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Goal: An analytic first approximation to QCD
• As Simple as Schrödinger Theory in Atomic Physics 

•Relativistic, Frame-Independent, Color-Confining 

•Confinement in QCD -- What is the analytic form of the confining interaction?  

•What sets the QCD mass scale? 

•QCD Running Coupling at all scales 

•Hadron Spectroscopy-Regge Trajectories 

•Light-Front Wavefunctions 

•Form Factors, Structure Functions, Hadronic Observables 

•Constituent Counting Rules 

•Hadronization at the Amplitude Level 

•Insights into QCD Condensates 

•Chiral Symmetry 

•Systematically improvable



QCD Lagrangian

Yang Mills Gauge Principle: Color 
Rotation and Phase Invariance at 

Every Point of Space and Time 

Scale-Invariant Coupling 
Renormalizable  

Asymptotic Freedom 
Color Confinement 

LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX

f=1

i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f

iDµ = i@µ � gAµ Gµ⌫ = @µAµ � @⌫Aµ � g[Aµ, A⌫ ]

Fundamental Theory of Hadron and Nuclear Physics 

QCD Mass Scale from Confinement not Explicit

quark

Classically Conformal if mq=0



HQCD
LF |ψ >=M2|ψ >

Dirac’s Front Form: Fixed τ = t+ z/c

Bound States in Relativistic Quantum Field Theory: 
Light-Front Wavefunctions

xi =
k+
i

P+

0 < xi < 1

n�

i=1
xi = 1

Remarkable new insights from AdS/CFT,the duality 
between conformal field theory  and Anti-de Sitter Space 

Invariant under boosts.   Independent of Pμ

Direct connection to QCD Lagrangian
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~
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`0

Measurements of hadron LF 
wavefunction are at fixed LF time"

!
Like a flash photograph xbj = x =
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General remarks about orbital angular mo-
mentum
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Light-Front Wavefunctions:  rigorous representation of 
composite systems in quantum field theory

x =
k+

P+
=

k0 + k3

P 0 + P 3

Causal, Frame-independent.  Creation Operators on Simple Vacuum, "
Current Matrix Elements are Overlaps of LFWFS

|p, Jz >=
X

n=3

 n(xi,
~

k?i,�i)|n;xi,
~

k?i,�i >

Invariant under boosts!  Independent of Pμ 

Eigenstate of LF Hamiltonian 
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Form Factors are 
Overlaps of LFWFs

Interaction  
picture

Drell &Yan, West 
Exact LF formula!

No comparable formula in instant form



PDFs FFs

TMDs

Charges

GTMDs

GPDs

TMSDs

TMFFs

Transverse density in 
momentum space

Transverse density in position 
space

Longitudinal 

Transverse

Momentum space Position space

Lorce, 
Pasquini

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

• Light Front Wavefunctions:                                   

Sivers, T-odd from lensing
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• Measurements are made at fixed τ 

• Causality is automatic 

• Structure Functions are squares of LFWFs 

• Form Factors are overlap of LFWFs 

• LFWFs are frame-independent -- no boosts! 

• No dependence on observer’s frame 

• LF Holography: Dual to AdS space 

• LF Vacuum trivial -- no condensates! 

• Profound implications for Cosmological 
Constant

Advantages of the Dirac’s Front Form for Hadron Physics



Light-Front QCD

Eigenvalues and Eigensolutions give Hadronic 
Spectrum and Light-Front wavefunctions

HQCD
LF |�h >= M2

h|�h >

HQCD
LF =

�

i

[
m2 + k2

�
x

]i + Hint
LF

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states
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LQCD � HQCD
LF

Hint
LF : Matrix in Fock Space

Physical gauge: A+ = 0

Exact frame-independent formulation of 
nonperturbative QCD!

Hint
LF

LFWFs: Off-shell in P- and invariant mass

|p, Jz >=
X

n=3

 n(xi,
~

k?i,�i)|n;xi,
~

k?i,�i >



LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX
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i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f

HLF
QCD

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
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absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
$"

(k
&
, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)

338 S.J. Brodsky et al. / Physics Reports 301 (1998) 299—486

Physical gauge: A+ = 0



|p,Sz>= ∑
n=3

ψn(xi, ~k?i,λi)|n;k?i,λi>|p,Sz>= ∑
n=3

Ψn(xi,~k?i,λi)|n;~k?i,λi>

|p,Sz>= ∑
n=3

Ψn(xi,~k?i,λi)|n;~k?i,λi>

The Light Front Fock State Wavefunctions

Ψn(xi,~k?i,λi)

are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction

xi =
k+
i
p+ =

k0i + kzi
P0+Pz

are boost invariant.
n

∑
i
k+
i = P+,

n

∑
i
xi = 1,

n

∑
i

~k?i =~0?.

sum over states with n=3, 4, ...constituents

Fixed LF time
Intrinsic heavy quarks    s̄(x) ⇤= s(x)

⇥M(x, Q0) ⇥
�

x(1� x)

⇤M(x, k2
⌅)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ep⇥ e�+n

P�/p ⇤ 30%

Violation of Gottfried sum rule

ū(x) ⌅= d̄(x)

Does not produce (C = �) J/⇥,�

Produces (C = �) J/⇥,�

Same IC mechanism explains A2/3

s(x), c(x), b(x) at high x !
Hidden ColorMueller:  gluon Fock states     BFKL Pomeron



HQED
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dr2
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1
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⌃(⌃ + 1)
r2

+ Ve�(r, S, ⌃)] �(r) = E �(r)

(H0 + Hint) |� >= E |� > Coupled Fock states

Effective two-particle equation

 Spherical Basis r, �,⇥

Coulomb  potential  

Includes Lamb Shift, quantum corrections

Bohr Spectrum

Veff ⇥ VC(r) = ��

r

QED atoms: positronium and 
muonium

Semiclassical first approximation to QED -->  

Eliminate higher Fock states              
and retarded interactions

LQED

Atomic Physics from First Principles



HQED

Coupled Fock states

Effective two-particle equation

 Azimuthal  Basis

Confining AdS/QCD  
potential!  

HLF
QCD

(H0
LF + HI

LF )|� >= M2|� >

[
�k2
� + m2

x(1� x)
+ V LF

e� ] �LF (x,�k�) = M2 �LF (x,�k�)

�,⇥

Semiclassical first approximation to QCD  

U(⇣) = 4⇣2 + 22(L + S � 1)

Light-Front QCD

AdS/QCD:
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Sums an infinite # diagrams
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Eliminate higher Fock states              
and retarded interactions
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Invariant transverse  
separation



Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

!
Preserves Conformal Symmetry 

of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)
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Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique "
Confinement Potential!

!
de Tèramond, Dosch, sjb

 ' 0.6 GeV

1/ ' 1/3 fm

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 	

without affecting conformal invariance of action!• Fubini, Rabinovici:

e'(z) = e+2z
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Figure 2: Orbital and radial baryon excitation spectrum. Positive-parity spin-12 nucleons (a) and

spectrum gap between the negative-parity spin-32 and the positive-parity spin-12 nucleons families

(b). Minus parity N (c) and plus and minus parity ∆ families (d), for
√
λ = 0.49 GeV (nucleons)

and 0.51 GeV (Deltas).

cluster. The predictions for the daughter trajectories for n = 1, n = 2, · · · are also shown in

this figure. Only confirmed PDG [23] states are shown. The Roper state N(1440) and the

N(1710) are well accounted for as the first and second radial excited states of the proton.

The newly identified state, the N(1900) [23] is depicted here as the first radial excitation of

the N(1720). The model is successful in explaining the parity degeneracy observed in the

light baryon spectrum, such as the L = 2, N(1680)−N(1720) pair in Fig. 2 (a). In Fig. 2

(b) we compare the positive parity spin-12 parent nucleon trajectory with the negative parity

7

42S=1/2, P=+ S=1/2, P=+

S=3/2, P=-

S=1/2, P=- S=1/2, 3/2
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Meson-Baryon !
Mass Degeneracy !

for LM=LB+1

Same slope

M2(n,LB) = 42(n + LB + 1)

M2(n,LM ) = 42(n + LM )

Superconformal Algebra 
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Figure 2: Supersymmetric meson-nucleon partners: Mesons with S = 0 (red triangles) and
baryons with S = 1

2 (blue squares). The experimental values ofM2 are plotted vs LM = LB+1.

The solid line corresponds to
√
λ = 0.53 GeV. The π has no baryonic partner.

between λB and λM . Only confirmed PDG states are included [23].

4.2 The Mesonic Superpartners of the Delta Trajectory

The essential physics derived from the superconformal connection of nucleons and

mesons follows from the action of the fermion-number changing supercharge operator

Rλ. As we have discussed in the previous section, this operator transforms a baryon with

angular momentum LB into a superpartner meson with angular momentum LM = LB+1

(See Appendix B), a state with the identical eigenvalue – the hadronic mass squared.

We now check if this relation holds empirically for other baryon trajectories.

We first observe that baryons with positive parity and internal spin S = 3
2 , such as

the ∆
3

2

+

(1232), and baryons with with negative parity and internal spin S = 1
2 , such

as the ∆
1
2

−

(1620), lie on the same trajectory; this corresponds to the phenomenological

assignment ν = LB + 1
2 , given in Table 1. From (12) we obtain the spectrum 10

M2(+)

n,LB,S= 3
2

= M2(−)

n,LB,S= 1
2

= 4

(

n+ LB +
3

2

)

λB. (44)

10For the ∆-states this assignment agrees with the results of Ref. [24].

14

Superconformal AdS Light-Front Holographic QCD (LFHQCD): 	

Identical meson and baryon spectra!

Meson-Baryon !
Mass Degeneracy !

for LM=LB+1

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon
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Some Features of AdS/QCD

• Regge spectroscopy—same slope in n,L for mesons,"

• Chiral features for mq=0: mπ =0, chiral-invariant 
proton"

• Hadronic LFWFs"

• Counting Rules"

• Connection between hadron masses and ⇤MS

Superconformal AdS Light-Front Holographic QCD (LFHQCD) 	


Meson-Baryon Mass Degeneracy for LM=LB+1



Perturbative QCD

Holographic QCD

(asymptotic freedom)

Q0

Non−perturbative

0

0.2

0.4

0.6

0.8

1

10
-1

1 10

Q (GeV)

α
g
1
(Q

)/
π

Transition scale Q0

Perturbative QCD!
(Asymptotic Freedom)

↵s
g1

(Q2)
⇡

Nonperturbative QCD !
(Quark Confinement)

All-Scale QCD Coupling

Q2
0 = 1.08± 0.17 GeV 2

e�
Q2

42

Deur, de Tèramond, sjbm⇢ =
p

2

mp = 2

� ⌘ 2

⇤MS = 0.341± 0.024 GeV

⇤MS = 0.339± 0.016 GeV

Expt:



�AdS
s (Q)/⇥ = e�Q2/4�2

�s(Q)
⇥

Deur,  de Tèramond, sjb

 = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point

Q (GeV)

�
s(Q

)/�

�g1/� (pQCD)
�g1/� world data

��/� OPAL

AdS
Modified AdS

Lattice QCD (2004) (2007)
�g1/� Hall A/CLAS
�g1/� JLab CLAS

�F3/�GDH limit

0

0.2

0.4

0.6

0.8

1

10 -1 1 10

Sublimated gluons below 1 GeV
e' = e+2z2



T-OddPseudo-

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark

Single-spin 
asymmetries

Leading Twist 
Sivers Effect

~Sp ·~q⇥~pq

 Hwang,  Schmidt, 
sjb

Light-Front Wavefunction   
S and P- Waves!

QCD S- and P- 
Coulomb Phases 

--Wilson Line 
!

“Lensing Effect”

i

Collins, Burkardt, Ji, 
Yuan. Pasquini, ...

Leading-Twist 
Rescattering 
Violates pQCD 
Factorization!Sign reversal in DY!

 “Lensing” 
involves soft 

scales



AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(�µ⇥dxµdx⇥ � dz2),

xµ ⇤ ⇥xµ, z ⇤ ⇥z, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 ⇤ ⇥2x2, z ⇤ ⇥z.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z ⇤ 0 correspond to theQ⇤⌅, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 11

invariant measure

AdS/CFT
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1 The Holographic Correspondence

• In the “ semi-classical” approximation to QCD with massless quarks and no quantum loops the �

function is zero, and the approximate theory is scale and conformal invariant.

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

ds2 =
R2

z2
(⇥µ⇥dxµdx⇥ � dz2).

• Semi-classical correspondence as a first approximation to QCD (strongly coupled at all scales).

• xµ ⇤ ⇤xµ, z ⇤ ⇤z, maps scale transformations into the holographic coordinate z.

• Different values of z correspond to different scales at which the hadron is examined: AdS boundary at

z ⇤ 0 corresponds to the Q⇤⌅, UV zero separation limit.

• There is a maximum separation of quarks and a maximum value of z at the IR boundary

• Truncated AdS/CFT (Hard-Wall) model: cut-off at z0 = 1/�QCD breaks conformal invariance and

allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).

• Smooth cutoff: introduction of a background dilaton field ⌅(z) – usual linear Regge dependence can

be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

Changes in 
physical

length scale 
mapped to 

evolution in the 
5th dimension z 
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•Soft-wall dilaton profile breaks 
conformal invariance	


•Color Confinement	


•Introduces confinement scale	


•Uses AdS5 as template for conformal 
theory

e'(z) = e+2z2

Dilaton-Modified AdS/QCD



• Nonconformal metric dual to a confining gauge theory

ds2 =
R2

z2
e⇤(z)

�
�µ⇥dxµdx⇥ � dz2

⇥

where ⇤(z) ⇧ 0 at small z for geometries which are

asymptotically AdS5

• Gravitational potential energy for object of mass m

V = mc2�g00 = mc2R
e⇤(z)/2

z

• Consider warp factor exp(±⇥2z2)

• Plus solution: V (z) increases exponentially confining

any object in modified AdS metrics to distances ⌃z⌥ ⌅ 1/⇥

KITPC, Beijing, October 19, 2010 Page 9

Klebanov and Maldacena 

Introduce  “Dilaton" to simulate confinement analytically

Positive-sign dilaton • de Teramond, sjbe'(z) = e+2z2



2 Bosonic Modes

• Conformal metric: ds2 = g⌅mdx⌅dxm. x⌅ = (xµ, z), g⌅m ⇤
�
R2/z2

⇥
�⌅m .

• Action for massive scalar modes on AdSd+1:

S[⇥] =
1
2

⌥
dd+1x

⇧
g 1

2

�
g⌅m⌃⌅⇥⌃m⇥� µ2⇥2

 
,
⇧

g ⇤ (R/z)d+1.

• Equation of motion
1
⇧

g

⌃

⌃x⌅

�⇧
g g⌅m ⌃

⌃xm
⇥
⇥

+ µ2⇥ = 0.

• Factor out dependence along xµ-coordinates , ⇥P (x, z) = e�iP ·x ⇥(z), PµPµ =M2 :
⇤
z2⌃2

z � (d� 1)z ⌃z + z2M2 � (µR)2
⌅
⇥(z) = 0.

• Solution: ⇥(z)⇤ z� as z ⇤ 0,

⇥(x, z) = Cz
d
2 J�� d

2
(zM) , � = 1

2

⇧
d +

⌦
d2 + 4µ2R2

⌃
.

• Normalization

Rd�1
⌥ ⇥�1

QCD

0

dz

zd�1
⇥2

S=0(z) = 1.

Bosonic Solutions:  Hard Wall Model

� = 2 + L (µR)2 = L2 � 4d = 4
�(z) = Czd/2J��d/2(zM)



AdS Soft-Wall Schrodinger Equation for  
bound state  of  two scalar constituents:

Derived from variation of Action for Dilaton-Modified 
AdS5 

Identical to Light-Front Bound State Equation! 

U(z) = �4z2 + 2�2(L + S � 1)

• Dosch, de Teramond, sjbPositive-sign dilaton

⇥
� d2

dz2
� 1� 4L2

4z2
+ U(z)

⇤
�(z) =M2�(z)

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

e'(z) = e+2z2



⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

(x(1� x)|b⇤|

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

LF(3+1)                AdS5

Light-Front Holography: Unique mapping derived from equality of LF 
and AdS  formula for EM and gravitational current matrix elements 

and identical equations of motion

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb

(µR)2 = L2 � (J � 2)2

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Light-Front Holographic Dictionary



Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

!
Preserves Conformal Symmetry 

of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique "
Confinement Potential!

!
de Tèramond, Dosch, sjb

 ' 0.6 GeV

1/ ' 1/3 fm

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 	

without affecting conformal invariance of action!• Fubini, Rabinovici:

e'(z) = e+2z2



• Obtain spin-J mode �µ1···µJ with all indices along 3+1 coordinates from � by shifting dimensions

�J(z) =
⇧ z

R

⌃�J
�(z)

• Substituting in the AdS scalar wave equation for �
⇤
z2⇧2

z �
�
3�2J � 2⇥2z2

⇥
z ⇧z + z2M2� (µR)2

⌅
�J = 0

• Upon substitution z⌅�

⌅J(�)⇤��3/2+Je⇥2�2/2 �J(�)

we find the LF wave equation

⌥
� d2

d�2
� 1� 4L2

4�2
+ ⇥4�2 + 2⇥2(L + S � 1)

�
⌅µ1···µJ =M2⌅µ1···µJ

with (µR)2 = �(2� J)2 + L2

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 18

General-Spin Hadrons
de Tèramond, Dosch, sjb

e'(z) = e+2z2



G. de Teramond, H. G. Dosch, sjb 

U(⇣2) = 4⇣2 + 22(J � 1)

z ! ⇣

Pion: Negative term  for J=0 cancels 
positive terms from LFKE and potential



Same slope in n and L!Massless pion in Chiral Limit!

Mass ratio of the ρ and the a1 mesons: coincides with Weinberg sum rules

mq = 0

G. de Teramond, H. G. Dosch, sjb 
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Exploring QCD, Cambridge, August 20-24, 2007 Page 26

S = 0 S = 0

Soft Wall 
Model

Pion mass  
automatically zero!

mq = 0

Quark separation 
increases with L

Pion has 
zero mass!

Same slope in n and L!



Structure of the Vacuum in Light-Front Dynamics

• Results easily extended to light quarks masses (Ex: K-mesons)
[GdT, S. J. Brodsky and H. G.Dosch, arXiv:1405.2451 [hep-ph]]

• First order perturbation in the quark masses

�M2
= h |

X

a

m2
a

/x
a

| i

• Holographic LFWF with quark masses
[S. J. Brodsky and GdT, arXiv:0802.0514 [hep-ph]

 (x, ⇣) ⇠
p

x(1� x) e�
1
2�

�

m

2
q

x

+
m

2
q

1�x

�

e�
1
2� ⇣

2

• Ex: Description of diffractive vector meson production at HERA
[J. R. Forshaw and R. Sandapen, PRL 109, 081601 (2012)]

• For the K⇤

M2
n,L,S

= M2
K

± + 4�

✓

n +

J + L

2

◆

• Effective quark masses from reduction of higher Fock states as functionals of the valence state:

m
u

= m
d

= 46 MeV, m
s

= 357 MeV

Niccolò Cabeo 2014, Ferrara, May 20, 2012
Page 33

� ⌘ 2

De Teramond, Dosch, sjb
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De Tèramond, Dosch, sjb



Prediction from AdS/QCD: Meson LFWF

�(x, k�)
0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

       “Soft Wall” 
model

�(x, k�)(GeV)

de Teramond, 
Cao, sjb⇥M(x, Q0) ⇥

�
x(1� x)

⇤M(x, k2
⇤)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

massless quarks

Note coupling  

k2
�, x

Provides Connection of Confinement to Hadron Structure

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

x

1� x

�⇡(x) =
4p
3⇡

f⇡

p
x(1� x)

f⇡ =
p

Pqq̄

p
3

8
 = 92.4 MeV Same as DSE!

e'(z) = e+2z



⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

See also Ferreira 	

and Dosch

e'(z) = e+2z2



J. R. Forshaw,  
R. Sandapen

�⇤p! ⇢0p0

�L

�T

See also Ferreira 	

and Dosch



Uniqueness

• ζ2 confinement potential and dilaton profile unique! 

• Linear Regge trajectories in n and L: same slope! 

• Massless pion in chiral limit!   No vacuum condensate! 

•  Conformally invariant action for massless quarks retained 

despite mass scale 

• Same principle, equation of motion as de Alfaro, Furlan, Fubini, 
Conformal Invariance in Quantum Mechanics Nuovo Cim. A34 (1976) 
569 

de Tèramond, Dosch, sjb 

U(⇣) = 4⇣2 + 22(L + S � 1) e'(z) = e+2z2

http://inspirehep.net/record/108211


Uniqueness of Dilaton

pion is massless in chiral limit iff 
p=2!

p

m2
⇡/2

'p(z) = pzp

e'(z) = e+2z2

• Dosch, de Tèramond, sjb



Nearly Conformal QCD and AdS/CFT G. F. de Téramond, UCR

• Propagation of external perturbation suppressed inside AdS.

• At large enoughQ ⇤ r/R2, the interaction occurs in the large-r conformal region. Important

contribution to the FF integral from the boundary near z ⇤ 1/Q.

J(Q, z), �(z)

1 2 3 4 5

0.2

0.4

0.6

0.8

1

z

• Consider a specific AdS mode ⇥(n) dual to an n partonic Fock state |n⇧. At small z, ⇥(n)

scales as ⇥(n) ⇤ z�n . Thus:

F (Q2) ⌅
�

1
Q2

⇥��1

,

where ⇥ = �n � �n, �n =
⇤n

i=1 �i. The twist is equal to the number of partons, ⇥ = n.

Quark-Hadron Duality, Frascati, 6-8 June 2005 Page 22

Dimensional Quark Counting Rules:"
General result from "

AdS/CFT and Conformal Invariance

Hadron Form Factors from AdS/QCD 

Polchinski, Strassler 
de Teramond, sjb

J(Q, z) = zQK1(zQ)

�s(Q2)

⇥(Q2) = d�s(Q2)
d logQ2 � 0

�(Q2)� �
15⇤

Q2

m2

Q2 << 4m2

A

J(Q, z) �(z)

high Q2

D(z) ⇥ (1� z)2Nspect�1

zD(z) = F (x = 1/z)

zD(z)c⇤pX = Fp⇤cX(x = 1/z)

zi ⌅ m⇧i =
⇥

m2
i + k2

⇧

X = cūd̄ū

F (Q2)I⇤F =
� dz

z3�F (z)J(Q, z)�I(z)

High Q2 
from 

small z  ~ 1/Q

Twist ⌧ = n + L



Holographic Mapping of AdS Modes to QCD LFWFs

• Integrate Soper formula over angles:

F (q2) = 2⇥

⇧ 1

0
dx

(1� x)
x

⇧
�d�J0

⇥
�q

⌥
1� x

x

⇤
⇤̃(x, �),

with ⌃⇤(x, �) QCD effective transverse charge density.

• Transversality variable

� =
⌥

x

1� x

���
n�1⌅

j=1

xjb⇥j

���.

• Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

⇧ 1

0
dxJ0

⇥
�Q

⌥
1� x

x

⇤
= �QK1(�Q),

the solution for J(Q, �) = �QK1(�Q) !

Exploring QCD, Cambridge, August 20-24, 2007 Page 35

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

Drell-Yan-West: Form Factors are 
Convolution of LFWFs

Identical to Polchinski-Strassler Convolution of AdS Amplitudes

de Teramond, sjb



⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

(x(1� x)|b⇤|

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

LF(3+1)                AdS5

Light-Front Holography: Unique mapping derived from equality of LF 
and AdS  formula for EM and gravitational current matrix elements 

and identical equations of motion

⇤(x, �) =
�

x(1� x)��1/2⇥(�)

de Teramond, sjb

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u
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Current Matrix Elements in AdS Space (SW)

• Propagation of external current inside AdS space described by the AdS wave equation
⇤
z2⇧2

z � z
�
1 + 2�2z2

⇥
⇧z �Q2z2

⌅
J�(Q, z) = 0.

• Solution bulk-to-boundary propagator

J�(Q, z) = �
⇧

1 +
Q2

4�2

⌃
U

⇧
Q2

4�2
, 0, �2z2

⌃
,

where U(a, b, c) is the confluent hypergeometric function

�(a)U(a, b, z) =
⌥ ⇥

0
e�ztta�1(1 + t)b�a�1dt.

• Form factor in presence of the dilaton background ⇥ = �2z2

F (Q2) = R3
⌥

dz

z3
e��2z2

⇥(z)J�(Q, z)⇥(z).

• For large Q2 ⇤ 4�2

J�(Q, z)⌅ zQK1(zQ) = J(Q, z),

the external current decouples from the dilaton field.
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Dressed 
Current 

 in Soft-Wall 
Model

de Tèramond  & sjb 
Grigoryan and Radyushkin

e'(z) = e+2z



e+

e�
��

�+

��

Dressed soft-wall current brings in higher 
Fock states and more vector meson poles



0.0 0.5 1.0 1.5 2.0 2.5 3.0
!2

!1

0

1

2

log FΠ!q2"

Twist 2

Twist 2+4

G. de Teramond & sjb

Timelike Pion Form Factor from AdS/QCD  
          and Light-Front Holography

s(GeV2)

F⇡(s) = (1� �) 1
(1� s
M2

⇢
) + � 1

(1� s
M2

⇢
)(1� s

M2
⇢0

)(1� s
M2

⇢00
)

Prescription for 
Timelike poles :

1
s�M2 + i

p
s�

log |F⇡(s)|
� = 0.17

M2
⇢n

= 42(1/2 + n)

Frascati data 14% four-quark 
 probability



!10 !5 0 5 10

!4

!3

!2

!1

0

1

2

log!FΠ!q2""

q2(GeV2)

Frascati

!
BaBar ISR

spacelike timelike

JLab

log |F⇡(s)|
Pion Form Factor from AdS/QCD and Light-Front Holography
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Remarkable Features of  
Light-Front Schrödinger Equation

•Relativistic, frame-independent	


•QCD scale appears - unique LF potential	


•Reproduces spectroscopy and dynamics of light-quark hadrons with 
one parameter	


•Zero-mass pion for zero mass quarks!	


•Regge slope same for n and L  -- not usual HO	


•Splitting in L persists to high mass   -- contradicts conventional 
wisdom based on breakdown of chiral symmetry	


•Phenomenology: LFWFs, Form factors, electroproduction	


•Extension to heavy quarks

U(⇣) = 4⇣2 + 22(L + S � 1)

e'(z) = e+2z



Exploring QCD, Cambridge, August 20-24, 2007 Page 9

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

(x(1� x)|b⇤|

z

z�

z0 = 1
⇥QCD

�d⇥ np

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

0.20.40.60.8

1.3

1.4

1.5

0

0.05

0.1

0.15

0.2

0

5

�(x, k�)(GeV)

�(x, k�)

• Light Front Wavefunctions:                                   

AdS5:  Conformal Template for QCD

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

Duality of AdS5 with LF 
Hamiltonian Theory

•Light-Front Holography

Light-Front Schrödinger Equation
Spectroscopy and Dynamics





Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

!
Conformal Symmetry 

of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique "
Confinement Potential!

!
de Tèramond, Dosch, sjb

 ' 0.6 GeV

1/ ' 1/3 fm

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 	

without affecting conformal invariance of action!

(mq=0)

Single scheme-
independent fundamental 

mass scale 

e'(z) = e+2z2



QCD Lagrangian

LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX

f=1

i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f

iDµ = i@µ � gAµ Gµ⌫ = @µAµ � @⌫Aµ � g[Aµ, A⌫ ]

Classical Chiral Lagrangian is Conformally Invariant  

Where does the QCD Mass Scale ΛQCD come from?  

How does color confinement arise?

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 	

without affecting conformal invariance of action!

Unique confinement potential!



G = uH + vD + wK

G| (⌧) >= i
@

@⌧
| (⌧) >

G = H⌧ =
1
2
�
� d2

dx2
+

g

x2
+

4uw � v2

4
x2

�

Retains conformal invariance of action despite mass scale! 

Identical to LF Hamiltonian with unique potential and dilaton! 

• de Alfaro, Fubini, Furlan

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

U(⇣) = 4⇣2 + 22(L + S � 1)

4uw � v2 = 4 = [M ]4

• Dosch, de Teramond, sjb

New term
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What determines the QCD mass scale ΛQCD? 

• Mass scale does not appear in the QCD Lagrangian 
(massless quarks)	


• Dimensional Transmutation? Requires external constraint 
such as 	


• dAFF: Confinement Scale κ appears spontaneously via the 
Hamiltonian:	


• The confinement scale regulates infrared divergences,  

connects  ΛQCD   to the confinement scale κ	


• Only dimensionless mass ratios (and M times R ) predicted	


• Mass and time units [GeV] and [sec] from physics external 
to QCD	


• New feature: bounded frame-independent relative time 
between constituents

↵s(MZ)

G = uH + vD + wK 4uw � v2 = 4 = [M ]4
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fixed uniquely: it is, like the original Hamiltonian with unbroken dilatation symmetry,179

a constant of motion (2). This procedure breaks scale invariance by a redefinition of180

the fields and the time parameter (16). The Lagrangian, expressed in terms of the181

original fields Q(t) is unchanged up to a total derivative (2). The dAFF mechanism182

is reminiscent of spontaneous symmetry breaking, however, this is not the case since183

there are no degenerate vacua (14) and thus a massless scalar 0++ state is not required.184

The dAFF mechanism is also di↵erent from usual explicit breaking by just adding a185

term to the Lagrangian (15).186

In their discussion of the evolution operator H⌧ dAFF mention a critical point,187

namely that “the time evolution is quite di↵erent from a stationary one”. By this188

statement they refer to the fact that the variable ⌧ is related to the variable t by189

⌧ =
2p

4uw � v2
arctan

✓
2tw + vp
4uw � v2

◆
, (22)

i.e., ⌧ has only a finite range. Since q2(⌧) vanishes at the borders of this range (See190

(16)), the surface term in (18) vanishes also there. In our approach ⌧ = x+/P+
191

can be interpreted as the LF time di↵erence of the confined q and q̄ in the hadron,192

a quantity which is naturally of finite range and in principle could be measured in193

double-parton scattering processes. It is also interesting to notice that the conformal194

group in one dimension with generators Ht, K and D is locally isomorphic to the195

group SO(2, 1) and thus, a correspondence can be established between the SO(2, 1)196

group of conformal quantum mechanics and the AdS2 space with isometry group197

SO(2, 1) (16).198

Following the work of de Alfaro, Fubini and Furlan in Ref. (2), we have discussed199

in this letter an e↵ective theory which encodes the fundamental conformal symmetry200

of the QCD Lagrangian in the limit of massless quarks. It is an explicit model in201

which the confinement length scale appears in the light-front Hamiltonian from the202

breaking of dilatation invariance, without a↵ecting the conformal invariance of the203

action. In the context of the dual holographic model it shows that the form of the204

dilaton profile is unique, which leads by the mapping to the light-front Hamiltonian205

9

dAFF: New Time Variable

• Identify with difference of LF time Δx+/P+ 

between constituents 

• Finite range  

• Measure in Double-Parton Processes



Interpretation of Mass Scale 

• Does not affect conformal symmetry of QCD action$

• Self-consistent regularization of IR divergences$

• Determines all mass and length scales for zero quark mass$

• Compute scheme-dependent           determined in terms of$

• Value of          itself not determined -- place holder$

• Need external constraint such as fπ


⇤MS
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Baryon Spectrum in Soft-Wall Model

• Upon substitution z ! ⇣ and

 

J

(x, z) = e�iP ·xz2 J

(z)u(P ),

find LFWE for d = 4

d

d⇣
 J

+

+

⌫ +

1

2

⇣
 J

+

+ U(⇣) J

+

= M J

�,

� d

d⇣
 J

� +

⌫ +

1

2

⇣
 J

� + U(⇣) J

� = M J

+

,

where U(⇣) =

R

⇣

V (⇣)

• Choose linear potential U = 2⇣

• Eigenfunctions

 J

+

(⇣) ⇠ ⇣
1

2

+⌫e�

2

⇣

2

/2L⌫

n

(2⇣2

),  J

�(⇣) ⇠ ⇣
3

2

+⌫e�

2

⇣

2

/2L⌫+1

n

(2⇣2

)

• Eigenvalues

M2

= 42

(n + ⌫ + 1), ⌫ = L + 1 (⌧ = 3)

• Full J � L degeneracy (different J for same L) for baryons along given trajectory !

Niccolò Cabeo 2012, Ferrara, May 25, 2011
Page 33

Independent  
of J
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Figure 2: Orbital and radial baryon excitation spectrum. Positive-parity spin-12 nucleons (a) and

spectrum gap between the negative-parity spin-32 and the positive-parity spin-12 nucleons families

(b). Minus parity N (c) and plus and minus parity ∆ families (d), for
√
λ = 0.49 GeV (nucleons)

and 0.51 GeV (Deltas).

cluster. The predictions for the daughter trajectories for n = 1, n = 2, · · · are also shown in

this figure. Only confirmed PDG [23] states are shown. The Roper state N(1440) and the

N(1710) are well accounted for as the first and second radial excited states of the proton.

The newly identified state, the N(1900) [23] is depicted here as the first radial excitation of

the N(1720). The model is successful in explaining the parity degeneracy observed in the

light baryon spectrum, such as the L = 2, N(1680)−N(1720) pair in Fig. 2 (a). In Fig. 2

(b) we compare the positive parity spin-12 parent nucleon trajectory with the negative parity

7

42



Table 1: SU(6) classification of confirmed baryons listed by the PDG. The labels S, L
and n refer to the internal spin, orbital angular momentum and radial quantum number

respectively. The �

5
2
�
(1930) does not fit the SU(6) classification since its mass is too low

compared to other members 70-multiplet for n = 0, L = 3.

SU(6) S L n Baryon State

56 1
2 0 0 N 1

2
+
(940)

1
2 0 1 N 1

2
+
(1440)

1
2 0 2 N 1

2
+
(1710)

3
2 0 0 �

3
2
+
(1232)

3
2 0 1 �

3
2
+
(1600)

70 1
2 1 0 N 1

2
�
(1535) N 3

2
�
(1520)

3
2 1 0 N 1

2
�
(1650) N 3

2
�
(1700) N 5

2
�
(1675)

3
2 1 1 N 1

2
�

N 3
2
�
(1875) N 5

2
�

1
2 1 0 �

1
2
�
(1620) �

3
2
�
(1700)

56 1
2 2 0 N 3

2
+
(1720) N 5

2
+
(1680)

1
2 2 1 N 3

2
+
(1900) N 5

2
+

3
2 2 0 �

1
2
+
(1910) �

3
2
+
(1920) �

5
2
+
(1905) �

7
2
+
(1950)

70 1
2 3 0 N 5

2
�

N 7
2
�

3
2 3 0 N 3

2
�

N 5
2
�

N 7
2
�
(2190) N 9

2
�
(2250)

1
2 3 0 �

5
2
�

�

7
2
�

56 1
2 4 0 N 7

2
+

N 9
2
+
(2220)

3
2 4 0 �

5
2
+

�

7
2
+

�

9
2
+

�

11
2

+
(2420)

70 1
2 5 0 N 9

2
�

N 11
2
�

3
2 5 0 N 7

2
�

N 9
2
�

N 11
2
�
(2600) N 13

2
�

1

PDG 2012



Fermionic Modes and Baryon Spectrum
[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

From Nick Evans

• Nucleon LF modes

⇤+(�)n,L = ⇥2+L

⌅
2n!

(n + L)!
�3/2+Le�⇥2�2/2LL+1

n

�
⇥2�2

⇥

⇤�(�)n,L = ⇥3+L 1⇤
n + L + 2

⌅
2n!

(n + L)!
�5/2+Le�⇥2�2/2LL+2

n

�
⇥2�2

⇥

• Normalization ⇤
d� ⇤2

+(�) =
⇤

d� ⇤2
�(�) = 1

• Eigenvalues

M2
n,L,S=1/2 = 4⇥2 (n + L + 1)

• “Chiral partners”
MN(1535)

MN(940)
=
⇤

2

LC 2011 2011, Dallas, May 23, 2011 Page 13

Chiral Symmetry 
of Eigenstate!



• Boost Invariant 

• Trivial LF vacuum! No condensate, but consistent with GMOR 

• Massless Pion 

• Hadron Eigenstates (even the pion) have LF Fock components of different Lz 

• Proton: equal probability 

!

• Self-Dual Massive Eigenstates: Proton is its own chiral partner. 

• Label State by minimum L as in Atomic Physics 

• Minimum L dominates at short distances                

• AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=0.

Chiral Features of Soft-Wall 
AdS/QCD Model

Sz = +1/2, Lz = 0;Sz = �1/2, Lz = +1

No mass -degenerate parity partners!

Jz = +1/2 :< Lz >= 1/2, < Sz
q >= 0



• Compute Dirac proton form factor using SU(6) flavor symmetry

F p
1 (Q2) = R4

⇧
dz

z4
V (Q, z)�2

+(z)

• Nucleon AdS wave function

�+(z) =
�2+L

R2

⌃
2n!

(n + L)!
z7/2+LLL+1

n

�
�2z2

⇥
e��2z2/2

• Normalization (F1
p(0) = 1, V (Q = 0, z) = 1)

R4

⇧
dz

z4
�2

+(z) = 1

• Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

V (Q, z) = �2z2

⇧ 1

0

dx

(1� x)2
x

Q2

42 e��2z2x/(1�x)

• Find

F p
1 (Q2) =

1⇤
1 + Q2

M2
⇢

⌅⇤
1 + Q2

M2
⇢0

⌅

withM⇥
2
n ⇤ 4�2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 20



Superconformal Algebra 

{ , +} = 1

{Q,Q+} = 2H, {S, S+} = 2K

two anti-commuting"
fermionic operators

Q =  

+[�@
x

+ W (x)], Q

+ =  [@
x

+ W (x)],
W (x) =

f

x

S =  

+
x, S

+ =  x

 =
1
2
(�1 � i�2),  + =

1
2
(�1 + i�2) Realization as Pauli Matrices"

Introduce new spinor operators"

Q '
p

H, S '
p

K

Fubini and 
Rabinovici 

de Teramond 
Dosch!

and SJB 
1+1

{Q,Q} = {Q+, Q+} = 0, [Q,H] = [Q+,H] = 0

(Conformal)



{Q,S+} = f �B + 2iD, {Q+, S} = f �B � 2iD

B =
1
2
[ +, ] =

1
2
�3

Superconformal Algebra 

{ , +} = 1

 =
1
2
(�1 � i�2),  + =

1
2
(�1 + i�2)

{Q,Q+} = 2H, {S, S+} = 2K

generates the conformal algebra

[H,D]= i H, [H, K] =2 i D, [K, D] = - i K

Q =  

+[�@
x

+
f

x

], Q

+ =  [@
x

+
f

x

],
S =  

+
x, S

+ =  x



Consider Rw = Q + wS;

w: dimensions of mass squared

Superconformal Algebra 

Retains Conformal Invariance of Action

G11 =
�
� @

2
x

+ w

2
x

2 + 2wf � w +
4(f + 1

2 )2 � 1
4x

2

�

New Extended Hamiltonian  G is diagonal:

G = {Rw, R+
w} = 2H + 2w2K + 2wfI � 2wB

G22 =
�
� @

2
x

+ w

2
x

2 + 2wf + w +
4(f � 1

2 )2 � 1
4x

2

�

Fubini and Rabinovici 

2B = �3

Eigenvalue of G: M2
(n,L) = 42

(n + LB + 1)

Baryon Equation

Identify f � 1
2 = LB , w = 2



Baryon Equation

Meson Equation

x! ⇣

Meson-Baryon Degeneracy for LM=LB+1

S=1/2, P=+

LF Holography

G22

G11

G11

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon

both chiralities 

Table 1: Orbital quantum number assignment for the leading-twist parameter ⌫ for baryon
trajectories according to parity P and internal spin S.

S = 1

2

S = 3

2

P = + ⌫ = LB ⌫ = LB + 1

2

P = – ⌫ = LB + 1

2

⌫ = LB + 1

4 Baryon-Meson Supersymmetry185

4.1 The Superpartner of the Nucleon Trajectory186

In the case of baryons, the assignment of the leading-twist parameter ⌫ in Eqs. (9,187

10), as given in Table 1 [12], successfully describes the structure of the light baryon188

orbital and radial excitations 7. The assignment ⌫ = LB for the lowest trajectory, the189

nucleon trajectory, is straightforward and follows from the stability of the ground state190

– the proton – and the mapping to LF quantized QCD.191

The bound-state equations for the nucleon trajectory are (cf. Eqs. (9, 10)):192

✓
� d2

d⇣2

+ �2

B ⇣
2 + 2�B(LB + 1) +

4L2

B � 1

4⇣2

◆
 +

J = M2  +

J , (42)

✓
� d2

d⇣2

+ �2

B ⇣
2 + 2�B LB +

4(LB + 1)2 � 1

4⇣2

◆
 �J = M2  �J . (43)

We will now search for the meson supersymmetric partners of the nucleon trajectory.193

We choose as starting point the leading-twist chirality component  +

J (⇣) which satisfies194

(42). With the identifications x = ⇣, f � 1

2

= LB and � = �B, the plus chirality195

component  +

J (⇣) is also an eigenfunction of G
22

, Eq. (40). On the other hand, the196

supersymmetric partner satisfies G
11

, (39), which should describe a meson trajectory.197

Indeed, the Hamiltonian G
11

with the above mentioned substitutions agrees with the198

bound-state equation (5) for mesons with J = LM , provided we identify f + 1

2

= LM =199

LB +1 and set �M = �B. The lowest state on the mesonic trajectory, with J = LM = 0 –200

the pion– is massless in the chiral limit. It corresponds to a negative value of f , namely201

7The ‘leading-twist’ assignment referred to here is the e↵ective twist of the baryonic quark-cluster
system; it is thus equal to two. This is in distinction to the usual application of twist for hard exclusive
processes which emerges when the baryon cluster is resolved at high momentum transfer and is thus
equal to the total number of components

11

dimensional border ⇣ = 0, is split into a component �J(⇣), describing the behavior in the82

bulk, and a plane wave with an integer J-spinor describing the Minkowski space-time83

behavior (See [14], Sect. 5.1.1):84

�⌫1···⌫J (P, ⇣) = �J(⇣)eiP ·x✏⌫1···⌫J (P ). (1)

The four-momentum squared is the mass squared of the hadron represented by the free85

field, P 2 = M2.86

A Schrödinger-like wave equation [2, 6] follows from the AdS action for arbitrary87

integer spin-J modified by a dilaton term e'(⇣):88

✓
� d2

d⇣2

+
4L2 � 1

4⇣2

+ U(⇣, J)

◆
�J(⇣) = 0, (2)

where we have factored out the scale (1/z)J�3/2 and dilaton factors from the AdS field89

�J by writing �J(z) = (R/z)J�3/2 e�'(z)/2 �J(z). Equation (2) has exactly the form of90

a LF wave equation for massless quarks with a LF e↵ective potential U and LF angular91

momentum L. The latter is related to the total spin J and the product of the AdS mass92

µ with the AdS radius R by93

(µR)2 = L2 � (J � 2)2. (3)

The potential U is related to the dilaton profile by [6, 5]94

U(⇣, J) =
1

2
'00(⇣) +

1

4
'0(⇣)2 +

2J � 3

2⇣
'0(⇣). (4)

The holographic variable ⇣ is identified with the LF invariant invariant transverse sepa-95

ration: ⇣2 = b2

?u(1� u) [1, 2], where b? is the transverse separation of the constituents96

and u is the longitudinal light-front momentum fraction.97

In the case of the quadratic dilaton profile '(⇣) = �M⇣2, the LF e↵ective potential98

is U(⇣, J) = �2

M⇣2 + 2�M(J � 1), and the holographic bound-state wave equation (2)99

can be written as100

✓
� d2

d⇣2

+ �2

M ⇣2 + 2�M (J � 1) +
4⌫2 � 1

4⇣2

◆
�J = M2 �J , (5)

for a meson with total spin J . Near ⇣ = 0 the regular solution behaves as �J(⇣) ⇠ ⇣⌫+

1
2 ,101

corresponding to twist 2 + ⌫. In LFHQCD one thus has ⌫ = LM , where LM is the LF102

5

M2
B(n,LB) = 4�2

B(n + LB + 1)

⌫ = LMM2
M (n,LM , S = 0) = 4�2

M (n + LM )

�2
M = �2

B = 4



L

n ! 0n ! 1n ! 2n ! 3

N!940"

N!1440"

N!1710" N!1720"
N!1680"

N!1900"

M2#GeV2$
!a"

N!2220"

0 1 2 3 4
0

1

2

3

4

5

6

7

M2#GeV2$

L

N!2600"

N!2250"
N!2190"

N!940"

N!1720"

N!1650"
N!1675"
N!1700"

N!1680"

4 Λ

Ν! L

Ν! L $ 1
!b"

N!2220"

0 1 2 3 4 5 6
0

2

4

6

8

N!1520"
N!1535"

N!1875"

n ! 2 n ! 1 n ! 0

M2#GeV2$

L

!c"

0 1 2 3 4
1

2

3

4

5

6

7

n ! 0n ! 1n ! 2n ! 3!d"

L

M2#GeV2$

%!1232"

%!1600" %!1620"

%!1700" %!1950"
%!1920"
%!1910"
%!1905"

%!2420"

0 1 2 3 4
0

1

2

3

4

5

6

7

Figure 2: Orbital and radial baryon excitation spectrum. Positive-parity spin-12 nucleons (a) and

spectrum gap between the negative-parity spin-32 and the positive-parity spin-12 nucleons families

(b). Minus parity N (c) and plus and minus parity ∆ families (d), for
√
λ = 0.49 GeV (nucleons)

and 0.51 GeV (Deltas).

cluster. The predictions for the daughter trajectories for n = 1, n = 2, · · · are also shown in

this figure. Only confirmed PDG [23] states are shown. The Roper state N(1440) and the

N(1710) are well accounted for as the first and second radial excited states of the proton.

The newly identified state, the N(1900) [23] is depicted here as the first radial excitation of

the N(1720). The model is successful in explaining the parity degeneracy observed in the

light baryon spectrum, such as the L = 2, N(1680)−N(1720) pair in Fig. 2 (a). In Fig. 2

(b) we compare the positive parity spin-12 parent nucleon trajectory with the negative parity

7

42S=1/2, P=+ S=1/2, P=+

S=3/2, P=-

S=1/2, P=- S=1/2, 3/2
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Figure 2: Supersymmetric meson-nucleon partners: Mesons with S = 0 (red triangles) and
baryons with S = 1

2 (blue squares). The experimental values ofM2 are plotted vs LM = LB+1.

The solid line corresponds to
√
λ = 0.53 GeV. The π has no baryonic partner.

between λB and λM . Only confirmed PDG states are included [23].

4.2 The Mesonic Superpartners of the Delta Trajectory

The essential physics derived from the superconformal connection of nucleons and

mesons follows from the action of the fermion-number changing supercharge operator

Rλ. As we have discussed in the previous section, this operator transforms a baryon with

angular momentum LB into a superpartner meson with angular momentum LM = LB+1

(See Appendix B), a state with the identical eigenvalue – the hadronic mass squared.

We now check if this relation holds empirically for other baryon trajectories.

We first observe that baryons with positive parity and internal spin S = 3
2 , such as

the ∆
3

2

+

(1232), and baryons with with negative parity and internal spin S = 1
2 , such

as the ∆
1
2

−

(1620), lie on the same trajectory; this corresponds to the phenomenological

assignment ν = LB + 1
2 , given in Table 1. From (12) we obtain the spectrum 10

M2(+)

n,LB,S= 3
2

= M2(−)

n,LB,S= 1
2

= 4

(

n+ LB +
3

2

)

λB. (44)

10For the ∆-states this assignment agrees with the results of Ref. [24].

14

Superconformal AdS Light-Front Holographic 
QCD (LFHQCD): 	


Identical meson and baryon spectra!

�M = �B

� = 2
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Mass Degeneracy !
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Features of Supersymmetric Equations

• J =L+S baryon simultaneously satisfies both 
equations of G with L , L+1 for same mass 
eigenvalue!

• Jz =  Lz + 1/2 = (Lz + 1) - 1/2!

• Baryon spin carried by quark orbital angular 
momentum:  <Jz> =Lz+1/2!

• Mass-degenerate meson “superpartner” with 
LM=LB+1.! “Shifted  meson-baryon Duality”

Meson and baryon have same κ!

Sz = ±1/2
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Figure 2. Orbital and radial baryon excitation spectrum. Positive-parity spin- 1
2 nucleons (a) and spectrum gap

between the negative-parity spin- 3
2 and the positive-parity spin- 1

2 nucleons families (b). Minus parity N (c) and
plus and minus parity � families (d), for

p
� = 0.49 GeV (nucleons) and 0.51 GeV (Deltas).

minus-parity spin- 3
2 nucleon families, as indicated by arrows in this figure. This means the respective

assignment ⌫ = L and ⌫ = L+1 for the lower and upper trajectories in Fig. 2 (b). We also note that the
degeneracy of states with the same orbital quantum number L is also well described, as for example
the degeneracy of the L = 1 states N(1650), N(1675) and N(1700) in Fig. 2 (b).

We have also to take into account baryons with negative parity and internal spin S = 1
2 , as well

as baryon states with positive parity and internal spin S = 3
2 such as the �(1232). Those states are

well described by the assignment ⌫ = L + 1
2 . This means, for example, that M2 (+)

n,L,S= 3
2
= M2 (�)

n,L,S= 1
2

and
consequently the positive and negative-parity � states lie in the same trajectory consistent with the
experimental results, as depicted in Fig. 2 (d). The newly found state, the N(1875) [23], depicted in
Fig. 2 (c) is well described as the first radial excitation of the N(1520), and the near degeneracy of
the N(1520) and N(1535) is also well accounted. Likewise, the �(1660) corresponds to the first radial
excitation of the �(1232) as shown in Fig. 2 (d). The model explains the important degeneracy of
the L = 2, �(1905), �(1910), �(1920), �(1950) states which are degenerate within error bars. Our
results for the � states agree with those of Ref. [24]. “Chiral partners" such as the N(1535) and the
N(940) with the same total angular momentum J = 1

2 , but with di↵erent orbital angular momentum
are non-degenerate from the onset. To recapitulate, the parameter ⌫ has the internal spin S and parity
P assignment given in the table below.

Table 1. Orbital assignment for baryon trajectories according to parity and internal spin.

S = 1
2 S = 3

2

P = + ⌫ = L ⌫ = L + 1
2

P = - ⌫ = L + 1
2 ⌫ = L + 1

The assignment ⌫ = L for the lowest trajectory, the proton trajectory, is straightforward and follows
from the mapping of AdS to light-front physics. The assignment for other spin and parity baryons
states given in Table 2.2 is phenomenological. It is expected that further analysis of the di↵erent
quark, or quark–diquark, configurations and symmetries of the baryon wave function will indeed
explain the actual assignment in Table 2.2, which successfully describes the full light baryon orbital
and radial excitation spectrum, and in particular the gap between trajectories with di↵erent parity and
internal spin. The holographic variable ⇣ has a cluster decomposition and thus labels a system of
n-partons as an active quark plus a system of n � 1 spectators [2]. From this perspective, a baryon
with n = 3 looks in light-front holography as a quark–diquark system.

spin-32 nucleon trajectory. It is remarkable that the gap scale 4λ determines not only the

slope of the trajectories, but also the gap in the spectrum between the plus-parity spin-12 and

the minus-parity spin-32 nucleon families, as indicated by arrows in this figure. This means

the respective assignment ν = L and ν = L+ 1 for the lower and upper trajectories in Fig.

2 (b). We also note that the degeneracy of states with the same orbital quantum number L

is also well described, as for example the degeneracy of the L = 1 states N(1650), N(1675)

and N(1700) in Fig. 2 (b).

We have also to take into account baryons with negative parity and internal spin S = 1
2 ,

as well as baryon states with positive parity and internal spin S = 3
2 such as the ∆(1232).

Those states are well described by the assignment ν = L + 1
2 . This means, for example,

that M2 (+)

n,L,S= 3
2

= M2 (−)

n,L,S= 1
2

and consequently the positive and negative-parity ∆ states lie

in the same trajectory consistent with the experimental results, as depicted in Fig. 2 (d).

The newly found state, the N(1875) [23], depicted in Fig. 2 (c) is well described as the first

radial excitation of the N(1520), and the near degeneracy of the N(1520) and N(1535) is

also well accounted. Likewise, the ∆(1600) corresponds to the first radial excitation of the

∆(1232) as shown in Fig. 2 (d). The model explains the important degeneracy of the L = 2,

∆(1905), ∆(1910), ∆(1920), ∆(1950) states which are degenerate within error bars. Our

results for the ∆ states agree with those of Ref. [24]. “Chiral partners” such as the N(1535)

and the N(940) with the same total angular momentum J = 1
2 , but with different orbital

angular momentum are non-degenerate from the onset. To recapitulate, the parameter ν

has the internal spin S and parity P assignment given in the table below.

Table 1: Orbital assignment for baryon trajectories according to parity and internal spin.

S = 1
2 S = 3

2

P = + ν = L ν = L+ 1
2

P = - ν = L+ 1
2 ν = L+ 1

The assignment ν = L for the lowest trajectory, the proton trajectory, is straightforward

and follows from the mapping of AdS to light-front physics. The assignment for other spin

and parity baryons states given in Table 1 is phenomenological. It is expected that fur-

ther analysis of the different quark, or quark–diquark, configurations and symmetries of the

baryon wave function will indeed explain the actual assignment in Table 1, which successfully

describes the full light baryon orbital and radial excitation spectrum, and in particular the

gap between trajectories with different parity and internal spin. The holographic variable ζ

8

J=1/2 “Chiral partners”, e.g. N(1535) and N(1400),  
with different L, non-degenerate

M2 = 42(n + ⌫ + 1)

⌫ = |µR|� 1/2

No spin-orbit coupling

Baryon Spectrum



Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

F+(Q2) = g+

⇤
d� J(Q, �)|⇥+(�)|2,

F�(Q2) = g�

⇤
d� J(Q, �)|⇥�(�)|2,

where the effective charges g+ and g� are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ⇥+(�) and ⇥�(�) correspond

to nucleons with Jz = +1/2 and�1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) =

⇤
d� J(Q, �)|⇥+(�)|2,

Fn
1 (Q2) = �1

3

⇤
d� J(Q, �)

�
|⇥+(�)|2 � |⇥�(�)|2

⇥
,

where F p
1 (0) = 1, Fn

1 (0) = 0.

Exploring QCD, Cambridge, August 20-24, 2007 Page 52



Using SU(6) flavor symmetry and normalization to static quantities
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Nucleon Transition Form Factors

• Compute spin non-flip EM transition N(940)⇥ N�(1440): �n=0,L=0
+ ⇥ �n=1,L=0

+

• Transition form factor

F1
p
N⇥N�(Q2) = R4

⇧
dz

z4
�n=1,L=0

+ (z)V (Q, z)�n=0,L=0
+ (z)

• Orthonormality of Laguerre functions
�
F1

p
N⇥N�(0) = 0, V (Q = 0, z) = 1

⇥

R4
⇧

dz

z4
�n⇥,L

+ (z)�n,L
+ (z) = �n,n⇥

• Find

F1
p
N⇥N�(Q2) =

2
⌅

2
3

Q2

M2
P⇤

1 + Q2

M2
�

⌅⇤
1 + Q2

M2
�⇥

⌅⇤
1 + Q2

M2

�
⇥⇥

⌅

withM�
2
n ⇥ 4⇥2(n + 1/2)

LC 2011 2011, Dallas, May 23, 2011 Page 21

de Teramond, sjb

Consistent with counting rule, twist 3



Nucleon Transition Form Factors
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Flavor Decomposition of Elastic Nucleon Form Factors

G. D. Cates et al. Phys. Rev. Lett. 106, 252003 (2011)

• Proton SU(6) WF: F p

u,1

=

5

3

G
+

+

1

3

G�, F p

d,1

=

1

3

G
+

+

2

3

G�

• Neutron SU(6) WF: Fn

u,1

=

1

3

G
+

+

2

3

G�, Fn

d,1

=

5

3

G
+

+

1

3

G�

G
+

(Q2

) =

1⇣
1+

Q2

M2

⇢

⌘⇣
1+

Q2

M2

⇢0

⌘

and

G�(Q2

) =

1⇣
1+

Q2

M2

⇢

⌘⇣
1+

Q2

M2

⇢0

⌘⇣
1+

Q2

M2

⇢
00

⌘

Q2

G!!Q2"

G"!Q2"

PRELIMINARY
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5 Non-Perturbative QCD Coupling From LF Holography
With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ⇧(z) = ⇤2z2

S = �1
4

�
d4x dz

⇧
g e⇥(z) 1

g2
5

G2

• Flow equation
1

g2
5(z)

= e⇥(z) 1
g2
5(0)

or g2
5(z) = e��2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling �s(⇥) = g2
Y M (⇥)/4⌅ is the five dim coupling up to a factor: g5(z)⌅ gY M (⇥)

• Coupling measured at momentum scale Q

�AdS
s (Q) ⇤

� ⇥

0
⇥d⇥J0(⇥Q)�AdS

s (⇥)

• Solution

�AdS
s (Q2) = �AdS

s (0) e�Q2/4�2
.

where the coupling �AdS
s incorporates the non-conformal dynamics of confinement

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 27

Running Coupling from  Modified AdS/QCD
Deur,  de Teramond, sjb
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•Can be used as standard QCD coupling	


•Well measured	


•Asymptotic freedom at large Q2	


•Computable at large Q2 in any pQCD 
scheme	


•Universal  β0,  β1

Bjorken sum rule defines effective charge ↵g1(Q2)
Z 1

0
dx[gep

1 (x,Q

2)� g

en
1 (x,Q

2)] ⌘ ga

6
[1� ↵g1(Q2)

⇡

]



�AdS
s (Q)/⇥ = e�Q2/4�2

�s(Q)
⇥

Deur,  de Teramond, sjb

 = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point

Q (GeV)

�
s(Q

)/�

�g1/� (pQCD)
�g1/� world data

��/� OPAL

AdS
Modified AdS

Lattice QCD (2004) (2007)
�g1/� Hall A/CLAS
�g1/� JLab CLAS

�F3/�GDH limit

0

0.2

0.4

0.6

0.8

1

10 -1 1 10

Sublimated gluons below 1 GeVAdS/QCD dilaton captures the higher twist corrections to  effective charges for Q < 1 GeV

e' = e+2z2



Perturbative QCD

Holographic QCD

(asymptotic freedom)

Q0

Non−perturbative

0
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Q (GeV)

α
g
1
(Q

)/
π

Transition scale Q0

Perturbative QCD!
(Asymptotic Freedom)

↵s
g1

(Q2)
⇡

Nonperturbative QCD !
(Quark Confinement)

All-Scale QCD Coupling

Q2
0 = 1.08± 0.17 GeV 2

e�
Q2

42

Deur, de Teramond, sjbm⇢ =
p

2

mp = 2

� ⌘ 2

⇤MS = 0.341± 0.024 GeV

⇤MS = 0.339± 0.016 GeV

Expt:



Match coupling strength  
and derivative

Deur,  de Teramond, sjb

�AdS
s (Q)/⇥ = e�Q2/4�2



Bjorken Sum Rule order

Λ
(3

)
Λ(3)   (AdS/QCD)MS

Λ(3)   (World data)MS
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FIG. 3. (Color online) Dependence of ⇤(3)

MS
with the order to which Eq. (2) is truncated (square

symbols). The value ⇤(3)

MS
= 0.328± 0.024 GeV at order 5 corresponds to the locations circled on

Fig. 1. The blue band represents the world data, ⇤(3)

MS
= 0.339± 0.010 GeV.

shown in the figure by the blue band. Our result at highest order is ⇤(3)

MS
= 0.328 ± 0.024114

GeV at �3 and for nf = 3, where the uncertainty corresponds to the series truncation for115

↵g1 . This is to be compared with the world data ⇤(3)

MS
= 0.339 ± 0.010 GeV. In Fig. 4 we116

compare our prediction with the experimental and lattice results for ↵g1. There is excellent117

agreement.118

In principle the strong coupling constant ↵s is computable is Lattice QCD (LQCD) [28,119

29]. It is thus interesting to compare LQCD results with the method presented in this letter.120

To determine ↵s in LQCD, the perturbative expression of a short scale quantity (typically121

the Wilson Loop operator expectation value) is derived from the Lattice QCD Lagrangian.122

This analytical expression, which involves the renormalized coupling, is matched to the123

numerical value of the same quantity obtained from the lattice simulation. The lattice124

scale is assigned by tuning the bare strong coupling until a chosen LQCD result matches125

the corresponding quantity [4]. The value of the bare coupling then determines the lattice126

scale. The matching and determination of the scale provide the value of the renormalized127

coupling, typically in the V or MOM-schemes [4]. There is a parallel between the LQCD128

procedure and our matching procedure. Di↵erences are that LF holographic QCD has only129

one parameter, the confinement scale , while LQCD, in addition to the bare coupling130

has four others [29]. In addition, LQCD does not provide the QCD scale as a function of a131

physical quantity. On the other hand, the foundation of LQCD stems directly from the QCD132

7

Deur,  de Teramond, sjb

⇤MS = 0.5983 = 0.5983m⇢p
2

= 0.4231m⇢ = 0.328 GeV

Connect ⇤MS to hadron masses!

Experiment: M⇢ = 0.7753± 0.0003 GeV



Perturbative QCD
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(asymptotic freedom)

Q0

Non−perturbative

0

0.2

0.4

0.6

0.8

1

10
-1

1 10

Q (GeV)

α
g
1
(Q

)/
π

Transition scale Q0

Perturbative QCD!
(Asymptotic Freedom)

↵s
g1

(Q2)
⇡

Nonperturbative QCD !
(Quark Confinement)

All-Scale QCD Coupling

Q2
0 = 1.08± 0.17 GeV 2
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Deur, de Teramond, sjbm⇢ =
p

2

mp = 2

� ⌘ 2

⇤MS = 0.339± 0.016 GeV

Cloet, Roberts:	

No quark mass pole in DSE



Interpretation of Mass Scale 

• Does not affect conformal symmetry of QCD action$

• Self-consistent regularization of IR divergences$

• Determines all mass and length scales for zero quark mass$

• Compute scheme-dependent           determined in terms of$

• Value of          itself not determined -- place holder$

• Need external constraint such as fπ


⇤MS
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A.P. Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb

Connection to the Linear Instant-Form Potential

Linear instant nonrelativistic form V (r) = Cr for heavy quarks

Harmonic Oscillator U(⇣) = 4⇣2 LF Potential for relativistic light quarks



Structure of the Vacuum in Light-Front Dynamics

• Compare invariant mass in the instant-form in the hadron center-of-mass system P = 0,

M2
qq

= 4m2
q

+ 4p

2

with the invariant mass in the front-form in the constituent rest frame, k
q

+ k

q

= 0

M2
qq

=

k

2
? + m2

q

x(1� x)

obtain

U = V 2
+ 2

q

p

2
+ m2

q

V + 2 V
q

p

2
+ m2

q

where p

2
? =

k2
?

4x(1�x) , p3 =

m

q

(x�1/2)p
x(1�x)

, and V is the effective potential in the instant-form

• For small quark masses a linear instant-form potential V implies a harmonic front-form potential U

and thus linear Regge trajectories

[A. P. Trawiński, S. D. Glazek, S. J. Brodsky, GdT, H. G. Dosch, arXiv: 1403.5651]

Niccolò Cabeo 2014, Ferrara, May 20, 2012
Page 19

Connection to the Linear Instant-Form Potential

A.P. Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb
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• Zero mass pion for mq =0  (n=J=L=0) 

• Regge trajectories: equal slope in n and L 

• Form Factors at high Q2: Dimensional 
counting 

• Space-like and Time-like Meson and Baryon 
Form Factors 

• Running Coupling for NPQCD 

• Meson Distribution Amplitude  

!

AdS/QCD and Light-Front Holography

[Q2
]

n�1
F (Q2

)! const

�⇡(x) / f⇡

p
x(1� x)

↵s(Q2) / e�
Q2

42

M2
n,J,L = 42

�
n +

J + L

2
�



Features of AdS/QCD
• Color confining potential              and universal mass scale from 

dilaton  

• Dimensional transmutation  

• Chiral Action remains conformally invariant despite mass scale 

• Light-Front Holography: Duality of AdS and                               
frame-independent LF QCD 

• Reproduces observed Regge spectroscopy —                                  
same slope in n, L, and J for mesons and baryons 

• Massless pion for massless quark 

• Supersymmetric meson-baryon dynamics and spectroscopy:       
LM=LB+1 

• Dynamics: LFWFs, Form Factors, GPDs 

4⇣2

!
de Tèramond, Dosch, Deur, sjb

⇤MS $ $ mH

e�(z) = e2z2

!
DAFF

    "
Superconformal Algebra  "
Fubini and Rabinovici

↵s(Q
2
) / exp�Q2/42
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An analytic first approximation to QCD

•As Simple as Schrödinger Theory in Atomic Physics 

• LF radial variable  ζ conjugate to invariant mass squared 

•Relativistic, Frame-Independent, Color-Confining 

•Unique confining potential! 

•QCD Coupling at all scales: Essential for Gauge Link 
phenomena 

•Hadron Spectroscopy and Dynamics from one parameter  

•Wave Functions, Form Factors, Hadronic Observables, 
Constituent Counting Rules 

•Insight into QCD Condensates: Zero cosmological constant! 

•Systematically improvable with DLCQ-BLFQ Methods

AdS/QCD + Light-Front Holography 



String Theory

AdS/CFT

Semi-Classical QCD / Wave Equations

Mapping of  Poincare’ and 
Conformal SO(4,2) symmetries of 

3+1 space  
to  AdS5 space

Integrable!

Boost Invariant 3+1 Light-Front Wave Equations

Hadron Spectra, Wavefunctions, Dynamics

AdS/QCD
Conformal behavior at short 

distances 
!

 Confinement at large distance 
Unique!

!
!
!

Counting rules for Hard Exclusive 
Scattering 

Regge Trajectories

Holography

Integrable! J =0,1,1/2,3/2 plus L

Goal: First Approximant to QCD

!
QCD at the Amplitude Level

• Conformal template:  

• Use isometries of AdS5



Future Directions for AdS/QCD
• Hadronization at the Amplitude Level 

• Diffractive dissociation of pion and proton to jets 

• Identify the factorization Scale for ERBL, DGLAP 
evolution: Q0 

• Compute Tetraquark Spectroscopy Sequentially  

• Update SU(6) spin-flavor symmetry 

• Heavy Quark States:  Supersymetry, not conformal 

• Compute higher Fock states; e.g. Intrinsic Heavy Quarks 

• Nuclear States — Hidden Color 

• Basis LF Quantization 

!
de Tèramond, Dosch, Lorce, sjb



Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

!
Preserves Conformal Symmetry 

of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique "
Confinement Potential!

!
de Tèramond, Dosch, sjb

 ' 0.6 GeV

1/ ' 1/3 fm

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 	

without affecting conformal invariance of action!• Fubini, Rabinovici:

e'(z) = e+2z2
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c c

c̄

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

uStan Brodsky  

April  13, 2015
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