The 3D Nucleon Structure

Barbara Pasquini

Università di Pavia & INFN

UNIVERSITÀ DI PAVIA

How can we built up a multidimensional picture of the nucleon?

Charges

$$\frac{1}{2P^+} \langle p^+, \vec{0}_\perp, \Lambda' | \bar{\psi}(0) \Gamma \psi(0) | p^+, \vec{0}_\perp, \Lambda \rangle$$

Depend on

Λ, Λ', Γ: nucleon and quark polarizations

Form Factors (FFs)

$$\frac{1}{2P^+} \langle p^+, \frac{\vec{\Delta}_{\perp}}{2}, \Lambda' | \bar{\psi}(0) \Gamma \psi(0) | p^+, -\frac{\vec{\Delta}_{\perp}}{2}, \Lambda \rangle$$

Depend on

 $\Lambda, \Lambda', \Gamma$: nucleon and quark polarizations

 Δ : momentum transfer

 $\vec{\Delta}_{\perp} \xleftarrow{\mathsf{FT}} \vec{b}_{\perp}$: impact parameter

Parton Distribution Functions (PDFs)

$$\frac{1}{2} \int \frac{\mathrm{d}z^-}{2\pi} e^{ik^+z^-} \langle p^+, \, \vec{0}_\perp, \, \Lambda' | \bar{\psi}(-\frac{z}{2}) \, \Gamma \, \mathcal{W} \, \psi(\frac{z}{2}) | p^+, \, \vec{0}_\perp, \, \Lambda \rangle_{z^+=0, z_\perp=0} = 0$$

Depend on

 $\Lambda, \Lambda', \Gamma$: nucleon and quark polarizations

$$x = \frac{k^+}{p^+}$$
: longitudinal momentum fraction

Deep Inelastic Scattering

:0

Generalized Parton Distributions (GPDs)

$$\frac{1}{2} \int \frac{\mathrm{d}z^{-}}{2\pi} e^{ik^{+}z^{-}} \langle p'^{+}, -\frac{\vec{\Delta}_{\perp}}{2}, \Lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W} \psi(\frac{z}{2}) | p^{+}, \frac{\vec{\Delta}_{\perp}}{2}, \Lambda \rangle_{z^{+}=0, z_{\perp}} = 0$$

Depend on

 Δ

 $\Lambda, \Lambda', \Gamma$: nucleon and quark polarizations

 $x = \frac{k^+}{p^+}$: longitudinal momentum fraction

: momentum transfer

$$\vec{\Delta}_{\perp} \xleftarrow{\mathsf{FT}} \vec{b}_{\perp} : \mathsf{impact}$$

Deeply Virtual Compton Scattering

Transverse Momentum PDFs (TMDs)

$$\frac{1}{2} \int \frac{\mathrm{d}z^{-}\mathrm{d}^{2}z_{\perp}}{(2\pi)^{3}} e^{ik\cdot z} \langle p^{+}, -\frac{\vec{\Delta}_{\perp}}{2}, \Lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W}\psi(\frac{z}{2}) | p^{+}, \frac{\vec{\Delta}_{\perp}}{2}, \Lambda \rangle_{z^{+}}$$

Depend on

 $\Lambda, \Lambda', \Gamma$: nucleon and quark polarizations

$$x = \frac{k^+}{p^+}$$
: longitudinal momentum fraction

: parton transverse momentum k_{\perp}

Semi-Inclusive Deep Inelastic Scattering

=0

Generalized TMDs (GTMDs)

$$\frac{1}{2} \int \frac{\mathrm{d}z^{-} \mathrm{d}^{2} z_{\perp}}{(2\pi)^{3}} e^{ik \cdot z} \langle p^{+}, -\frac{\vec{\Delta}_{\perp}}{2}, \Lambda' | \bar{\psi}(-\frac{z}{2}) \Gamma \mathcal{W} \psi(\frac{z}{2}) | p^{+}, \frac{\vec{\Delta}_{\perp}}{2}, \Lambda \rangle$$

Depend on

 $\Lambda, \Lambda', \Gamma$: nucleon and quark polarizations

- $x = \frac{k^+}{p^+}$: longitudinal momentum fraction Δ
 - : momentum transfer

$$k_{\perp}$$
 : parton transverse momentum

Lorcé, BP, Vanderhaeghen, JHEP05 (2011) 041

each distribution contains unique information

the distributions in red vanish if there is no quark orbital angular momentum

the distributions in black survive in the collinear limit

Key information from TMDs

- Spin-Spin and Spin-Orbit Correlations of partons
- Transverse momentum size
- Test what we can calculate with QCD (perturbative and lattice)
- Non-perturbative structure we cannot calculate with QCD

A. Bressan: TMDs in experiments M. Boglione: TMD phenomenology

M. Contalbrigo: 3D future

How to measure the TMDs

 $\ell(l) + N(P) \to \ell(l') + h(P_h) + X$

 $\mathrm{d}\sigma \sim \sum \mathrm{TMD}(x,\vec{k}_{\perp}) \otimes \overline{\mathrm{TMD}}(x,\vec{k}_{\perp}) \otimes \mathrm{d}\hat{\sigma}_{hard}$

How to measure the TMDs

 $\mathrm{d}\sigma \sim \sum \mathrm{TMD}(x,\vec{k}_{\perp}) \otimes \overline{\mathrm{TMD}}(x,\vec{k}_{\perp}) \otimes \mathrm{d}\hat{\sigma}_{hard}$

Gauge link dependence of TMDs

$$\frac{1}{2} \int \frac{\mathrm{d}z^{-} \mathrm{d}^{2} z_{\perp}}{(2\pi)^{3}} e^{i(k^{+}z^{-} - \vec{k}_{\perp} \cdot \vec{z}_{\perp})} \langle p^{+}, 0_{\perp}, \Lambda' | \bar{\psi}(0) \gamma \langle p^{+} \rangle \langle p^{+}, 0_{\perp}, \Lambda' | \bar{\psi}(0) \gamma \langle p^{+} \rangle \langle p^{+}, 0_{\perp}, \Lambda' | \bar{\psi}(0) \gamma \langle p^{+} \rangle \langle p^{+}, 0_{\perp}, \Lambda' | \bar{\psi}(0) \gamma \langle p^{+} \rangle \langle p^{+}, 0_{\perp}, \Lambda' | \bar{\psi}(0) \gamma \langle p^{+} \rangle \langle p^{+}, 0_{\perp}, \Lambda' | \bar{\psi}(0) \gamma \langle p^{+} \rangle \langle p^{+}, 0_{\perp}, \Lambda' | \bar{\psi}(0) \gamma \langle p^{+} \rangle \langle p^{+}, 0_{\perp}, \Lambda' | \bar{\psi}(0) \gamma \langle p^{+} \rangle \langle p^{+}, 0_{\perp}, \Lambda' | \bar{\psi}(0) \gamma \langle p^{+} \rangle \langle p^{+}, 0_{\perp}, \Lambda' | \bar{\psi}(0) \gamma \langle p^{+} \rangle \langle p^{+}, 0_{\perp}, \Lambda' | \bar{\psi}(0) \gamma \langle p^{+} \rangle \langle p^{+}, 0_{\perp}, \Lambda' | \bar{\psi}(0) \gamma \langle p^{+} \rangle \langle p^{+}, 0_{\perp}, \Lambda' | \bar{\psi}(0) \gamma \langle p^{+} \rangle \langle p^{+}, 0_{\perp}, \Lambda' | \bar{\psi}(0) \gamma \langle p^{+} \rangle \langle p^{+}, 0_{\perp}, \Lambda' | \bar{\psi}(0) \gamma \langle p^{+} \rangle \langle p^{+}, 0_{\perp}, \Lambda' | \bar{\psi}(0) \gamma \langle p^{+} \rangle \langle p^{+} \rangle \langle p^{+}, 0_{\perp}, \Lambda' | \bar{\psi}(0) \gamma \langle p^{+} \rangle \langle p^{+} \rangle$$

Drell-Yan

GaugeLink $\psi(0, z^-, z_\perp) | p^+, 0_\perp, \Lambda \rangle$ γ^+

Gauge link dependence of TMDs

$$\frac{1}{2} \int \frac{\mathrm{d}z^{-} \mathrm{d}^{2} z_{\perp}}{(2\pi)^{3}} e^{i(k^{+}z^{-} - \vec{k}_{\perp} \cdot \vec{z}_{\perp})} \langle p^{+}, 0_{\perp}, \Lambda' | \bar{\psi}(0) \gamma \langle p^{+} \rangle \langle p^{+}, 0_{\perp}, \Lambda' | \bar{\psi}(0) \gamma \langle p^{+}, 0_{\perp}, \Lambda' | \bar{\psi$$

Sivers function SIDIS = - Sivers function Drell-Yan

Boer-Mulders function SIDIS = - Boer-Mulders function Drell-Yan

Strong QCD prediction. Needs to be tested.

Collins, PLB 536 (2002) 43

The unpolarized TMD f₁

Transverse momentum

The unpolarized TMD f₁

Flavor structure of TMDs: indications from lattice

Flavor structure of TMDs: indications from data

Ratio width of down valence/ width of up valence

> Signori, Bacchetta, Radici, Schnell, JHEP 1311 (13) talk of M. Boglione

Adding the spin

correlation between x, k_{\perp} and spin

Sivers tunction $g_{1T} = \frac{1}{g_1 \frac{1}{4} 6\pi^3} \frac{\operatorname{Re}\left[(\psi_{+}^+)\right]}{16\pi^3 \frac{1}{16\pi^3}}$

$f_{1T}^{\perp}|_{\text{SIDIS}} = -f_{1T}^{\perp}|_{\text{DY}}$

non-zero ONLY with final-state interaction

the helicity mismatch requires orbital angular momentum

$$= \frac{-(\psi^+)^*\psi^-}{\psi^+} = \frac{-(\psi^+)^*\psi^-}{\psi^-} = \frac{-(\psi^+)^*\psi^-}{\psi^$$

Paste, present and future TMD measurements

Accardi et al., The Electron Ion Collider: the next QCD Frontier arXiv:1212.1701

talks of A. Bressan, M. Boglione and M. Contalbrigo

Sivers function has been extracted

Torino 2012 update

adapted by Stefano Melis from Anselmino et al., PRD**86** (2012) 014028 Pavia 2011

Bacchetta, Radici, PRL107 (2011) 012001

talk of M. Boglione

Sivers function has been extracted

Torino 2012 update

adapted by Stefano Melis from Anselmino et al., PRD**86** (2012) 014028 Pavia 2011

Bacchetta, Radici, PRL107 (2011) 012001

talk of M. Boglione

distribution of unpolarized q in \perp polarized p[†]

deformation induced by Sivers function

Bacchetta & Contalbrigo, The proton in 3D Il Nuovo Saggiatore 28 (12) n.1,2

Key information from GPDs

- Transverse position size
- Decomposition of Form Factors w.r.t. x
- Sum rule for Angular Momentum
- Access to Form Factors of Energy Momentum Tensor \longrightarrow "mechanical" properties of the nucleon

S. Pisano: GPDs in experiments

M. Guidal: GPD phenomenology

M. Contalbrigo: 3D future

How to measure the GPDs

accessible in exclusive reactions
factorization for large Q², |t|<< Q², W²
depend on 3 variables: x, ξ, t

Compton Form Factors $\operatorname{Im} \mathcal{H}(\xi, t) \stackrel{\operatorname{LO}}{=} \mathcal{H}(\xi, \xi, t)$ $\operatorname{Re} \mathcal{H}(\xi, t) \stackrel{\operatorname{LO}}{=} \mathcal{P} \int_{-1}^{1} \mathrm{d}x \ \operatorname{H}(x, \xi, t) \frac{1}{x - \xi}$

Paste, present and future DVCS experiments

Accardi et al., The Electron Ion Collider: the next QCD Frontier arXiv:1212.1701

See talks of S. Pisano, M. Guidal, M. Contalbrigo

The unpolarized GPD H

$$F_1(t) = \int \mathrm{d}x \, H(x, 0, t)$$

As $x \rightarrow 1$, the active parton carries all the momentum and represents the centre of momentum

extrapolation from data

Negele et al., NPB Proc. Suppl. 128 (2004) 170

From experimental data

Guidal et al., Rep. Prog. Phys. 76 (2013) 066202

Unpolarized quarks the set of the post nucleon

 $f_{1T}^{\perp} = \frac{1}{16\pi^{3}} \operatorname{Im} \left[(\psi_{+}^{+})^{*} \psi_{-}^{-} \right]$ $\text{'Helicity mismatch'' requires } +, L_{z}^{+}, L_{z}^{-} +, (L^{+}, (L_{z}^{+}+1)) +, L_{z}^{+} \right]$ $+, L_{z}^{+}, L_{z}^{-} +, (L_{z}^{+}+1) +, (L_{z}^{$

•
$$F_2(t) = \int \mathrm{d}x \, E(x,\xi,t)$$

•no-forward limit to PDF

unpolarized quarks in \perp pol. nucleon "partner" of Sivers function

Unpolarized quarks the set of the point of t

 $f_{1T}^{\perp} = \frac{1}{16\pi^3} \operatorname{Im} \left[(\psi_{+}^{+})^* \psi_{-}^{-} \right] + (\psi_{-}^{+})^* \psi_{-}^{-} \right]$ $\begin{array}{l} \text{"Helicity mismatch" requires} \\ \text{orbital angular momentum} \\ + (L_z) + (L_z) + (L_z) + (L_z) + (L_z) \right]$

•
$$F_2(t) = \int \mathrm{d}x \, E(x,\xi,t)$$

•no-forward limit to PDF

Transverse dipole moment:

$$d_y^q = \frac{\kappa^q}{2M}$$

 $\kappa^{u} = 1.86 \quad \kappa^{d} = -1.57$

quark contribution to proton anomalous magnetic moment

Goeckeler et al., Phys. Rev. Lett. 98 (2007) 222001

unpolarized quarks in \perp pol. nucleon "partner" of Sivers function

unpolarized quark in unpolarized nucleon

Burkardt, PRD 66 (2002) 114005

unpolarized quark in transversely pol. nucleon

Distortion in impact parameter (related to GPD E)

 \wedge

Distortion in transverse momentum (related to Sivers function)

Burkardt, PRD 66 (2002) 114005

 $-\int d^{2}\vec{k}_{T} k_{T}^{i} \frac{\epsilon_{T}^{jk} k_{T}^{j} S_{T}^{k}}{M} f_{1T}^{\perp q}(x, \vec{k}_{T}^{2}) \simeq \int d^{2}\vec{b}_{T} \mathcal{I}^{q,i}(x, \vec{b}_{T}) \frac{\epsilon_{T}^{jk} b_{T}^{j} S_{T}^{k}}{M} \left(\begin{array}{c} \mathcal{E}^{q}(x, \vec{b}_{T}^{2}) \end{array} \right)'$ Sivers function Lensing function F.T. of E(x,0,t)

Successful phenomenological applications: Bacchetta, Radici, PRL **107** (2011) 212001 Gamberg, Schlegel, PLB **685** (2010) 95

Burkardt, PRD 66 (2002) 114005

Angular Momentum Relation ("Ji's Sum Rule")

quark and gluon contribution to the nucleon spin

Proton spin decomposition

$$\frac{1}{2}\Delta\Sigma \text{ from DIS} \\ J^q = L^q + S^q$$

gauge invariant decomposition

X. Ji, PRL **78** (1997) 610

 $(x, 0, 0) + E^{q, g}(x, 0, 0)$

not directly accessible

 J^g

no further gauge-invariant decomposition

Angular Momentum Relation ("Ji's Sum Rule")

quark and gluon contribution to the nucleon spin

$$J^{q,g} = \frac{1}{2} \int_{-1}^{1} \mathrm{d}x \, x \left(\begin{array}{c} H^{q,g}(x) \\ \downarrow \end{array} \right)$$
unpolarized PDF

Proton spin decomposition

$$\frac{1}{2}\Delta\Sigma \text{ from DIS} \\ J^q = L^q + S^q$$

gauge invariant decomposition

X. Ji, PRL **78** (1997) 610

 $(x, 0, 0) + E^{q, g}(x, 0, 0)$

not directly accessible

 J^g

no further gauge-invariant decomposition

Angular Momentum Relation ("Ji's Sum Rule")

quark and gluon contribution to the nucleon spin

$$J^{q,g} = \frac{1}{2} \int_{-1}^{1} \mathrm{d}x \, x \left(\begin{array}{c} H^{q,g}(x) \\ \downarrow \end{array} \right)$$
unpolarized PDF

Proton spin decomposition

$$\frac{1}{2}\Delta\Sigma \text{ from DIS} \\ J^q = L^q + S^q$$

gauge invariant decomposition sum rule for L^q from twist-3 GPDs \longrightarrow talk of S. Pisano

X. Ji, PRL **78** (1997) 610

 $(x, 0, 0) + E^{q, g}(x, 0, 0)$

not directly accessible

 J^g

no further gauge-invariant decomposition

Lattice Calculations of Angular Momentum

 $L^u + L^d \approx 33\%$

Deka et al., PRD 91 (2015) 014505

Different definitions of OAM

Ji's sum rule

Pros:

- Each term is gauge invariant
- Accessible in DIS and DVCS
- Can be calculated in Lattice QCD

Cons:

- Does not satisfy canonical commutation relations
- No decomposition of J_g in spin and orbital part

Improvements:

• Complete decomposition

 $J^g = L^g + \Delta g$

Lorcé, Leader, Phys. Rep. 541 (2014) 163

Jaffe-Manohar

Pros:

- Satisfies canonical relations
- Complete decomposition

Cons:

- Gauge-variant decomposition
- Missing observables for the OAM
- $(\Delta g \text{ and } \Delta \Sigma \text{ measured by} COMPASS, HERMES , RHIC)$

Improvements:

• OAM accessible via Wigner distributions and it can be calculated on the lattice

 $\ell_z^q = \int \mathrm{d}x \,\mathrm{d}^2 \vec{k}_\perp \,\mathrm{d}^2 \vec{b}_\perp (\vec{b}_\perp \times \vec{k}_\perp) \rho_{LU}^q (\vec{b}_\perp, \vec{k}_\perp, x)$

Wigner distribution for Unpolarized quark in a Longitudinally pol. nucleon

Lorcé, BP, PRD 84 (2011) 014015

$$\ell_z^q = \int \mathrm{d}x \,\mathrm{d}^2 \vec{k}_\perp \mathrm{d}^2 \vec{b}_\perp (\vec{b}_\perp \times \vec{k}_\perp) \rho_{LU}^q (\vec{b}_\perp, \vec{k}_\perp, x) = \int \mathrm{d}^2 \vec{b}_\perp \vec{b}_\perp \times \langle \vec{k}_\perp^q \rangle \longrightarrow \langle \vec{k}_\perp^q \rangle = \int \mathrm{d}x \,\mathrm{d}\vec{k}_\perp \,\vec{k}_\perp \rho_{LU}^q (\vec{b}_\perp, \vec{k}_\perp, x)$$

Lorcé, BP, PRD 84 (2011) 014015

$$\ell_z^q = \int \mathrm{d}x \,\mathrm{d}^2 \vec{k}_\perp \mathrm{d}^2 \vec{b}_\perp (\vec{b}_\perp \times \vec{k}_\perp) \rho_{LU}^q (\vec{b}_\perp, \vec{k}_\perp, x) = \int \mathrm{d}^2 \vec{b}_\perp \vec{b}_\perp \times \langle \vec{k}_\perp^q \rangle \longrightarrow \langle \vec{k}_\perp^q \rangle = \int \mathrm{d}x \,\mathrm{d}\vec{k}_\perp \,\vec{k}_\perp \rho_{LU}^q (\vec{b}_\perp, \vec{k}_\perp, x)$$

Results in a light-front constituent quark model:

Lorcé, BP, PRD **84** (2011) 014015 Lorcé, BP, Xiong, Yuan, PRD **85** (2012) 114006

$$\ell_z^q = \int \mathrm{d}x \,\mathrm{d}^2 \vec{k}_\perp \mathrm{d}^2 \vec{b}_\perp (\vec{b}_\perp \times \vec{k}_\perp) \rho_{LU}^q (\vec{b}_\perp, \vec{k}_\perp, x) = \int \mathrm{d}^2 \vec{b}_\perp \vec{b}_\perp \times \langle \vec{k}_\perp^q \rangle \longrightarrow \langle \vec{k}_\perp^q \rangle = \int \mathrm{d}x \,\mathrm{d}\vec{k}_\perp \,\vec{k}_\perp \rho_{LU}^q (\vec{b}_\perp, \vec{k}_\perp, x)$$

Results in a light-front constituent quark model:

Lorcé, BP, PRD **84** (2011) 014015 Lorcé, BP, Xiong, Yuan, PRD **85** (2012) 114006

Status of spin sum rule

de Florian, Sassot, Stratmann, Vogelsang, PRL 113 (14) NNPDF, Ball... Nocera... NPB 887 (14), Tab. 12, 13

Status of spin sum rule

Status of spin sum rule

Form factors of Energy Momentum tensor

$$\langle P'|T^{Q,G}_{\mu\nu}|P\rangle = \bar{u}(P')[M^{Q,G}_{2}(t)\frac{P_{\mu}P_{\nu}}{M_{N}} + J^{Q,G}(t)\frac{i(P_{\mu}\sigma_{\nu\rho} + P_{\nu}\sigma_{\mu\rho})\Delta^{\rho}}{2M_{N}} + d^{Q,G}_{1}(t)\frac{\Delta_{\mu}\Delta_{\nu} - g_{\mu\nu}\Delta^{2}}{5M_{N}} \pm \bar{c}(t)g_{\mu\nu}]u(P)$$

Form factors of Energy Momentum tensor

$$T^{\mu\nu} = \begin{bmatrix} T^{00} & T^{01} & T^{0} \\ T^{10} & T^{11} & T^{1} \\ T^{20} & T^{21} & T^{2} \\ T^{30} & T^{31} & T^{3} \\ \end{bmatrix}$$

$$\langle P'|T^{Q,G}_{\mu\nu}|P\rangle = \bar{u}(P')[M^{Q,G}_{2}(t)\,\frac{P_{\mu}P_{\nu}}{M_{N}} + J^{Q,G}(t)\,\frac{i(P_{\mu}\sigma_{\nu\rho} + P_{\nu}\sigma_{\mu\rho})\Delta^{\rho}}{2M_{N}} + d^{Q,G}_{1}(t)\,\frac{\Delta_{\mu}\Delta_{\nu} - g_{\mu\nu}\Delta^{2}}{5M_{N}} \pm \bar{c}(t)g_{\mu\nu}]u(P)$$

Relation with second-moments of GPDs:

$$\sum_{q} \int \mathrm{d}x \, x \, H^{q}(x,\xi,t) = M_{2}^{Q}(t) + \frac{4}{5} \, d_{1}^{Q}(t)\xi^{2}$$

$$\sum_{q} \int \mathrm{d}x \, x \, E^{q}(x,\xi,t) = 2J^{Q}(t) - M_{2}^{Q}(t) - \frac{4}{5} \, d_{1}^{Q}(t)\xi^{2}$$

n Density

ım Flux

"Charges" of the EM Tensor Form Factors at t=0
M₂(0) nucleon momentum carried by parton
J(0) angular momentum of partons
d₁(0) D-term related to "stability" of the nucleon

$$T_{ij}^{Q}(\vec{r}) = s(\vec{r}) \begin{pmatrix} \frac{r_{i}r_{j}}{r^{2}} - \frac{1}{3}\delta_{ij} \end{pmatrix} + p(\vec{r}) \delta_{ij}$$

$$\downarrow$$
shear forces
$$\downarrow$$

$$d_{1}^{Q}(0) = 5\pi M_{N} \int_{0}^{\infty} \mathrm{d}r \, r^{4} \, p(r)$$

"mechanical properties" of nucleon

M. Polyakov, PLB **555** (2003) 57

Schweitzer et al., PRD 75 (2007) 094021

TMDs and GPDs provide different and complementary information and need to talk to each other to reconstruct the full 3D picture of the nucleon

Recent achievement

European Research Council

Established by the European Commission

ERC press release 12.03.2015

3DSPIN

- Alessandro Bacchetta ERC Consolidator grant University of Pavia + INFN
- 3 PhD students
- 3 Post-docs