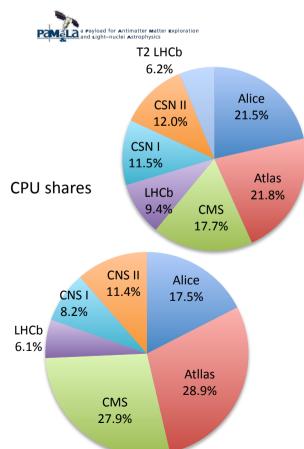
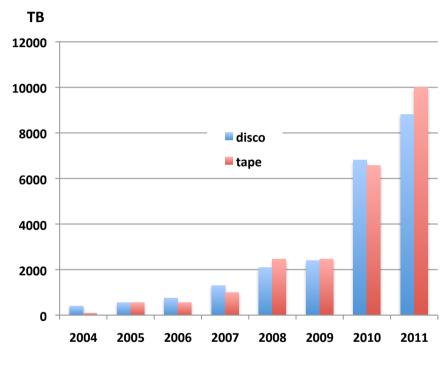

The Storage @ INFN Tier1: status and perspective

Luca dell'Agnello INFN-CNAF Ferrara, July 6 2011

INFN-CNAF

Year	CPU power [HS06]	Disk Space [PB]	Tape Space [PB]
2009	23k	2.4	2.5
2010	68k	6.6	6.6
2011	86K	9	10




CNAF is the central computing facility of INFN

- Italian Tier-1 computing centre for the LHC experiments ATLAS, CMS, ALICE and LHCb...
- ... but also one of the main Italian processing facilities for several other experiments:
 - BaBar and CDF
 - Astro and Space physics
 - VIRGO (Italy), ARGO (Tibet), AMS (Satellite), PAMELA (Satellite), AUGER (Argentina) and MAGIC (Canary Islands)
 - More...
- Also the main computing center for SuperB Object Shares

Our starting point

- INFN Tier1 since 2002-2003
- Goal: find a common storage solution for all experiments (VOs)
 - Fitting LHC VOs requirements...
 - Scalable up to O(10) PB
 - Offering HSM capabilities to dynamically archive and recall files from tape
 - Thousands of concurrent accesses
 - Aggregate throughput: O(10) GB/s
 - ...but also flexible for non LHC experiments requirements
 - Enabling both local and grid access
 - Overall requirements: easiness of management, stability and high availability

Storage resources at Tier1

- Our first choice was CASTOR.....
 - In our experience not very stable and easy to manage
- then GEMSS a new HSM system based on GPFS (parallel fs by IBM)
 - Phase out of CASTOR started in 2007 and has been completed end of 2010

Why GPFS

Original idea since the very beginning: we did not like to rely on a tape centric system

- ◆ First think to the disk infrastructure, the tape part will come later (if still needed)
- the user load is on the disk anyway

We wanted to follow a model based on well established industry standard as far as the fabric infrastructure was concerned

◆ Storage Area Network via FC for disk-server to disk-controller interconnections

This lead quite naturally to the adoption of a clustered filesystem able to exploit the full SAN connectivity to implement flexible and highly available services

There was a (major) problem at that time: a specific SRM implementation was missing

◆ This lead to the development of StoRM

Basics of how GPFS works

The idea behind a parallel file-system is in general to stripe files amongst several servers and several disks

→ This means that, e.g., replication of the same (hot) file in more instances is useless → you get it "for free"

Any "disk-server" can access every single device with direct access

- ◆ Storage Area Network via FC for disk-server to disk-controller interconnection (usually a device/LUN is some kind of RAID array)
- ◆ In a few words, all the servers share the same disks, but a server is primarily responsible to serve via Ethernet just some disks to the computing clients
- ◆ If a server fails, any other server in the SAN can take over the duties of the failed server, since it has direct access to its disks

All file-system metadata can be saved on disk along with the data

- ◆ Dedicated fast disks for metadata improve performances
- ◆ Data and metadata are treated symmetrically, striping blocks of metadata on several disks and servers as if they were data blocks
- No need of external catalogues/DBs: it is a true file-system

Some GPFS key features

Very powerful (only command line, no other way to do it) interface for configuring, administering and monitoring the system

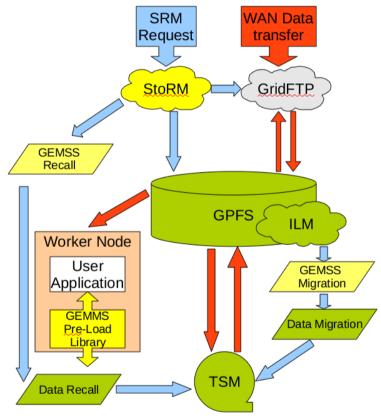
- ◆ In our experience this is the key feature which allowed to keep minimal manpower to administer the system
 - ◆ 1 FTE to control every operation (and scaling with increasing volumes is quite flat)
- ♦ Needs however some training to startup, it is not plug and pray... but documentation is huge and covers (almost) every relevant detail

100% POSIX compliant by design

Limited amount of HW resources needed (see later for an example)

Support for cNFS file-system export to clients (parallel NFS server solution with full HA capabilities developed by IBM)

Statefull connections between "clients" and "servers" are kept alive behind the data access (file) protocol


♦ No need of things like "reconnect" at the application level

Native HSM capabilities (not only for tapes, but also for multi-tiered disk storage)

GEMSS

- GEMSS is the integration of GPFS with StoRM and TSM providing a transparent grid-enabled HSM solution.
 - GPFS deployed on the SAN implements a full HA system
 - StoRM is an srm 2.2 implementation developed by INFN-CNAF
 - Already in use at INFN T1 since 2007 and at other centers for the disk-only storage
 - designed to leverage the advantages of parallel file systems and common POSIX file systems in a Grid environment
 - TSM is a tape back-end storage by IBM
- Native POSIX (i.e. access protocol 'file') for direct access from the farm
 - Possible to bypass srm for reading (speeding up the access)
- WAN access provided via gridftp
- Xrootd possible (just a protocol on top of the storage)
 - (Very) low efficiency of Alice jobs under investigation

Building blocks of GEMSS system

Disk-centric system with five building blocks

- 1. GPFS: disk-storage software infrastructure
- 2. TSM: tape management system
- 3. StoRM: SRM service
- 4. TSM-GPFS interface
- 5. Globus GridFTP: WAN data transfers

Present CNAF storage setup

 Disk storage (~ 9 PB under GEMSS) partitioned in several GPFS clusters

WAN

20Gbit

~60Gbit

Ethernet Core Switch

FARM

10Gbit

Largest file-systems in production: Atlas and CMS (2.2 PB)

One cluster for each (major) experiment with:

Several disk-servers (e.g. 8 for Atlas, 12 for CMŞ) for data (LAN)

Data NSD

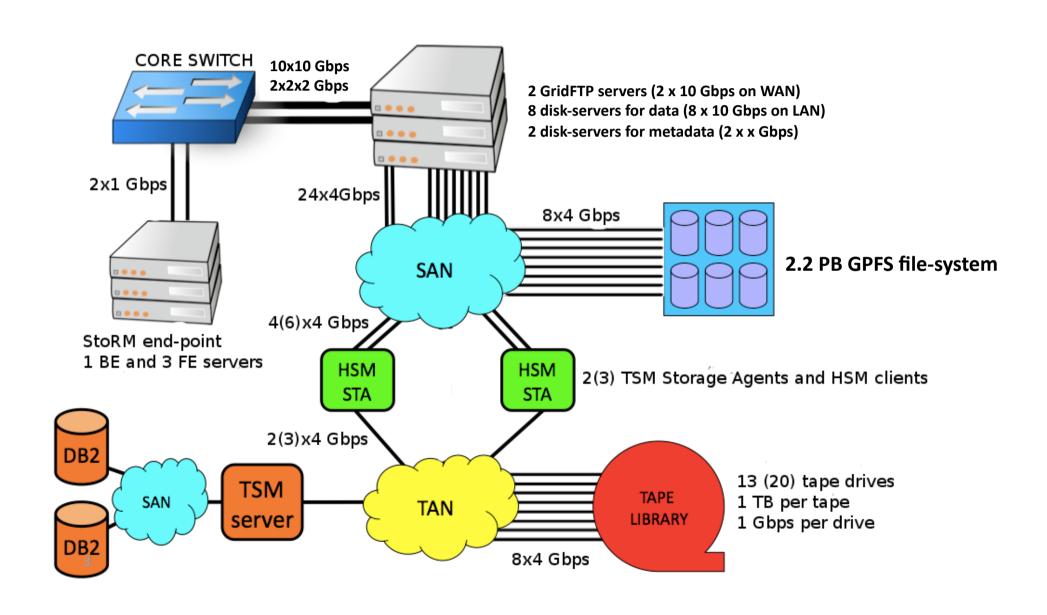
data

SATA drives

2 disk-servers for metadata

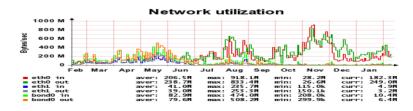
2-4 gridftp servers (WAN)

-1 storm end-point (1 BE + 2-4 FE's)

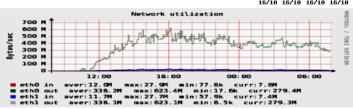

2-3 tsm-hsm servers (for access to tape)

Storage aggregate bw:

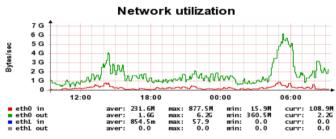
~ 40 GBps (10 GE servers)

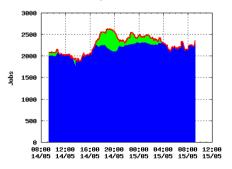

- 1 tape library Sl8500 (10 PB on line) with 20 T10Kb drives
 - 1 TB tape capacity, 1 Gbps of bandwidth for each drive
 - Drives interconnected to library and tsm-hsm servers via dedicated SAN (TAN)
 - TSM server common to all GEMSS instances
- All storage systems and disk-servers interconnected via SAN (FC4/ FC8)

GEMSS layout for a typical Experiment at INFN Tier-1



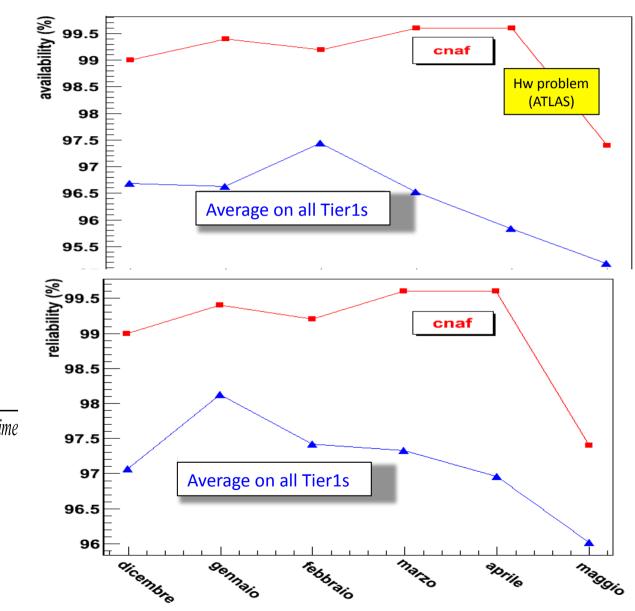
GEMSS in production


- Gbit technology (2009)
 - Using the file protocol (i.e. direct access to the file)
 - Up to 1000 concurrent jobs recalling from tape ~
 2000 files
 - 100% job success rate
 - Up to 1.2 GB/s from the disk pools to the farm nodes
- 10 Gbit technology (since 2010)
 - Using the file protocol
 - Up to 2500 concurrent jobs accessing files on disl
 - ~98% job success rate
 - Up to ~ 6 GB/s from the disk pools to the farm nodes
 - WAN links towards saturation

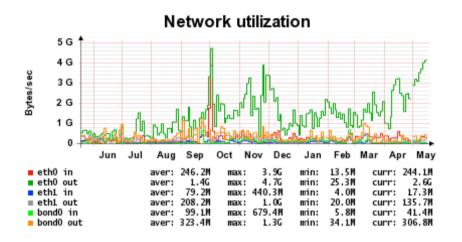


Aggregate traffic on eth0 network cards (x2)

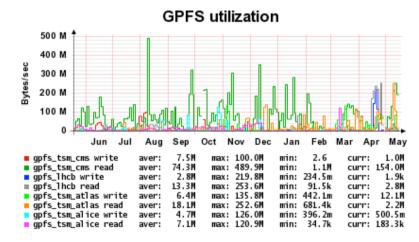
Farm- CMS storage traffic

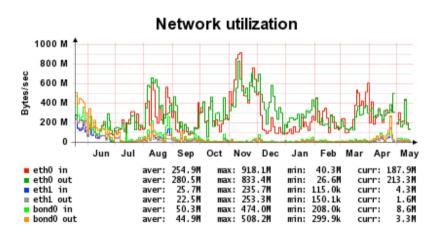

CMS queue (May 15)

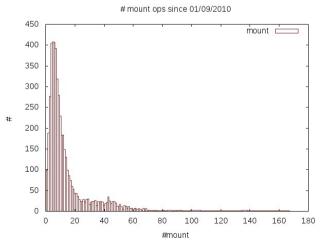
INFN T1 availability and reliability


$$availability = \frac{upTime}{totTime - unkTime}$$

From December 2010 to May 2011.


$$reliability = \frac{upTime}{totTime - scheddownTime - unkTime}$$


Yearly statistics


Aggregate GPFS traffic (file protocol)

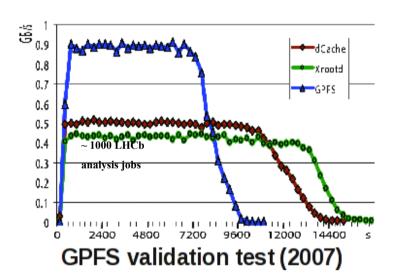
Tape-disk data movement (over the SAN)

Aggregate WAN traffic (gridftp)

Mounts/hour

What's next?

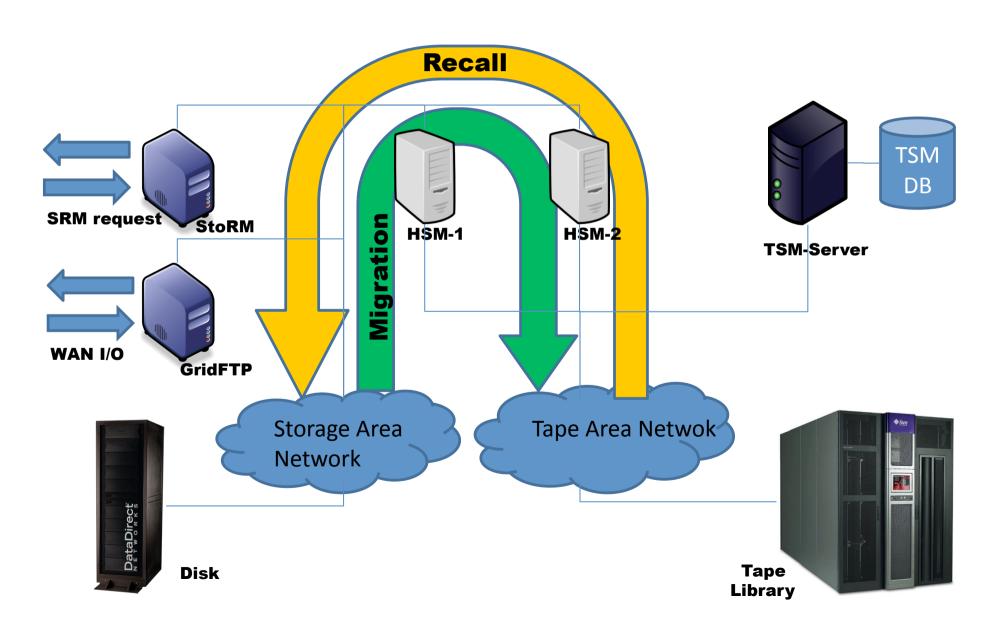
- Strategy: stay on standards (and keep it simple!)
- Parallel file-systems (and SAN) are in our opinion the right choice
 - GPFS is **now** the only viable solution to have also an HSM
 - Easiness of coupling with a tape system
 - But in the long term tapes will be used as a pure archive
- Looking for NFS 4.1 based solutions
 - Possibly integrated in the hw itself
 - Extreme simplification of the infrastructure
- http as a possible alternative to gridftp
 - This is part of EMI working plan for StoRM

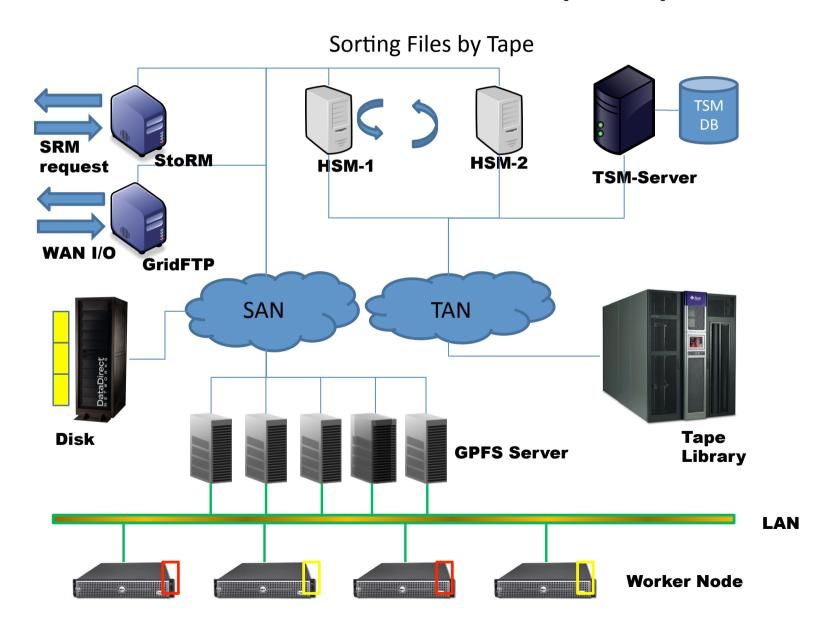

Summary of our experience

- Excellent stability of the system
 - Good feedback from experiments (not only LHC!)
- Reduced management effort
 - 4 FTE to manage and maintain all the system (sw layer, SAN, library, servers,...)
 - 9 PB of disk + 1x10 PB library
- Fabric infrastructure based on industry standards
 - Storage Area Network via FC for disk-server to disk-controller interconnections
 - clustered file-system (GPFS) to be able to fully exploit the SAN
 - Flexibility and HA by design
- Focus on standards also for data access.....
 - File protocol for local access
 - Gridftp for remote access
-but also flexible for legacy protocols
 - xrootd available (for Alice), bbftp for VIRGO etc..
- Looking now at new emerging standards for storage access
 - NFS 4.1 for parallel file-systems
 - http (webdav) for remote access

Backup slides

Mass Storage System at CNAF: the evolution (1)


- 2003: CASTOR chosen as MSS (and phased out Jan 2011)
 - Large variety of issues both at set-up/admin level and at VO's level (complexity, scalability, stability, support)
- 2007: start of a project to realize GEMSS, a new grid-enabled HSM solution based on industrial components (parallel file-system and standard archival utility)
 - StoRM adopted as SRM layer and extended to include the methods required to manage data on tape
 - GPFS and TSM by IBM chosen as building blocks
 - An interface between GPFS and TSM implemented (not all needed functionalities provided out of the box)


Mass Storage System at CNAF: the evolution (2)

- Q2 2008: First implementation (D1T1, the easy case) in production for LHCb (CCRC'08)
- Q2 2009: GEMSS (StoRM/GPFS/TSM), the full HSM solution, ready for production
- Q3 2009: CMS moving from CASTOR to GEMSS
- Q1 2010: the other LHC experiments moving to GEMSS
- End of 2010: all other experiments moved from CASTOR to GEMSS
 - All data present on CASTOR tapes copied to TSM tapes
 - CASTOR tapes recycled after data check

GEMSS data flow (1/2)

GEMSS data flow (2/2)

Storage resources

- 9 PB of disk on-line under GEMSS
 - 7 DDN S2A9950 (2 TB SATA disks for data, 300 GB SAS disks for metadata)
 - 7 EMC 3-80 + 1 EMC 4-960
- Max storage aggregate bw: ~ 40 GBps
 - LAN based on 10 Gbps Ethernet
 - ~ 40 10Gbps servers connected to core switch
 - ~ 60 1Gbps servers to aggregation switches
 - WAN: 2 x 10 Gbps links to OPN + 1 10 Gbps to GIN
 - ~ 10 10Gbps gridFtp servers + ~ 10 1 Gbps gridftp servers

- 1 TB tape capacity, 1 Gbps of bandwidth for each drive
- Drives interconnected to library and tsm-hsm servers via dedicated SAN (TAN)
- TSM server common to all GEMSS instances
- All storage systems and disk-servers interconnected via SAN (FC4/ FC8)

GEMSS in production for CMS

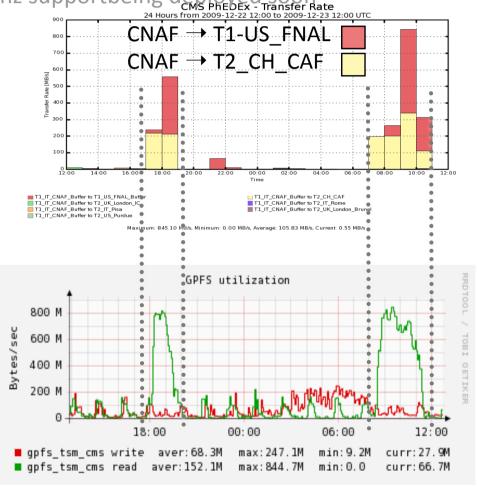
GEMSS went in production for CMS in October 2009

♦w/o major changes to the layout

only StoRM upgrade, with checksum and authz supportbeing deployed soon

also

Good-performance achieved in transfer throughput


- High use of the available bandwidth
- (up to 8 Gbps)

Verification with Job Robot jobs in different periods shows that CMS workflows efficiency was not impacted by the change of storage system

- "Castor + SL4" vs "TSM + SL4" vs "TSM + SL5"

As from the current experience, CMS gives a very positive feedback on the new system

Very good stability observed so far

