The H.E.S.S. Survey of the inner Galaxy

Christopher van Eldik • ECAP, University of Erlangen-Nürnberg • Germany CTA Summer School • Sexten • July 24-28, 2017

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

ERLANGEN CENTRE FOR ASTROPARTICLE PHYSICS

NATURWISSENSCHAFTLICHE FAKULTÄT

The High Energy Stereoscopic System

- H.E.S.S. Collaboration: 250 scientists, ~40 institutes, 13 countries
- Operating since 2003, upgrade 2012
- Khomas Highlands, Namibia (1836 m)

Sky Coverage (Galactic Coordinates)

The HAWC's view: mapping the TeV sky

The HAWC's view: mapping the TeV sky

The first H.E.S.S. survey

- 05/2004 07/2004 (112 h of data)
- [-30°, 30°] in longitude, [-3°, 3°] in latitude
- additional deep exposures of specific sources

REPORTS

A New Population of Very High Energy Gamma-Ray Sources in the Milky Way

F. Aharonian, ¹ A. G. Akhperjanian, ² K.-M. Aye, ³ A. R. Bazer-Bachi, ⁴
M. Beilicke, ⁵ W. Benbow, ¹ D. Berge, ¹ P. Berghaus, ^{6*} K. Bernlöhr, ^{1,7}
C. Boisson, ⁸ O. Bolz, ¹ C. Borgmeier, ⁷ I. Braun, ¹ F. Breitling, ⁷
A. M. Brown, ³ J. Bussons Gordo, ⁹ P. M. Chadwick, ³ L.-M. Chounet, ¹⁰
R. Cornils, ⁵ L. Costamante, ¹ B. Degrange, ¹⁰ A. Djannati-Ataï, ⁶
L. O'C. Drury, ¹¹ G. Dubus, ¹⁰ T. Ergin, ⁷ P. Espigat, ⁶ F. Feinstein, ⁹
P. Fleury, ¹⁰ G. Fontaine, ¹⁰ S. Funk, ¹† Y. A. Gallant, ⁹ B. Giebels, ¹⁰
S. Gillessen, ¹ P. Goret, ¹² C. Hadjichristidis, ³ M. Hauser, ¹³
G. Heinzelmann, ⁵ G. Henri, ¹⁴ G. Hermann, ¹ J. A. Hinton, ¹
W. Hofmann, ¹ M. Holleran, ¹⁵ D. Horns, ¹ O. C. de Jager, ¹⁵
I. Jung, ^{1,13} + B. Khélifi, ¹ Nu. Komin, ⁷ A. Konopelko, ^{1,7} I. J. Latham, ³

The first H.E.S.S. survey

- extend scan region both in longitude and latitude
- obtain homogeneous sensitivity
- follow-up source candidates, deep exposures of specific sources

- extend scan region both in longitude and latitude
- obtain homogeneous sensitivity
- follow-up source candidates, deep exposures of specific sources

- extend scan region both in longitude and latitude
- obtain homogeneous sensitivity
- follow-up source candidates, deep exposures of specific sources

- extend scan region both in longitude and latitude
- obtain homogeneous sensitivity
- follow-up source candidates, deep exposures of specific sources

- extend scan region both in longitude and latitude
- obtain homogeneous sensitivity
- follow-up source candidates, deep exposures of specific sources

- extend scan region both in longitude and latitude
- obtain homogeneous sensitivity
- follow-up source candidates, deep exposures of specific sources

- extend scan region both in longitude and latitude
- obtain homogeneous sensitivity
- follow-up source candidates, deep exposures of specific sources

- extend scan region both in longitude and latitude
- obtain homogeneous sensitivity
- follow-up source candidates, deep exposures of specific sources

10 years of surveying the Galaxy

- 2004-2013
- [65°, 250°] in longitude
 [-3.5°, 3.5°] in latitude
- 3000 hours exposure
- Energy > 200 GeV
- Angular resolution 0.08°
- Point source sensitivity < 1.5% Crab
- 78 sources
 (16 unpublished)

10 years of surveying the Galaxy

First comprehensive survey at TeV energies

Map construction

- Gamma-ray instruments are counting experiments
 → basic product is count map
- Largest background: residual cosmic ray events, must be subtracted or properly modelled
- here: estimate background of any position by ring around that position
- intermediate products:
 - original event map
 - background map
 - excess map
 - exposure map
 - significance map (Li+Ma)

High-level maps

- Flux maps (integrated >1 TeV)
 - 0.1° and 0.4° correlation radii
- Flux upper limit maps
- Sensitivity maps

$$\phi_{\rm ref}(E) = \phi_0 \left(\frac{E}{E_0}\right)^{-2.3}$$
$$N_{\rm ref} = T \cdot \int_{1 \text{ TeV}}^{\infty} \phi_{\rm ref}(E_{\rm r}) A_{\rm eff}(E_{\rm r}) dE_{\rm r}$$
$$F(>1 \text{ TeV}) = \frac{N_{\gamma}}{N_{\rm ref}} \int_{1 \text{ TeV}}^{\infty} \phi_{\rm ref}(E) dE$$

Sensitivity

- Out to which distance is a point source of certain flux detected?
- does not account for source overlap
- CTA prospects: will extend sensitivity to entire Galaxy

Large scale emission

truly diffuse emission Peak brightness $(10^{-9} \text{ cm}^{-2} \text{ s}^{-1} \text{ TeV}^{-1} \text{ sr}^{-1})$ Preliminary plus 6 unresolved 4 sources Peak latitude (deg) estimated 0.3 from regions 0.0 outside of -0.3 sources Gaussian width (deg) 0.4 0.2 0.0 Method Illustration 5 0 -5 40 20 340 320 300 280 0 Galactic Longitude (deg)

Catalog Construction

- model gamma-ray excess as
 - sum of Gaussian components
 - Iarge scale emission
 - cut out known sources w/ complicated morphology
- add components until no TS improvement and flat residuals
 - chose TS such as to expect one false detection in entire survey
- merge components into physical sources

Differential flux measurement

- based on standard methods ("aperture photometry")
- Power-law flux model (w/ and w/o exponential cut-off)
- background from same field-of-view
- correction for modelled source morphology

20

15

10

5

Sources

#

 full spectral information in the catalog

Catalog Completeness

- Catalog seems complete for sources < 1° down to 10% Crab flux
- Power-law index of
 1.2 ± 0.4 compatible with
 Galactic sources
 distributed in thin disk
- How many sources would CTA see?
 - my (naive) extrapolation to 1% Crab: ~300-400
 - but difficult because of large uncertainties

Identifications and Associations

- 78 sources detected in the survey
- 16 newly discovered sources
- only 31 firmly connected to known (shock-accelerating) objects
- 11 sources without counterpart (dark sources?)
- 36 sources confused (too many counterparts)

Sources concentrate on low latitudes

- in agreement with gas, SNR and pulsar distributions
- in agreement with distribution of LAT sources

C. van Eldik, CTA Summer School, Sexten, July 2017 27

Discovery of new SNR shells

- dedicated search for shell-like morphology in survey maps
- one new confirmed shell, two new shell candidates

A closer look at the GC ridge

45

40

35

30

25

20

15

10

5

0

-5

- full H.E.S.S. I data set
- improved data analysis techniques: better angular resolution, sensitivity
- full 2D morphology fitting:
- 2 point sources
- 2 gaussian components
- galactic diffuse emission
- molecular cloud template (CS tracer)
- new point-like "arc source": G0.13-0.11, a PWN candidate

H.E.S.S. Coll. 2017 arXiv:1706.04535

A closer look at the GC ridge

12

10

8

6

4

2

0

-2

- full H.E.S.S. I data set
- improved data analysis techniques: better angular resolution, sensitivity

full 2D morphology fitting:

- 2 point sources
- 2 gaussian components
- galactic diffuse emission
- molecular cloud template (CS tracer)
- new point-like "arc source": G0.13-0.11, a PWN candidate

H.E.S.S. Coll. 2017 arXiv:1706.04535

Population Studies: Pulsar Wind Nebulae

- Sample: 14 Survey PWN, 5 outside survey, 10 PWN candidates
- Goal: Get understanding about population behaviour, not about individual objects
- Simplistic baseline model:
 - PWN powered by É of pulsar (time-dependent injection)
 - PWN cooled by synchrotron, IC, adiabatic expansion and escape losses
- For details, see arXiv:1702.08280

Population Studies: Pulsar Wind Nebulae

10³⁶

N157B

Upcoming Special Issue of **Astronomy & Astrophysics**

HESS JISLA-S91

HESS 11507-622

with 13 papers on H.E.S.S. I Galactic Science. Does include the Survey paper.

Will be available soon.

HESS

IESS

718-38-

HESS 11804-216

HESS J1809-193

HESS J1813-178

HESS J

11833-105

08

1-069

841-055

11843-033

11846-029

11848-018 11849-000

HESS J1858+020

11857+026

11826-1825-

Thanks for your patience.

Testing Cosmic Ray Transport in the GC

