b}_{\perp}$: impact parameter

Elastic Scattering

Parton Distribution Functions (PDFs)

$$
\frac{1}{2} \int \frac{\mathrm{~d} z^{-}}{2 \pi} e^{i k^{+} z^{-}}\left\langle p^{+}, \overrightarrow{0}_{\perp}, \Lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W} \psi\left(\frac{z}{2}\right)\left|p^{+}, \overrightarrow{0}_{\perp}, \Lambda\right\rangle_{z^{+}=0, z_{\perp}=0}
$$

Depend on
$\Lambda, \Lambda^{\prime}, \Gamma$: nucleon and quark polarizations
$x=\frac{k^{+}}{p^{+}}:$longitudinal momentum fraction

Deep Inelastic Scattering

Generalized Parton Distributions (GPDs)

$\frac{1}{2} \int \frac{\mathrm{~d} z^{-}}{2 \pi} e^{i k^{+} z^{-}}\left\langle p^{\prime+},-\frac{\vec{\Delta}_{\perp}}{2}, \Lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W} \psi\left(\frac{z}{2}\right)\left|p^{+}, \frac{\vec{\Delta}_{\perp}}{2}, \Lambda\right\rangle_{z^{+}=0, z_{\perp}=0}$
Depend on
$\Lambda, \Lambda^{\prime}, \Gamma$: nucleon and quark polarizations
$x=\frac{k^{+}}{p^{+}}$: longitudinal momentum fraction
$\Delta \quad$: momentum transfer $\quad \vec{\Delta}_{\perp} \stackrel{\mathrm{FT}}{\longleftrightarrow} \vec{b}_{\perp}$: impact parameter

Deeply Virtual Compton
Scattering

Transverse Momentum PDFs (TMDs)

$$
\frac{1}{2} \int \frac{\mathrm{~d} z^{-} \mathrm{d}^{2} z_{\perp}}{(2 \pi)^{3}} e^{i k \cdot z}\left\langle p^{+},-\frac{\vec{\Delta}_{\perp}}{2}, \Lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W} \psi\left(\frac{z}{2}\right)\left|p^{+}, \frac{\vec{\Delta}_{\perp}}{2}, \Lambda\right\rangle_{z^{+}=0}
$$

Depend on
$\Lambda, \Lambda^{\prime}, \Gamma$: nucleon and quark polarizations
$x=\frac{k^{+}}{p^{+}}:$longitudinal momentum fraction
$k_{\perp} \quad$: parton transverse momentum

Semi-Inclusive
 Deep Inelastic Scattering

Generalized TMDs (GTMDs)

$$
\frac{1}{2} \int \frac{\mathrm{~d} z^{-} \mathrm{d}^{2} z_{\perp}}{(2 \pi)^{3}} e^{i k \cdot z}\left\langle p^{+},-\frac{\vec{\Delta}_{\perp}}{2}, \Lambda^{\prime}\right| \bar{\psi}\left(-\frac{z}{2}\right) \Gamma \mathcal{W} \psi\left(\frac{z}{2}\right)\left|p^{+}, \frac{\vec{\Delta}_{\perp}}{2}, \Lambda\right\rangle_{z^{+}=0}
$$

Depend on
$\Lambda, \Lambda^{\prime}, \Gamma$: nucleon and quark polarizations $x=\frac{k^{+}}{p^{+}}:$longitudinal momentum fraction $\Delta \quad$: momentum transfer
$k_{\perp} \quad$: parton transverse momentum

Wigner distributions
 $\rho\left(x, \vec{b}_{\perp}, \vec{k}_{\perp}\right)$

5 dimensional!

	Quark polarization			
. ${ }^{\circ}$		U	T	L
-	U	H	$\mathcal{E}_{\mathcal{T}}$	
\bigcirc	T	E	H_{T}, \tilde{H}_{T}	\tilde{E}
$\stackrel{\stackrel{U}{U}}{\bar{Z}}$	L		\tilde{E}_{T}	\tilde{H}

	Quark polarization			
		U	T	L
	U	f_{1}	h_{1}^{\perp}	
¢	T	$f_{1 T}^{\perp}$	$h_{1}, h_{1 T}^{\perp}$	$g_{1 T}$
$\overline{\mathrm{y}}$	L		$h_{1 L}^{\perp}$	$g_{1 L}$

each distribution contains unique information
the distributions in red vanish if there is no quark orbital angular momentum
the distributions in black survive in the collinear limit

Key information from TMDs

- Spin-Spin and Spin-Orbit Correlations of partons
- Transverse momentum size
-Test what we can calculate with QCD (perturbative and lattice)
- Non-perturbative structure we cannot calculate with QCD

How to measure the TMDs

$\ell(l)+N(P) \rightarrow \ell\left(l^{\prime}\right)+h\left(P_{h}\right)+X$

$\mathrm{d} \sigma \sim \sum \operatorname{TMD}\left(x, \vec{k}_{\perp}\right) \otimes \mathrm{d}_{\text {hard }} \otimes \overline{\mathrm{FF}}\left(z, \vec{p}_{\perp}\right)+\mathcal{O}\left(\frac{P_{T}}{Q}\right)$

$$
h\left(P_{1}\right)+h\left(P_{2}\right) \rightarrow \ell^{+}(l)+\ell^{-}\left(l^{\prime}\right)
$$

$\mathrm{d} \sigma \sim \sum \operatorname{TMD}\left(x, \vec{k}_{\perp}\right) \otimes \overline{\operatorname{TMD}}\left(x, \vec{k}_{\perp}\right) \otimes \mathrm{d} \hat{\sigma}_{\text {hard }}$

How to measure the TMDs

$\ell(l)+N(P) \rightarrow \ell\left(l^{\prime}\right)+h\left(P_{h}\right)+X$

$\mathrm{d} \sigma \sim \sum \operatorname{TMD}\left(x, \vec{k}_{\perp}\right) \otimes \mathrm{d}_{\text {hard }} \otimes \underset{\downarrow \mathrm{FF}\left(z, \vec{p}_{\perp}\right)}{ }+\mathcal{O}\left(\frac{P_{T}}{Q}\right)$
Fragmentation Functions

$$
e^{+} e^{-} \rightarrow h h^{\prime} X
$$

$$
h\left(P_{1}\right)+h\left(P_{2}\right) \rightarrow \ell^{+}(l)+\ell^{-}\left(l^{\prime}\right)
$$

$\mathrm{d} \sigma \sim \sum \operatorname{TMD}\left(x, \vec{k}_{\perp}\right) \otimes \overline{\operatorname{TMD}}\left(x, \vec{k}_{\perp}\right) \otimes \mathrm{d} \hat{\sigma}_{\text {hard }}$

Gauge link dependence of TMDs

$$
\frac{1}{2} \int \frac{\mathrm{~d} z^{-} \mathrm{d}^{2} z_{\perp}}{(2 \pi)^{3}} e^{i\left(k^{+} z^{-}-\vec{k}_{\perp} \cdot \vec{z}_{\perp}\right)}\left\langle p^{+}, 0_{\perp}, \Lambda^{\prime}\right| \bar{\psi}(0) \gamma^{+} \operatorname{GaugeLink} \psi\left(0, z^{-}, z_{\perp}\right)\left|p^{+}, 0_{\perp}, \Lambda\right\rangle
$$

SIDIS

Drell-Yan

Gauge link dependence of TMDs

$$
\frac{1}{2} \int \frac{\mathrm{~d} z^{-} \mathrm{d}^{2} z_{\perp}}{(2 \pi)^{3}} e^{i\left(k^{+} z^{-}-\vec{k}_{\perp} \cdot \vec{z}_{\perp}\right)}\left\langle p^{+}, 0_{\perp}, \Lambda^{\prime}\right| \bar{\psi}(0) \gamma^{+} \operatorname{GaugeLink} \psi\left(0, z^{-}, z_{\perp}\right)\left|p^{+}, 0_{\perp}, \Lambda\right\rangle
$$

SIDIS

Drell-Yan

Sivers function SIDIS $=-$ Sivers function Drell-łan
Boer-Mulders function SIDIS $=-$ Boer-Mulders function Drell-/an
Strong QCD prediction. Needs to be tested.

The unpolarized TMD f_{1}

Correlation between x and k_{\perp} : widening of the distribution at lower x

Transverse momentum

The unpolarized TMD f_{1}

Flavor structure of TMDs: indications from lattice

$f_{1, q}^{[1]}\left(\vec{k}_{\perp}^{2}\right)=\int_{0}^{1} \mathrm{~d} x f_{1, q}\left(x, \vec{k}_{\perp}^{2}\right) \longrightarrow$ number of quarks as function of transverse momentum

Pioneering lattice-QCD studies hint at a down distribution being wider than up

Flavor structure of TMDs: indications from data

fit to SIDIS multiplicities from HERMES:

$$
\left\langle k_{\perp, d_{v}}^{2}\right\rangle<\left\langle k_{\perp, u_{v}}^{2}\right\rangle<\left\langle k_{\perp, \text { sea }}^{2}\right\rangle
$$

Ratio width of down valence/
width of up valence

Adding the spin

correlation between x and k_{\perp}

Sivers function

$$
\begin{aligned}
& f_{1 T}^{\perp}=-\mathrm{O} \rightarrow-- \\
& \text { unpolarized quarks in } \perp \text { pol. nucleon }
\end{aligned}
$$

$$
\left.f_{1 T}^{\perp}\right|_{\text {SIDIS }}=-\left.f_{1 T}^{\perp}\right|_{\mathrm{DY}}
$$

non-zero ONLY with final-state interaction
the helicity mismatch requires orbital angular momentum

Paste, present and future TMD measurements

Accardi et al., The Electron Ion Collider: the next QCD Frontier arXiv:1212.1701

Sivers function has been extracted

Torino 2012 update

Pavia 2011

Sivers function has been extracted

Torino 2012 update

Pavia 2011

distribution of unpolarized q in \perp polarized p^{\dagger}

$$
f_{q / p^{\uparrow}}\left(x, \mathbf{k}_{\perp}\right)=f_{1}^{q}\left(x, \mathbf{k}_{\perp}^{2}\right)-f_{1 T}^{\perp q}\left(x, \mathbf{k}_{\perp}^{2}\right) \frac{\left(\hat{\mathbf{P}} \times \mathbf{k}_{\perp}\right) \cdot \mathbf{S}}{M}
$$

deformation induced by Sivers function

Key information from GPDs

- Transverse position size
- Decomposition of Form Factors w.r.t. x
- Sum rule for Angular Momentum
- Access to Form Factors of Energy Momentum Tensor
\longrightarrow "mechanical" properties of the nucleon

How to measure the GPDs

, accessible in exclusive reactions

- factorization for large $\mathrm{Q}^{2},|\mathrm{t}| \ll \mathrm{Q}^{2}, \mathrm{~W}^{2}$
- depend on 3 variables: x, ξ, t

Compton Form Factors
$\operatorname{Im} \mathcal{H}(\xi, t) \stackrel{\mathrm{LO}}{=} H(\xi, \xi, t)$
$\operatorname{Re} \mathcal{H}(\xi, t) \stackrel{\mathrm{LO}}{=} \mathcal{P} \int_{-1}^{1} \mathrm{~d} x \mathrm{H}(x, \xi, t) \frac{1}{x-\xi}$

Paste, present and future DVCS experiments

The unpolarized GPD H

$$
F_{1}(t)=\int \mathrm{d} x H(x, 0, t)
$$

$$
H\left(x, 0, \vec{b}_{\perp}\right)=\int \mathrm{d}^{2} \Delta_{\perp} H(x, 0, t) e_{t=-\vec{\Delta}_{\perp}^{2}}^{-i \vec{\Delta}_{\perp} \cdot \vec{b}_{\perp}}
$$

As $x \longrightarrow 1$, the active parton carries all the momentum and represents the centre of momentum

Unpolarized quarks in transversely pol. nucleon

"Helicity mismatch" requires orbital angular momentum

- $F_{2}(t)=\int \mathrm{d} x E(x, \xi, t)$
- no-forward limit to PDF

Unpolarized quarks in transversely pol. nucleon

"Helicity mismatch" requires orbital angular momentum

- $F_{2}(t)=\int \mathrm{d} x E(x, \xi, t)$
- no-forward limit to PDF

GPD E

unpolarized quarks in \perp pol. nucleon
"partner" of Sivers function

Transverse dipole moment:

$$
d_{y}^{q}=\frac{\kappa^{q}}{2 M}
$$

$\kappa^{u}=1.86 \quad \kappa^{d}=-1.57$ quark contribution to proton anomalous magnetic moment

Model relation TMD \longleftrightarrow GPD

unpolarized quark in unpolarized nucleon

Model relation TMD \longleftrightarrow GPD

unpolarized quark in transversely pol. nucleon

Distortion in impact parameter (related to GPD E)

Model relation TMD \longleftrightarrow GPD

Model relation TMD \longleftrightarrow GPD

Successful phenomenological applications:
Bacchetta, Radici, PRL 107 (2011) 212001
Gamberg, Schlegel, PLB 685 (2010) 95

Angular Momentum Relation ("Ji's Sum Rule")

X. Ji, PRL 78 (1997) 610

quark and gluon contribution to the nucleon spin

$$
J^{q, g}=\frac{1}{2} \int_{-1}^{1} \mathrm{~d} x x(\underbrace{H^{q, g}}_{\text {not directly accessible }}(x, 0,0)+E^{q, g}(x, 0,0))
$$

Proton spin decomposition

J^{g}
no further gauge-invariant decomposition

Angular Momentum Relation ("Ji's Sum Rule")

X. Ji, PRL 78 (1997) 610

quark and gluon contribution to the nucleon spin

$$
J^{q, g}=\frac{1}{2} \int_{-1}^{1} \mathrm{~d} x x\left({\left.\underset{\text { unpolarized PDF }}{\downarrow}{\underset{\sim}{t}}_{q, g}^{H^{q}}(x, 0,0)+E^{q, g}(x, 0,0)\right)}_{\downarrow}^{\downarrow}\right.
$$

Proton spin decomposition

J^{g}

no further gauge-invariant decomposition

Angular Momentum Relation ("Ji's Sum Rule")

X. Ji, PRL $7 \boldsymbol{8}$ (1997) 610

Proton spin decomposition

J^{g}

no further gauge-invariant decomposition

Lattice Calculations of Angular Momentum

Different definitions of OAM

Ji's sum rule

Pros:

- Each term is gauge invariant
- Accessible in DIS and DVCS
- Can be calculated in Lattice QCD

Cons:

- Does not satisfy canonical commutation relations
- No decomposition of Jg_{g} in spin and orbital part

Improvements:

- Complete decomposition

$$
J^{g}=L^{g}+\Delta g
$$

Jaffe-Manohar

Pros:

- Satisfies canonical relations
- Complete decomposition

Cons:

- Gauge-variant decomposition
- Missing observables for the OAM
(Δg and $\Delta \Sigma$ measured by COMPASS, HERMES, RHIC)

Improvements:

- OAM accessible via Wigner distributions and it can be calculated on the lattice

Quark Orbital Angular Momentum

$$
\ell_{z}^{q}=\int \mathrm{d} x \mathrm{~d}^{2} \vec{k}_{\perp} \mathrm{d}^{2} \vec{b}_{\perp}\left(\vec{b}_{\perp} \times \vec{k}_{\perp}\right) \rho_{L U}^{q}\left(\vec{b}_{\perp}, \vec{k}_{\perp}, x\right)
$$

Wigner distribution for
Unpolarized quark in a Longitudinally pol. nucleon

Quark Orbital Angular Momentum

$$
\begin{aligned}
\ell_{z}^{q} & =\int \mathrm{d} x \mathrm{~d}^{2} \vec{k}_{\perp} \mathrm{d}^{2} \vec{b}_{\perp}\left(\vec{b}_{\perp} \times \vec{k}_{\perp}\right) \rho_{L U}^{q}\left(\vec{b}_{\perp}, \vec{k}_{\perp}, x\right) \\
& =\int \mathrm{d}^{2} \vec{b}_{\perp} \vec{b}_{\perp} \times\left\langle\vec{k}_{\perp}^{q}\right\rangle \longrightarrow\left\langle\vec{k}_{\perp}^{q}\right\rangle=\int \mathrm{d} x \mathrm{~d} \vec{k}_{\perp} \vec{k}_{\perp} \rho_{L U}^{q}\left(\vec{b}_{\perp}, \vec{k}_{\perp}, x\right)
\end{aligned}
$$

Quark Orbital Angular Momentum

$$
\begin{aligned}
\ell_{z}^{q} & =\int \mathrm{d} x \mathrm{~d}^{2} \vec{k}_{\perp} \mathrm{d}^{2} \vec{b}_{\perp}\left(\vec{b}_{\perp} \times \vec{k}_{\perp}\right) \rho_{L U}^{q}\left(\vec{b}_{\perp}, \vec{k}_{\perp}, x\right) \\
& =\int \mathrm{d}^{2} \vec{b}_{\perp} \vec{b}_{\perp} \times\left\langle\vec{k}_{\perp}^{q}\right\rangle \longrightarrow\left\langle\vec{k}_{\perp}^{q}\right\rangle=\int \mathrm{d} x \mathrm{~d} \vec{k}_{\perp} \vec{k}_{\perp} \rho_{L U}^{q}\left(\vec{b}_{\perp}, \vec{k}_{\perp}, x\right)
\end{aligned}
$$

Results in a light-front constituent quark model:
Lorcé, BP, PRD 84 (2011) 014015
Lorcé, BP, Xiong, Yuan, PRD 85 (2012) 114006

Quark Orbital Angular Momentum

$$
\begin{aligned}
\ell_{z}^{q} & =\int \mathrm{d} x \mathrm{~d}^{2} \vec{k}_{\perp} \mathrm{d}^{2} \vec{b}_{\perp}\left(\vec{b}_{\perp} \times \vec{k}_{\perp}\right) \rho_{L U}^{q}\left(\vec{b}_{\perp}, \vec{k}_{\perp}, x\right) \\
& =\int \mathrm{d}^{2} \vec{b}_{\perp} \vec{b}_{\perp} \times\left\langle\vec{k}_{\perp}^{q}\right\rangle \longrightarrow\left\langle\vec{k}_{\perp}^{q}\right\rangle=\int \mathrm{d} x \mathrm{~d} \vec{k}_{\perp} \vec{k}_{\perp} \rho_{L U}^{q}\left(\vec{b}_{\perp}, \vec{k}_{\perp}, x\right)
\end{aligned}
$$

Results in a light-front constituent quark model:
Lorcé, BP, PRD 84 (2011) 014015
Lorcé, BP, Xiong, Yuan, PRD 85 (2012) 114006

Status of spin sum rule

Status of spin sum rule

Status of spin sum rule

Form factors of Energy Momentum tensor

$$
\left\langle P^{\prime}\right| T_{\mu \nu}^{Q, G}|P\rangle=\bar{u}\left(P^{\prime}\right)\left[M_{2}^{Q, G}(t) \frac{P_{\mu} P_{\nu}}{M_{N}}+J^{Q, G}(t) \frac{i\left(P_{\mu} \sigma_{\nu \rho}+P_{\nu} \sigma_{\mu \rho}\right) \Delta^{\rho}}{2 M_{N}}+d_{1}^{Q, G}(t) \frac{\Delta_{\mu} \Delta_{\nu}-g_{\mu \nu} \Delta^{2}}{5 M_{N}} \pm \bar{c}(t) g_{\mu \nu}\right] u(P)
$$

Form factors of Energy Momentum tensor

Relation with second-moments of GPDs:

$$
\begin{aligned}
& \sum_{q} \int \mathrm{~d} x x H^{q}(x, \xi, t)=M_{2}^{Q}(t)+\frac{4}{5} d_{1}^{Q}(t) \xi^{2} \\
& \sum_{q} \int \mathrm{~d} x x E^{q}(x, \xi, t)=2 J^{Q}(t)-M_{2}^{Q}(t)-\frac{4}{5} d_{1}^{Q}(t) \xi^{2}
\end{aligned}
$$

$M_{2}(0)$ nucleon momentum carried by parton
$J(0)$ angular momentum of partons
$d_{1}(0)$ D-term related to "stability" of the nucleon

Fourier transform in coordinate space

$$
\begin{gathered}
T_{i j}^{Q}(\vec{r})=s(\vec{r})\left(\frac{r_{i} r_{j}}{r^{2}}-\frac{1}{3} \delta_{i j}\right)+p(\vec{r}) \delta_{i j} \\
\text { shear forces } \\
\quad d_{1}^{Q}(0)=5 \pi M_{N} \int_{0}^{\infty} \mathrm{d} r r^{4} p(r) \\
\text { pressure }
\end{gathered}
$$

"mechanical properties" of nucleon

M. Polyakov, PLB 555 (2003) 57
$\mathrm{r}^{2} \mathrm{p}(\mathrm{r})$ in $\mathrm{GeV} \mathrm{fm}^{-1}$
(b)

$$
\int_{0}^{\infty} \mathrm{d} r r^{2} p(r)=0
$$

$\mathbf{r}^{4} p(r) \times \frac{5}{4} M_{N} 4 \pi \quad$ in fm^{-1}
(c)

The blind men and the elephant from H. Avakian

TMDs and GPDs provide different and complementary information and need to talk to each other to reconstruct the full 3D picture of the nucleon

Recent achievement

ERC press release 12.03.2015

European Research Council
Established by the European Commission

3DSPIN

Alessandro Bacchetta
ERC Consolidator grant
University of Pavia + INFN
3 PhD students
3 Post-docs

