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Overview 

• Quick glance to GPU 

• CUDA: a parallel computing platform/programming model 

• Physics case: 
GPU based L0 trigger for NA62 RICH detector 

• Algorithms implemented 

• Histogram 

• Almagest 

• Concluding remarks 
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Graphics Processing Unit (GPU) 

• Faster evolution with respect to 
traditional CPU 

• Easy to have a desktop PC with teraflops 
of computing power, with thousands of 
cores. 

• GPU’s advanced capabilities were originally used primarily for 3D game 
rendering 

• Since 2007 high-Level programming languages (CUDA, OpenCL) have been 
introduced 

• Now this devices are largely deployed in General Purpose applications 
(GPGPU) 

• Based on a massively parallel 
architecture 

• Thousands of  cores to process 
parallel workloads efficiently 
 

 



• A general purpose parallel computing platform and programming 
model 

• It allows developers to use C as a high-level programming language 

• Supporting various languages and application programming interfaces 
 
 
 
 
 
 
 
 
 

• CUDA extends C defining functions (kernels) that, when called, are 
executed N times in parallel by N different CUDA threads, 
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CUDA 
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Memory hierarchy 

registers 

But... inside a warp: 
• Inter thread communication 
      Shuffle/Vote functions 

• Implicit synchronization  
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Physics case: Low Level Trigger system in NA62 

 ννπK

• Measurement of 
ultra-rare decay 

• L0 trigger: synchronous level  must reduce rate from 10 MHz to 1 MHz 

• 1 ms max. latency 

• Kaon decays in flight 

• High intensity 
unseparated hadron 
beam (6% kaons) 
 

(BR ~8x10-11) 



L. Pontisso – INFN WORKSHOP DI CCR 2016 20/05/2016 7 

NA62 DAQ and Trigger 

April 15th, 2012 

L0 trigger 

Trigger primitives 
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NA62 Rich detector 
• Distinguish between pions 
and muons from 15 to 35 
GeV (inefficiency < 1%) 

• 2 spots of 1000 PMs each 

• 2 read-out boards for each 

Rings reconstruction on GPU 
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GPU-based L0 trigger general scheme 



L. Pontisso – INFN WORKSHOP DI CCR 2016 24/02/2016 9 

Latency communication problem 

Total latency dominated by double 
copy in Host RAM: 

• Data are copied from  kernel buffer 
to destination buffer in user space  

• Data are copied from CPU memory 
to GPU memory 

 
How to reduce data transfer time: 

• DMA (Direct Memory Access) from 
the network channel directly in 
GPU memory 

• Custom management of NIC buffers 
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NaNet: a PCIe NIC family for HEP 

OBJECTIVES: 

• Bridging the front-end 
electronics and the software 
trigger computing nodes. 

• Supporting multiple link, 
multiple network protocols. 

• Low and stable communication 
latency. 

• Having a high bandwidth. 

• Processing data streams from 
detectors on the fly. 

• Optimizing data transfers with 
GPU accelerators.  
 

NaNet-10 at CERN 

Developed at INFN Roma APE Lab 
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NaNet: GPUDirect and Software 

Host 

• Linux Kernel Driver  

• User space Library  

(open/close, buf reg,  

wait recv evts, …) 

Nios II Microcontroller  

• Single process program 

performing System Configuration 

& Initialization tasks  

• GPUDirect allows direct data 

exchange on the PCIe bus with no 

CPU involvement 

• No bounce buffers on host memory 

• Zero copy I/O 

• Buffers on GPU arranged in a 

circular list of persistent receiving 

buffers (CLOP)  

• nVIDIA Fermi/Kepler/Maxwell 
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Don’t do it in GPU 

Merging the events coming from the RICH on GPU… NO WAY 

• it requires synchronization and serialization 

• computing kernel launched after merging  
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Merging in HW - indexing events in GPU 

• Merging stage will be performed in HW 

• Events are arranged in CLOPs with a new format  more suitable for GPU’s 
threads memory access Multi Merged Event GPU Packet (M2EGP). 

• Problem: searching for events position inside a CLOP using 1 thread 
on GPU takes > 100us for hundreds of events 

• Solution:  it must be parallelized. We can use all the threads looking 
for a known bytes pattern at the begin of every event: it takes 
~ 35us for 1000 events in a buffer 
 

PATTERN 
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L0 RICH trigger algorithm 

Requirements for an on-line RICH reconstruction algorithm: 

• Trackless 
 No information from the tracker 
 Difficult to merge information from many detectors at L0 
•  Multi-rings 
 Many-body decay in the RICH acceptance 
• Fast 
 Events rate at ~10 MHz 
• Low latency 
 Online (synchronous) trigger 
• Accurate 
 Offline resolution required 
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Histogram: a pattern recognition algorithm 

• XY plane divided into a grid 

• An histogram is created with distances from 
these points and hits of the physics event 

• Rings are identified looking at distance bins 
whose contents exceed a threshold value 

Pros: naturally mapped on the GPU threads grid 

  

Cons:  memory limited, performances depending on number of hits 
 

Element of the grid <--> thread Event <--> block 
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Histogram: a pattern recognition algorithm 

First implementation 
16x16 grid -> 256 threads x event 

2-step implementation 
8x8 grid -> 64 threads x event 

4x4 grid only around maximum 
 

• More blocks run concurrently 
• Increased precision 
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Histogram: a pattern recognition algorithm 

Good quality of online ring fitting 

Testing histogram kernel with MC data 
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Almagest: a new multi-ring algorithm 

Based on Ptolemy’s theorem: 

“A quadrilater is cyclic (the vertex lie on a 
circle) if and only if is valid the relation: 
AD*BC+AB*DC=AC*BD” 
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Almagest: a new multi-ring algorithm 

This algorithm exposes 
two levels of parallelism… 
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Almagest: a new multi-ring algorithm 

• Several triplets run in parallel 

• Several events at the same time 
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Almagest: selecting triplets on GPU 

64 hits per events 
Sort in both x and y 

Coordinates stored in 
built-in types float2 

No multiple kernels 

1 thread <-> 1 hit 
2 warps 
Shared memory is needed 
 

1 thread <-> 2 hit 
1 warp 
Sorting using «shuffle» 
btw threads 
No shared memory 
No __syncthreads() 
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Almagest: selecting triplets on GPU 

nvcc -m64 --ptxas-options=-v -O2 -arch=sm_35  .... 
 
ptxas info    : Compiling entry function '_Z5sortfv' for 'sm_35' 
ptxas info    : Function properties for _Z5sortfv 
    0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads 
ptxas info    : Used 17 registers, 24576 bytes smem, 320 bytes cmem[0] 

nvcc -m64 --ptxas-options=-v -O2 -arch=sm_35  .... 
 
ptxas info    : Compiling entry function '_Z5sortfv' for 'sm_35' 
ptxas info    : Function properties for _Z5sortfv 
    0 bytes stack frame, 0 bytes spill stores, 0 bytes spill loads 
ptxas info    : Used 21 registers, 320 bytes cmem[0] 

More resources available for the computing stage... 
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Almagest 

Vote function... ballot 

1 thread <-> 1 hit 
2 warps 

Every thread checks if 
Tolomeo’s condition is satisfied 
starting with one of the triplets 
previously found 

Shared memory and barrier synchronization 
because of working with 2 warps  

Vote function __ballot() 
Results propagated through the warp  
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Almagest 

• Tesla K20c 

• Only computing time 

• <0.5 us per event (multi-rings) for large 
buffers  
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Concluding remarks 

• Tested a working solution with the NaNet-1 board during NA62 2015 Run 

• Merging events on GPU not feasible 

• Multi-ring algorithms such as Histogram and Almagest are implemented 
on GPU 

 There is still room for improvement  -> Optimize computing kernels 

• The GPU-based L0 trigger with the new board NaNet-10 is installed and 
being currently tested during the 2016 run 
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