
CUDA in NA62

Workshop di CCR: La Biodola 2016

Luca Pontisso (INFN)

on behalf of GAP and NaNet collaborations

L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 2

Overview

• Quick glance to GPU

• CUDA: a parallel computing platform/programming model

• Physics case:
GPU based L0 trigger for NA62 RICH detector

• Algorithms implemented

• Histogram

• Almagest

• Concluding remarks

L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 3

Graphics Processing Unit (GPU)

• Faster evolution with respect to
traditional CPU

• Easy to have a desktop PC with teraflops
of computing power, with thousands of
cores.

• GPU’s advanced capabilities were originally used primarily for 3D game
rendering

• Since 2007 high-Level programming languages (CUDA, OpenCL) have been
introduced

• Now this devices are largely deployed in General Purpose applications
(GPGPU)

• Based on a massively parallel
architecture

• Thousands of cores to process
parallel workloads efficiently

• A general purpose parallel computing platform and programming
model

• It allows developers to use C as a high-level programming language

• Supporting various languages and application programming interfaces

• CUDA extends C defining functions (kernels) that, when called, are
executed N times in parallel by N different CUDA threads,

L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 4

CUDA

L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 5

Memory hierarchy

registers

But... inside a warp:
• Inter thread communication
 Shuffle/Vote functions

• Implicit synchronization

L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 6

Physics case: Low Level Trigger system in NA62

 ννπK

• Measurement of
ultra-rare decay

• L0 trigger: synchronous level must reduce rate from 10 MHz to 1 MHz

• 1 ms max. latency

• Kaon decays in flight

• High intensity
unseparated hadron
beam (6% kaons)

(BR ~8x10-11)

L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 7

NA62 DAQ and Trigger

April 15th, 2012

L0 trigger

Trigger primitives

Data

CDR

O(kHz)

GigaEth SWITCH

L1/L2
 PC

RICH MUV CEDAR LKR STRAWS LAV

L0TP

L0

1 MHz

1
MHz

10
MHz

10
MHz

L1/L2
 PC

L1/L2
 PC

L1/L2
 PC

L1/L2
 PC

L1/L2
 PC

L1/L2
 PC

100 kHz

L1 trigger

L1
/2

NA62 Rich detector
• Distinguish between pions
and muons from 15 to 35
GeV (inefficiency < 1%)

• 2 spots of 1000 PMs each

• 2 read-out boards for each

Rings reconstruction on GPU

L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 8

GPU-based L0 trigger general scheme

L. Pontisso – INFN WORKSHOP DI CCR 2016 24/02/2016 9

Latency communication problem

Total latency dominated by double
copy in Host RAM:

• Data are copied from kernel buffer
to destination buffer in user space

• Data are copied from CPU memory
to GPU memory

How to reduce data transfer time:

• DMA (Direct Memory Access) from
the network channel directly in
GPU memory

• Custom management of NIC buffers

GPU

GPU
MEM

Chipset

CPU
SYSTEM

MEM

PCIe

GbE
ReadOut
board

L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 10

NaNet: a PCIe NIC family for HEP

OBJECTIVES:

• Bridging the front-end
electronics and the software
trigger computing nodes.

• Supporting multiple link,
multiple network protocols.

• Low and stable communication
latency.

• Having a high bandwidth.

• Processing data streams from
detectors on the fly.

• Optimizing data transfers with
GPU accelerators.

NaNet-10 at CERN

Developed at INFN Roma APE Lab

L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 11

NaNet: GPUDirect and Software

Host

• Linux Kernel Driver

• User space Library

(open/close, buf reg,

wait recv evts, …)

Nios II Microcontroller

• Single process program

performing System Configuration

& Initialization tasks

• GPUDirect allows direct data

exchange on the PCIe bus with no

CPU involvement

• No bounce buffers on host memory

• Zero copy I/O

• Buffers on GPU arranged in a

circular list of persistent receiving

buffers (CLOP)

• nVIDIA Fermi/Kepler/Maxwell

L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 12

Don’t do it in GPU

Merging the events coming from the RICH on GPU… NO WAY

• it requires synchronization and serialization

• computing kernel launched after merging

L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 13

Merging in HW - indexing events in GPU

• Merging stage will be performed in HW

• Events are arranged in CLOPs with a new format more suitable for GPU’s
threads memory access Multi Merged Event GPU Packet (M2EGP).

• Problem: searching for events position inside a CLOP using 1 thread
on GPU takes > 100us for hundreds of events

• Solution: it must be parallelized. We can use all the threads looking
for a known bytes pattern at the begin of every event: it takes
~ 35us for 1000 events in a buffer

PATTERN

L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 14

L0 RICH trigger algorithm

Requirements for an on-line RICH reconstruction algorithm:

• Trackless
 No information from the tracker
 Difficult to merge information from many detectors at L0
• Multi-rings
 Many-body decay in the RICH acceptance
• Fast
 Events rate at ~10 MHz
• Low latency
 Online (synchronous) trigger
• Accurate
 Offline resolution required

L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 15

Histogram: a pattern recognition algorithm

• XY plane divided into a grid

• An histogram is created with distances from
these points and hits of the physics event

• Rings are identified looking at distance bins
whose contents exceed a threshold value

Pros: naturally mapped on the GPU threads grid

Cons: memory limited, performances depending on number of hits

Element of the grid <--> thread Event <--> block

L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 16

Histogram: a pattern recognition algorithm

First implementation
16x16 grid -> 256 threads x event

2-step implementation
8x8 grid -> 64 threads x event

4x4 grid only around maximum

• More blocks run concurrently
• Increased precision

L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 17

Histogram: a pattern recognition algorithm

Good quality of online ring fitting

Testing histogram kernel with MC data

L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 18

Almagest: a new multi-ring algorithm

Based on Ptolemy’s theorem:

“A quadrilater is cyclic (the vertex lie on a
circle) if and only if is valid the relation:
AD*BC+AB*DC=AC*BD”

L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 19

Almagest: a new multi-ring algorithm

This algorithm exposes
two levels of parallelism…

L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 20

Almagest: a new multi-ring algorithm

• Several triplets run in parallel

• Several events at the same time

L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 21

Almagest: selecting triplets on GPU

64 hits per events
Sort in both x and y

Coordinates stored in
built-in types float2

No multiple kernels

1 thread <-> 1 hit
2 warps
Shared memory is needed

1 thread <-> 2 hit
1 warp
Sorting using «shuffle»
btw threads
No shared memory
No __syncthreads()

L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 22

Almagest: selecting triplets on GPU

nvcc -m64 --ptxas-options=-v -O2 -arch=sm_35

ptxas info : Compiling entry function '_Z5sortfv' for 'sm_35'
ptxas info : Function properties for _Z5sortfv
 0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 17 registers, 24576 bytes smem, 320 bytes cmem[0]

nvcc -m64 --ptxas-options=-v -O2 -arch=sm_35

ptxas info : Compiling entry function '_Z5sortfv' for 'sm_35'
ptxas info : Function properties for _Z5sortfv
 0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads
ptxas info : Used 21 registers, 320 bytes cmem[0]

More resources available for the computing stage...

L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 23

Almagest

Vote function... ballot

1 thread <-> 1 hit
2 warps

Every thread checks if
Tolomeo’s condition is satisfied
starting with one of the triplets
previously found

Shared memory and barrier synchronization
because of working with 2 warps

Vote function __ballot()
Results propagated through the warp

L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 24

Almagest

• Tesla K20c

• Only computing time

• <0.5 us per event (multi-rings) for large
buffers

L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 25

Concluding remarks

• Tested a working solution with the NaNet-1 board during NA62 2015 Run

• Merging events on GPU not feasible

• Multi-ring algorithms such as Histogram and Almagest are implemented
on GPU

 There is still room for improvement -> Optimize computing kernels

• The GPU-based L0 trigger with the new board NaNet-10 is installed and
being currently tested during the 2016 run

Thank You

(a) INFN Sezione di Roma
(b) INFN Sezione di Roma Tor Vergata
(c) INFN - Laboratori Nazionali di Frascati
(d) INFN Sezione di Ferrara
(e) Università di Ferrara
(f) INFN Sezione di Pisa
(g) Università di Pisa

R. Ammendola (b), A. Biagioni(a),
S. Chiozzi(d), A. Cotta Ramusino(d),
S. Di Lorenzo(f,g) , R. Fantechi(f),
M. Fiorini(d,e), O. Frezza(a),
G. Lamanna(c), F. Lo Cicero(a),
A. Lonardo (a), M. Martinelli(a),
I. Neri(d), P.S. Paolucci(a),
E. Pastorelli(a), R. Piandani(f),
L. Pontisso(f), F. Simula(a),
M. Sozzi(f,g), P. Vicini(a).

