Líght-Front Holography and New Advances in Nonperturbative QCD

Stan Brodsky

with Guy de Tèramond, Hans Günter Dosch, and Alexandre Deur

April 13, 2015

Goal: An analytic first approximation to QCD

- As Simple as Schrödinger Theory in Atomic Physics
- Relativistic, Frame-Independent, Color-Confining
- •Confinement in QCD -- What is the analytic form of the confining interaction?
- What sets the QCD mass scale?
- •QCD Running Coupling at all scales
- Hadron Spectroscopy-Regge Trajectories
- Light-Front Wavefunctions
- Form Factors, Structure Functions, Hadronic Observables
- Constituent Counting Rules
- Hadronization at the Amplitude Level
- Insights into QCD Condensates
- •Chiral Symmetry
- Systematically improvable

GGI Florence April 13, 2015 Light-Front Holography and non-perturbative QCD

QCD Lagrangían

Fundamental Theory of Hadron and Nuclear Physics

Classically Conformal if $m_q=0$

Yang Mills Gauge Principle: Color Rotation and Phase Invariance at Every Point of Space and Time Scale-Invariant Coupling Renormalizable Asymptotic Freedom Color Confinement

QCD Mass Scale from Confinement not Explicit

Bound States in Relativistic Quantum Field Theory:

Light-Front Wavefunctions Dirac's Front Form: Fixed $\tau = t + z/c$

Invariant under boosts. Independent of P^{μ}

$$\mathbf{H}_{LF}^{QCD}|\psi>=M^2|\psi>$$

Direct connection to QCD Lagrangian

Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

Eigenstate of LF Hamiltonian

Invariant under boosts! Independent of P^{μ}

Causal, Frame-independent. Creation Operators on Simple Vacuum, Current Matrix Elements are Overlaps of LFWFS

No comparable formula in instant form

Advantages of the Dírac's Front Form for Hadron Physics

- ullet Measurements are made at fixed au
- Causality is automatic

- Structure Functions are squares of LFWFs
- Form Factors are overlap of LFWFs
- LFWFs are frame-independent -- no boosts!
- No dependence on observer's frame
- LF Holography: Dual to AdS space
- LF Vacuum trivial -- no condensates!
- Profound implications for Cosmological Constant

GGI Florence April 13, 2015 Light-Front Holography and non-perturbative QCD

Light-Front QCD

Physical gauge: $A^+ = 0$

(c)

mme

Exact frame-independent formulation of nonperturbative QCD!

$$L^{QCD} \rightarrow H_{LF}^{QCD}$$

$$H_{LF}^{QCD} = \sum_{i} \left[\frac{m^{2} + k_{\perp}^{2}}{x}\right]_{i} + H_{LF}^{int}$$

$$H_{LF}^{int}: \text{ Matrix in Fock Space}$$

$$H_{LF}^{QCD} |\Psi_{h} \rangle = \mathcal{M}_{h}^{2} |\Psi_{h} \rangle$$

$$|p, J_{z} \rangle = \sum_{n=3} \psi_{n}(x_{i}, \vec{k}_{\perp i}, \lambda_{i}) |n; x_{i}, \vec{k}_{\perp i}, \lambda_{i} \rangle$$

$$\frac{\bar{p}_{s}}{\bar{k}_{s}} \xrightarrow{p_{s}}{\bar{k}_{s}}$$

$$\frac{\bar{p}_{s}}{\bar{k}_{s}} \xrightarrow{p_{s}}{\bar{k}_{s}}$$

Eigenvalues and Eigensolutions give Hadronic Spectrum and Light-Front wavefunctions

LFWFs: Off-shell in P- and invariant mass

$$\mathcal{L}_{QCD} = -\frac{1}{4} Tr(G^{\mu\nu}G_{\mu\nu}) + \sum_{f=1}^{n_f} i\bar{\Psi}_f D_{\mu}\gamma^{\mu}\Psi_f + \sum_{f=1}^{n_f} m_f\bar{\Psi}_f\Psi_f$$

$$\begin{split} H_{QCD}^{LF} &= \frac{1}{2} \int d^{3}x \overline{\psi} \gamma^{+} \frac{(\mathrm{i}\partial^{\perp})^{2} + m^{2}}{\mathrm{i}\partial^{+}} \widetilde{\psi} - A_{a}^{i} (\mathrm{i}\partial^{\perp})^{2} A_{ia} \\ &- \frac{1}{2} g^{2} \int d^{3}x \mathrm{Tr} \left[\widetilde{A}^{\mu}, \widetilde{A}^{\nu} \right] \left[\widetilde{A}_{\mu}, \widetilde{A}_{\nu} \right] \\ &+ \frac{1}{2} g^{2} \int d^{3}x \overline{\psi} \gamma^{+} T^{a} \widetilde{\psi} \frac{1}{(\mathrm{i}\partial^{+})^{2}} \overline{\psi} \gamma^{+} T^{a} \widetilde{\psi} \\ &- g^{2} \int d^{3}x \overline{\psi} \gamma^{+} \left(\frac{1}{(\mathrm{i}\partial^{+})^{2}} \left[\mathrm{i}\partial^{+} \widetilde{A}^{\kappa}, \widetilde{A}_{\kappa} \right] \right) \widetilde{\psi} \\ &+ g^{2} \int d^{3}x \mathrm{Tr} \left(\left[\mathrm{i}\partial^{+} \widetilde{A}^{\kappa}, \widetilde{A}_{\kappa} \right] \frac{1}{(\mathrm{i}\partial^{+})^{2}} \left[\mathrm{i}\partial^{+} \widetilde{A}^{\kappa}, \widetilde{A}_{\kappa} \right] \right) \\ &+ \frac{1}{2} g^{2} \int d^{3}x \overline{\psi} \widetilde{A} \widetilde{\psi} \widetilde{A} \widetilde{\psi} \\ &+ g \int d^{3}x \overline{\psi} \widetilde{A} \widetilde{\psi} \widetilde{A} \widetilde{\psi} \\ &+ 2g \int d^{3}x \mathrm{Tr} \left(\mathrm{i}\partial^{\mu} \widetilde{A}^{\nu} \left[\widetilde{A}_{\mu}, \widetilde{A}_{\nu} \right] \right) \\ & & & & \text{Transformed} \\ & & & \text{Transformed} \\ & & & \text{Transformed} \\ & & & & \text{Transformed} \\ & & & & & \text{Transformed} \\ & & & & & \text{Transformed} \\ & & & & & & \text{Transformed} \\ & & & & & & & \text{Transformed} \\ & & & & & & & \text{Transformed} \\ & & & & & & & & & \text{Transformed} \\ & & & & & & & & & & & \\ \end{array}$$

Physical gauge: $A^+ = 0$

$|p,S_z\rangle = \sum_{n=3} \Psi_n(x_i,\vec{k}_{\perp i},\lambda_i)|n;\vec{k}_{\perp i},\lambda_i\rangle$

sum over states with n=3, 4, ... constituents

The Light Front Fock State Wavefunctions

$$\Psi_n(x_i, \vec{k}_{\perp i}, \lambda_i)$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ} .

The light-cone momentum fraction

$$x_i = \frac{k_i^+}{p^+} = \frac{k_i^0 + k_i^z}{P^0 + P^z}$$

are boost invariant.

$$\sum_{i}^{n} k_{i}^{+} = P^{+}, \ \sum_{i}^{n} x_{i} = 1, \ \sum_{i}^{n} \vec{k}_{i}^{\perp} = \vec{0}^{\perp}.$$

Intrinsic heavy quarks s(x), c(x), b(x) at high x !

$\left| \begin{array}{c} \bar{s}(x) \neq s(x) \\ \bar{u}(x) \neq \bar{d}(x) \end{array} \right|$

Atomic Physics from First Principles

Semiclassical first approximation to QED --> Bohr Spectrum

$$\begin{split} & \underset{\mathcal{L} \text{ight-Front QCD}}{\mathcal{L}_{QCD}} & \underset{\mathcal{H}_{QCD}}{\mathcal{H}_{QCD}} & \overbrace{\zeta^2} \\ & (H_{LF}^0 + H_{LF}^I) |\Psi > = M^2 |\Psi > \\ & \overbrace{[\frac{\vec{k}_{\perp}^2 + m^2}{x(1-x)} + V_{\text{eff}}^{LF}] \psi_{LF}(x, \vec{k}_{\perp}) = M^2 \psi_{LF}(x, \vec{k}_{\perp})} & \underset{\text{Effect}}{\text{Effect}} \\ & \left[-\frac{d^2}{d\zeta^2} + \frac{1-4L^2}{4\zeta^2} + U(\zeta) \right] \psi(\zeta) = \mathcal{M}^2 \psi(\zeta) \\ & \underset{\mathcal{U}(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L+S-1)}{\text{Effect}} \\ \end{split}$$

Semiclassical first approximation to QCD

Fixed $\tau = t + z/c$

Coupled Fock states

Elímínate hígher Fock states and retarded interactions

Effective two-particle equation

Azimuthal Basis

 $\begin{aligned} \zeta, \phi \\ m_q = 0 \end{aligned}$

Confining AdS/QCD potential! **Sums an infinite # diagrams**

AdS/QCD Soft-Wall Model

 $e^{\varphi(z)} = e^{+\kappa^2 z}$

 $\zeta^2 = x(1-x)\mathbf{b}^2_{\perp}$

de Tèramond, Dosch, sjb

<mark>Líght-Front Holography</mark>

$$\left[-\frac{d^2}{d\zeta^2} + \frac{1-4L^2}{4\zeta^2} + U(\zeta)\right]\psi(\zeta) = \mathcal{M}^2\psi(\zeta)$$

Light-Front Schrödinger Equation $U(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L + S - 1)$

Unique Confinement Potential!

Preserves Conformal Symmetry of the action

Confinement scale:

$$1/\kappa\simeq 1/3~fm$$

 $\kappa \simeq 0.6 \ GeV$

de Alfaro, Fubini, Furlan:
Fubini, Rabinovici:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Preview

GGI Florence April 13, 2015 Light-Front Holography and non-perturbative QCD

Superconformal Algebra

Superconformal AdS Light-Front Holographic QCD (LFHQCD): Identical meson and baryon spectra!

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon

Some Features of AdS/QCD

- Regge spectroscopy—same slope in n,L for mesons,
- Chiral features for $m_q=0$: $m_{\pi}=0$, chiral-invariant proton
- Hadronic LFWFs
- Counting Rules

- Connection between hadron masses and $\Lambda_{\overline{MS}}$

Superconformal AdS Light-Front Holographic QCD (LFHQCD)

Meson-Baryon Mass Degeneracy for L_M=L_B+1

GGI Florence April 13, 2015 Light-Front Holography and non-persturbative QCD

Analytic, defined at all scales, IR Fixed Point

$$e^{\varphi} = e^{+\kappa^2 z^2}$$

Deur, de Tèramond, sjb

AdS/CFT

• Isomorphism of SO(4,2) of conformal QCD with the group of isometries of AdS space

$$ds^2 = \frac{R^2}{z^2} (\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^2),$$
 invariant measure

 $x^{\mu} \rightarrow \lambda x^{\mu}, \ z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$x^2 \to \lambda^2 x^2, \quad z \to \lambda z.$$

 $x^2 = x_\mu x^\mu$: invariant separation between quarks

• The AdS boundary at $z \to 0$ correspond to the $Q \to \infty$, UV zero separation limit.

Changes in physical length scale mapped to evolution in the 5th dimension z

• Truncated AdS/CFT (Hard-Wall) model: cut-off at $z_0 = 1/\Lambda_{QCD}$ breaks conformal invariance and allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).

• Smooth cutoff: introduction of a background dilaton field $\varphi(z)$ – usual linear Regge dependence can be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

GGI Florence April 13, 2015 Light-Front Holography and non-perturbative QCD

Dílaton-Modífied AdS/QCD

$$ds^{2} = e^{\varphi(z)} \frac{R^{2}}{z^{2}} (\eta_{\mu\nu} x^{\mu} x^{\nu} - dz^{2})$$

- Soft-wall dilaton profile breaks conformal invariance $e^{\varphi(z)} = e^{+\kappa^2 z^2}$
- Color Confinement
- Introduces confinement scale κ
- Uses AdS₅ as template for conformal theory

GGI Florence April 13, 2015 Light-Front Holography and non-perturbative QCD

Introduce "Dílaton" to símulate confinement analytically

• Nonconformal metric dual to a confining gauge theory

$$ds^2 = \frac{R^2}{z^2} e^{\varphi(z)} \left(\eta_{\mu\nu} dx^{\mu} dx^{\nu} - dz^2 \right)$$

where $\varphi(z) \to 0$ at small z for geometries which are asymptotically ${\rm AdS}_5$

• Gravitational potential energy for object of mass m

$$V = mc^2 \sqrt{g_{00}} = mc^2 R \, \frac{e^{\varphi(z)/2}}{z}$$

- Consider warp factor $\exp(\pm\kappa^2 z^2)$
- Plus solution: V(z) increases exponentially confining any object in modified AdS metrics to distances $\langle z\rangle\sim 1/\kappa$

Klebanov and Maldacena

$$e^{\varphi(z)} = e^{+\kappa^2 z^2}$$

Positive-sign dilaton

• de Teramond, sjb

Bosonic Solutions: Hard Wall Model

- Conformal metric: $ds^2 = g_{\ell m} dx^\ell dx^m$. $x^\ell = (x^\mu, z), \ g_{\ell m} \to \left(R^2/z^2\right) \eta_{\ell m}$.
- Action for massive scalar modes on AdS_{d+1} :

$$S[\Phi] = \frac{1}{2} \int d^{d+1}x \sqrt{g} \, \frac{1}{2} \left[g^{\ell m} \partial_{\ell} \Phi \partial_m \Phi - \mu^2 \Phi^2 \right], \quad \sqrt{g} \to (R/z)^{d+1}$$

• Equation of motion

$$\frac{1}{\sqrt{g}}\frac{\partial}{\partial x^{\ell}}\left(\sqrt{g}\,g^{\ell m}\frac{\partial}{\partial x^{m}}\Phi\right) + \mu^{2}\Phi = 0.$$

• Factor out dependence along x^{μ} -coordinates , $\Phi_P(x,z) = e^{-iP\cdot x} \Phi(z)$, $P_{\mu}P^{\mu} = \mathcal{M}^2$:

$$\left[z^2\partial_z^2 - (d-1)z\,\partial_z + z^2\mathcal{M}^2 - (\mu R)^2\right]\Phi(z) = 0.$$

• Solution: $\Phi(z) \to z^{\Delta}$ as $z \to 0$,

$$\Phi(z) = C z^{d/2} J_{\Delta - d/2}(z\mathcal{M}) \qquad \Delta = \frac{1}{2} \left(d + \sqrt{d^2 + 4\mu^2 R^2} \right)$$
$$\Delta = 2 + L \qquad d = 4 \qquad (\mu R)^2 = L^2 - 4$$

 $e^{\varphi(z)} = e^{+\kappa^2 z^2}$

Positive-sign dilaton

• Dosch, de Teramond, sjb

Ads Soft-Wall Schrodinger Equation for bound state of two scalar constituents:

$$\left[-\frac{d^2}{dz^2} - \frac{1 - 4L^2}{4z^2} + U(z)\right]\Phi(z) = \mathcal{M}^2\Phi(z)$$

$$U(z) = \kappa^4 z^2 + 2\kappa^2 (L + S - 1)$$

Derived from variation of Action for Dilaton-Modified AdS_5

Identical to Light-Front Bound State Equation!

Light-Front Holography: Unique mapping derived from equality of LF and AdS formula for EM and gravitational current matrix elements and identical equations of motion

de Tèramond, Dosch, sjb

Light-Front Holography

$$\left[-\frac{d^2}{d\zeta^2} + \frac{1-4L^2}{4\zeta^2} + U(\zeta)\right]\psi(\zeta) = \mathcal{M}^2\psi(\zeta)$$

Light-Front Schrödinger Equation $U(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L + S - 1)$

Confinement scale:

Ads/QCD

Soft-Wall Model

 $e^{\varphi(z)} = e^{+\kappa^2 z^2}$

$$1/\kappa\simeq 1/3~fm$$

 $\kappa \simeq 0.6 \ GeV$

de Alfaro, Fubini, Furlan: Fubini, Rabinovici:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Unique **Confinement Potential!**

Preserves Conformal Symmetry of the action

 $\zeta^2 = x(1-x)\mathbf{b}^2_{\perp}$

de Tèramond, Dosch, sjb

General-Spín Hadrons

• Obtain spin-J mode $\Phi_{\mu_1\cdots\mu_J}$ with all indices along 3+1 coordinates from Φ by shifting dimensions

$$\Phi_J(z) = \left(\frac{z}{R}\right)^{-J} \Phi(z)$$

$$e^{\varphi(z)} = e^{+\kappa^2 z^2}$$

- Substituting in the AdS scalar wave equation for Φ

$$\left[z^2\partial_z^2 - \left(3 - 2J - 2\kappa^2 z^2\right)z\,\partial_z + z^2\mathcal{M}^2 - (\mu R)^2\right]\Phi_J = 0$$

• Upon substitution $z \rightarrow \zeta$

$$\phi_J(\zeta) \sim \zeta^{-3/2+J} e^{\kappa^2 \zeta^2/2} \Phi_J(\zeta)$$

we find the LF wave equation

$$\left| \left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + \kappa^4 \zeta^2 + 2\kappa^2 (L + S - 1) \right) \phi_{\mu_1 \cdots \mu_J} = \mathcal{M}^2 \phi_{\mu_1 \cdots \mu_J} \right|$$

Meson Spectrum in Soft Wall Model

Píon: Negatíve term for J=0 cancels positive terms from LFKE and potential

- Effective potential: $U(\zeta^2) = \kappa^4 \zeta^2 + 2\kappa^2 (J-1)$
- LF WE

$$\left(-\frac{d^2}{d\zeta^2} - \frac{1 - 4L^2}{4\zeta^2} + \kappa^4 \zeta^2 + 2\kappa^2 (J - 1)\right)\phi_J(\zeta) = M^2 \phi_J(\zeta)$$

• Normalized eigenfunctions $\ \langle \phi | \phi
angle = \int d\zeta \, \phi^2(z)^2 = 1$

$$\phi_{n,L}(\zeta) = \kappa^{1+L} \sqrt{\frac{2n!}{(n+L)!}} \zeta^{1/2+L} e^{-\kappa^2 \zeta^2/2} L_n^L(\kappa^2 \zeta^2)$$

Eigenvalues

$$\mathcal{M}_{n,J,L}^2 = 4\kappa^2 \left(n + rac{J+L}{2}
ight)$$

G. de Teramond, H. G. Dosch, sjb

I=1 orbital and radial excitations for the π ($\kappa = 0.59$ GeV) and the ρ -meson families ($\kappa = 0.54$ GeV)

• Triplet splitting for the I = 1, L = 1, J = 0, 1, 2, vector meson *a*-states

$$\mathcal{M}_{a_2(1320)} > \mathcal{M}_{a_1(1260)} > \mathcal{M}_{a_0(980)}$$

Mass ratio of the ρ and the a₁ mesons: coincides with Weinberg sum rules

G. de Teramond, H. G. Dosch, sjb

Light meson orbital (a) and radial (b) spectrum for $\kappa=0.6~{\rm GeV}$.

De Teramond, Dosch, sjb

 $\lambda \equiv \kappa^2$

- Results easily extended to light quarks masses (Ex: *K*-mesons)
- First order perturbation in the quark masses

$$\Delta M^2 = \langle \psi | \sum_a m_a^2 / x_a | \psi \rangle$$

• Holographic LFWF with quark masses

$$\psi(x,\zeta) \sim \sqrt{x(1-x)} e^{-\frac{1}{2\lambda} \left(\frac{m_q^2}{x} + \frac{m_{\overline{q}}^2}{1-x}\right)} e^{-\frac{1}{2\lambda}\zeta^2}$$

- Ex: Description of diffractive vector meson production at HERA [J. R. Forshaw and R. Sandapen, PRL **109**, 081601 (2012)]
- For the K^{\ast}

$$M_{n,L,S}^2 = M_{K^{\pm}}^2 + 4\lambda \left(n + \frac{J+L}{2}\right)$$

• Effective quark masses from reduction of higher Fock states as functionals of the valence state:

$$m_u = m_d = 46 \text{ MeV}, \quad m_s = 357 \text{ MeV}$$

Prediction from AdS/QCD: Meson LFWF

Provídes Connection of Confinement to Hadron Structure

AdS/QCD Holographic Wave Function for the ρ Meson and Diffractive ρ Meson Electroproduction

J. R. Forshaw*

Consortium for Fundamental Physics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom

R. Sandapen[†]

Département de Physique et d'Astronomie, Université de Moncton, Moncton, New Brunswick E1A3E9, Canada (Received 5 April 2012; published 20 August 2012)

We show that anti-de Sitter/quantum chromodynamics generates predictions for the rate of diffractive ρ -meson electroproduction that are in agreement with data collected at the Hadron Electron Ring Accelerator electron-proton collider.

$$\psi_M(x,k_\perp) = \frac{4\pi}{\kappa\sqrt{x(1-x)}} e^{-\frac{k_\perp^2}{2\kappa^2 x(1-x)}}$$

See also Ferreira and Dosch

$$e^{\varphi(z)} = e^{+\kappa^2 z^2}$$

AdS/QCD Holographic Wave Function for the ρ Meson and Diffractive ρ Meson Electroproduction

Uniqueness de Tèramond, Dosch, sjb

- $U(\zeta) = \kappa^{4} \zeta^{2} + 2\kappa^{2} (L + S 1) \qquad e^{\varphi(z)} = e^{+\kappa^{2} z^{2}}$
- ζ_2 confinement potential and dilaton profile unique!
- Linear Regge trajectories in n and L: same slope!
- Massless pion in chiral limit! No vacuum condensate!
- Conformally invariant action for massless quarks retained despite mass scale
- Same principle, equation of motion as de Alfaro, Furlan, Fubini,
 <u>Conformal Invariance in Quantum Mechanics</u> Nuovo Cim. A34 (1976)
 569

Uniqueness of Dilaton

$$\varphi_p(z) = \kappa^p z^p$$

Dosch, de Tèramond, sjb

Hadron Form Factors from AdS/QCD

Propagation of external perturbation suppressed inside AdS.

 $J(Q,z) = zQK_1(zQ)$

$$F(Q^2)_{I\to F} = \int \frac{dz}{z^3} \Phi_F(z) J(Q, z) \Phi_I(z)$$

Consider a specific AdS mode $\Phi^{(n)}$ dual to an n partonic Fock state $|n\rangle$. At small z, $\Phi^{(n)}$ scales as $\Phi^{(n)} \sim z^{\Delta_n}$. Thus:

$$F(Q^2) \rightarrow \left[\frac{1}{Q^2}\right]^{\tau-1},$$

where $\tau = \Delta_n - \sigma_n$, $\sigma_n = \sum_{i=1}^n \sigma_i$.

Dimensional Quark Counting Rules: General result from AdS/CFT and Conformal Invariance

Twist $\tau = n + L$

Holographic Mapping of AdS Modes to QCD LFWFs

Integrate Soper formula over angles:

Drell-Yan-West: Form Factors are Convolution of LFWFs

$$F(q^2) = 2\pi \int_0^1 dx \, \frac{(1-x)}{x} \int \zeta d\zeta J_0\left(\zeta q \sqrt{\frac{1-x}{x}}\right) \tilde{\rho}(x,\zeta),$$

with $\widetilde{\rho}(x,\zeta)$ QCD effective transverse charge density.

• Transversality variable

$$\zeta = \sqrt{x(1-x)\vec{b}_{\perp}^2}$$

• Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

$$\int_0^1 dx J_0\left(\zeta Q\sqrt{\frac{1-x}{x}}\right) = \zeta Q K_1(\zeta Q),$$

the solution for $J(Q,\zeta) = \zeta Q K_1(\zeta Q)$!

de Teramond, sjb

Identical to Polchinski-Strassler Convolution of AdS Amplitudes

Light-Front Holography: Unique mapping derived from equality of LF and AdS formula for EM and gravitational current matrix elements and identical equations of motion

Current Matrix Elements in AdS Space (SW)

• Propagation of external current inside AdS space described by the AdS wave equation

$$\left[z^2\partial_z^2 - z\left(1 + 2\kappa^2 z^2\right)\partial_z - Q^2 z^2\right]J_{\kappa}(Q, z) = 0.$$

• Solution bulk-to-boundary propagator

$$J_{\kappa}(Q,z) = \Gamma\left(1 + \frac{Q^2}{4\kappa^2}\right) U\left(\frac{Q^2}{4\kappa^2}, 0, \kappa^2 z^2\right),$$

where U(a, b, c) is the confluent hypergeometric function

$$\Gamma(a)U(a,b,z) = \int_0^\infty e^{-zt} t^{a-1} (1+t)^{b-a-1} dt.$$

• Form factor in presence of the dilaton background $\varphi = \kappa^2 z^2$

$$F(Q^{2}) = R^{3} \int \frac{dz}{z^{3}} e^{-\kappa^{2} z^{2}} \Phi(z) J_{\kappa}(Q, z) \Phi(z).$$

• For large $Q^2 \gg 4\kappa^2$

$$J_{\kappa}(Q,z) \to zQK_1(zQ) = J(Q,z),$$

the external current decouples from the dilaton field.

de Tèramond & sjb Grigoryan and Radyushkin

$$e^{\varphi(z)} = e^{+\kappa^2 z}$$

Dressed Current

ín Soft-Wall

Model

Dressed soft-wall current brings in higher Fock states and more vector meson poles

Timelike Pion Form Factor from AdS/QCD and Light-Front Holography

Remarkable Features of Líght-Front Schrödínger Equation

• Relativistic, frame-independent

$$e^{\varphi(z)} = e^{+\kappa^2 z}$$

- •QCD scale appears unique LF potential
- Reproduces spectroscopy and dynamics of light-quark hadrons with one parameter
- Zero-mass pion for zero mass quarks!
- Regge slope same for n and L -- not usual HO
- Splitting in L persists to high mass -- contradicts conventional wisdom based on breakdown of chiral symmetry
- Phenomenology: LFWFs, Form factors, electroproduction
- Extension to heavy quarks

$$U(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L + S - 1)$$

GGI Florence April 13, 2015 Light-Front Holography and non-perturbative QCD

1.5

Spectroscopy and Dynamics

de Tèramond, Dosch, sjb

Ads/QCD Soft-Wall Model $e^{\varphi(z)} = e^{+\kappa^2 z^2}$

Single schemeindependent fundamental mass scale

 κ

 $\zeta^2 = x(1-x)\mathbf{b}^2_{\perp}$.

Unique

Confinement Potential!

Conformal Symmetry

of the action

$$\left[-\frac{d^2}{d\zeta^2} + \frac{1-4L^2}{4\zeta^2} + U(\zeta)\right]\psi(\zeta) = \mathcal{M}^2\psi(\zeta)$$

Light-Front Schrödinger Equation $U(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L + S - 1)$

Confinement scale:

$$1/\kappa \simeq 1/3 \ fm$$

 $\kappa \simeq 0.6 \ GeV$

• de Alfaro, Fubini, Furlan:

 $(m_q=0)$

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

QCD Lagrangían

$$\mathcal{L}_{QCD} = -\frac{1}{4} Tr(G^{\mu\nu}G_{\mu\nu}) + \sum_{f=1}^{n_f} i\bar{\Psi}_f D_{\mu}\gamma^{\mu}\Psi_f + \sum_{f=1}^{n_f} z_f \bar{\Psi}_f \Psi_f$$

$$iD^{\mu} = i\partial^{\mu} - gA^{\mu} \qquad G^{\mu\nu} = \partial^{\mu}A^{\mu} - \partial^{\nu}A^{\mu} - g[A^{\mu}, A^{\nu}]$$

Classical Chiral Lagrangian is Conformally Invariant Where does the QCD Mass Scale Λ_{QCD} come from?

How does color confinement arise?

🛑 de Alfaro, Fubini, Furlan:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Unique confinement potential!

• de Alfaro, Fubini, Furlan

Retains conformal invariance of action despite mass scale! $4uw-v^2=\kappa^4=[M]^4$

Identical to LF Hamiltonian with unique potential and dilaton!

Dosch, de Teramond, sjb

$$\left[-\frac{d^2}{d\zeta^2} + \frac{1-4L^2}{4\zeta^2} + U(\zeta)\right]\psi(\zeta) = \mathcal{M}^2\psi(\zeta)$$
$$U(\zeta) = \kappa^4\zeta^2 + 2\kappa^2(L+S-1)$$

What determines the QCD mass scale Λ_{QCD} ?

- Mass scale does not appear in the QCD Lagrangian (massless quarks)
- Dimensional Transmutation? Requires external constraint such as $\alpha_s(M_Z)$
- dAFF: Confinement Scale κ appears spontaneously via the Hamiltonian: G=uH+vD+wK $4uw-v^2=\kappa^4=[M]^4$
- The confinement scale regulates infrared divergences, connects $\Lambda_{\rm QCD}$ to the confinement scale K
- Only dimensionless mass ratios (and M times R) predicted
- Mass and time units [GeV] and [sec] from physics external to QCD
- New feature: bounded frame-independent relative time between constituents

GGI Florence April 13, 2015 Light-Front Holography and non-perturbative QCD

dAFF: New Time Variable

$$\tau = \frac{2}{\sqrt{4uw - v^2}} \arctan\left(\frac{2tw + v}{\sqrt{4uw - v^2}}\right)$$

- Identify with difference of LF time $\Delta x^+/P^+$ between constituents
- Finite range
- Measure in Double-Parton Processes

GGI Florence April 13, 2015 Light-Front Holography and non-perturbative QCD

)

Interpretation of Mass Scale K

- Does not affect conformal symmetry of QCD action
- Self-consistent regularization of IR divergences
- Determines all mass and length scales for zero quark mass
- Compute scheme-dependent $\Lambda_{\overline{MS}}$ determined in terms of
- Value of κ itself not determined -- place holder
- Need external constraint such as f_{π}

Baryon Spectrum in Soft-Wall Model

• Upon substitution $z \to \zeta$ and

$$\Psi_J(x,z) = e^{-iP \cdot x} z^2 \psi^J(z) u(P),$$

find LFWE for d = 4

$$\frac{d}{d\zeta}\psi_+^J + \frac{\nu + \frac{1}{2}}{\zeta}\psi_+^J + U(\zeta)\psi_+^J = \mathcal{M}\psi_-^J,$$
$$-\frac{d}{d\zeta}\psi_-^J + \frac{\nu + \frac{1}{2}}{\zeta}\psi_-^J + U(\zeta)\psi_-^J = \mathcal{M}\psi_+^J,$$

$$U = \kappa^2 \zeta$$

• Eigenfunctions

$$\psi_{+}^{J}(\zeta) \sim \zeta^{\frac{1}{2}+\nu} e^{-\kappa^{2}\zeta^{2}/2} L_{n}^{\nu}(\kappa^{2}\zeta^{2}), \qquad \psi_{-}^{J}(\zeta) \sim \zeta^{\frac{3}{2}+\nu} e^{-\kappa^{2}\zeta^{2}/2} L_{n}^{\nu+1}(\kappa^{2}\zeta^{2})$$

• Eigenvalues

$$\mathcal{M}^2 = 4\kappa^2(n+\nu+1), \quad \nu = L+1 \quad (\tau = 3) \qquad \begin{array}{l} \text{Independent} \\ \text{of } J \end{array}$$

• Full J - L degeneracy (different J for same L) for baryons along given trajectory !

GGI Florence April 13, 2015 Light-Front Holography and non-perturbative QCD

Table 1: SU(6) classification of confirmed baryons listed by the PDG. The labels S, L and n refer to the internal spin, orbital angular momentum and radial quantum number respectively. The $\Delta_2^{5^-}(1930)$ does not fit the SU(6) classification since its mass is too low compared to other members **70**-multiplet for n = 0, L = 3.

$\overline{SU(6)}$	S	L	n	Baryon State
56	$\frac{1}{2}$	0	0	$N\frac{1}{2}^{+}(940)$
	$\frac{1}{2}$	0	1	$N\frac{1}{2}^{+}(1440)$
	$\frac{1}{2}$	0	2	$N\frac{1}{2}^{+}(1710)$
	$\frac{3}{2}$	0	0	$\Delta \frac{3}{2}^{+}(1232)$
	$\frac{3}{2}$	0	1	$\Delta \frac{3}{2}^{+}(1600)$
70	$\frac{1}{2}$	1	0	$N\frac{1}{2}^{-}(1535) N\frac{3}{2}^{-}(1520)$
	$\frac{3}{2}$	1	0	$N_{\frac{1}{2}}^{1-}(1650) N_{\frac{3}{2}}^{3-}(1700) N_{\frac{5}{2}}^{5-}(1675)$
	$\frac{3}{2}$	1	1	$N\frac{1}{2}^{-}$ $N\frac{3}{2}^{-}(1875)$ $N\frac{5}{2}^{-}$
	$\frac{1}{2}$	1	0	$\Delta \frac{1}{2}^{-}(1620) \ \Delta \frac{3}{2}^{-}(1700)$
56	$\frac{1}{2}$	2	0	$N_{\frac{3}{2}}^{3+}(1720) \ N_{\frac{5}{2}}^{5+}(1680)$
	$\frac{1}{2}$	2	1	$N\frac{3}{2}^{+}(1900) \ N\frac{5}{2}^{+}$
	$\frac{3}{2}$	2	0	$\Delta_{\frac{1}{2}}^{\pm}(1910) \ \Delta_{\frac{3}{2}}^{\pm}(1920) \ \Delta_{\frac{5}{2}}^{\pm}(1905) \ \Delta_{\frac{7}{2}}^{\mp}(1950)$
70	$\frac{1}{2}$	3	0	$N\frac{5}{2}^{-}$ $N\frac{7}{2}^{-}$
	$\frac{3}{2}$ $\frac{1}{2}$	3	0	$N_{\frac{3}{2}}^{\frac{3}{2}}$ $N_{\frac{5}{2}}^{\frac{5}{2}}$ $N_{\frac{7}{2}}^{\frac{7}{2}}(2190)$ $N_{\frac{9}{2}}^{\frac{9}{2}}(2250)$
	$\frac{1}{2}$	3	0	$\Delta \frac{5}{2}^- \qquad \Delta \frac{7}{2}^-$
56	$\frac{1}{2}$	4	0	$N\frac{7}{2}^+$ $N\frac{9}{2}^+(2220)$
	$\frac{3}{2}$	4	0	$\Delta_{\frac{5}{2}}^{5^+}$ $\Delta_{\frac{7}{2}}^{7^+}$ $\Delta_{\frac{9}{2}}^{9^+}$ $\Delta_{\frac{11}{2}}^{11^+}(2420)$
70	$\frac{1}{2}$	5	0	$N\frac{9}{2}^{-}$ $N\frac{11}{2}^{-}$
	$\frac{3}{2}$	5	0	$N\frac{7}{2}^{-}$ $N\frac{9}{2}^{-}$ $N\frac{11}{2}^{-}(2600)$ $N\frac{13}{2}^{-}$

PDG 2012

Fermionic Modes and Baryon Spectrum

[Hard wall model: GdT and S. J. Brodsky, PRL **94**, 201601 (2005)] [Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

From Nick Evans

• Nucleon LF modes

$$\psi_{+}(\zeta)_{n,L} = \kappa^{2+L} \sqrt{\frac{2n!}{(n+L)!}} \zeta^{3/2+L} e^{-\kappa^{2}\zeta^{2}/2} L_{n}^{L+1} \left(\kappa^{2}\zeta^{2}\right)$$

$$\psi_{-}(\zeta)_{n,L} = \kappa^{3+L} \frac{1}{\sqrt{n+L+2}} \sqrt{\frac{2n!}{(n+L)!}} \zeta^{5/2+L} e^{-\kappa^{2}\zeta^{2}/2} L_{n}^{L+2} \left(\kappa^{2}\zeta^{2}\right)$$

• Normalization

$$\int d\zeta \,\psi_+^2(\zeta) = \int d\zeta \,\psi_-^2(\zeta) = 1$$

Chíral Symmetry of Eígenstate!

• Eigenvalues

$$\mathcal{M}_{n,L,S=1/2}^2 = 4\kappa^2 \left(n + L + 1 \right)$$

• "Chiral partners"

$$\frac{\mathcal{M}_{N(1535)}}{\mathcal{M}_{N(940)}} = \sqrt{2}$$

Chíral Features of Soft-Wall AdS/QCD Model

- Boost Invariant
- Trivial LF vacuum! No condensate, but consistent with GMOR
- Massless Pion
- Hadron Eigenstates (even the pion) have LF Fock components of different L^z

• Proton: equal probability $S^z=+1/2, L^z=0; S^z=-1/2, L^z=+1$

$$J^z = +1/2 :< L^z >= 1/2, < S^z_q >= 0$$

- Self-Dual Massive Eigenstates: Proton is its own chiral partner.
- Label State by minimum L as in Atomic Physics
- Minimum L dominates at short distances
- AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=0.
 No mass -degenerate parity partners!

• Compute Dirac proton form factor using SU(6) flavor symmetry

$$F_1^p(Q^2) = R^4 \int \frac{dz}{z^4} V(Q, z) \Psi_+^2(z)$$

• Nucleon AdS wave function

$$\Psi_{+}(z) = \frac{\kappa^{2+L}}{R^2} \sqrt{\frac{2n!}{(n+L)!}} z^{7/2+L} L_n^{L+1} \left(\kappa^2 z^2\right) e^{-\kappa^2 z^2/2}$$

• Normalization $(F_1^p(0) = 1, V(Q = 0, z) = 1)$

$$R^4 \int \frac{dz}{z^4} \, \Psi_+^2(z) = 1$$

• Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

$$V(Q,z) = \kappa^2 z^2 \int_0^1 \frac{dx}{(1-x)^2} x^{\frac{Q^2}{4\kappa^2}} e^{-\kappa^2 z^2 x/(1-x)}$$

• Find

$$F_1^p(Q^2) = \frac{1}{\left(1 + \frac{Q^2}{\mathcal{M}_{\rho}^2}\right)\left(1 + \frac{Q^2}{\mathcal{M}_{\rho'}^2}\right)}$$

with $\mathcal{M}_{\rho_n}^2 \to 4\kappa^2(n+1/2)$

Fubini and Rabinovici

Superconformal Algebra

de Teramond Dosch and SJB

1+1

 $\{\psi,\psi^+\}=1$

two anti-commuting fermionic operators

 $\psi=rac{1}{2}(\sigma_1-i\sigma_2), \ \ \psi^+=rac{1}{2}(\sigma_1+i\sigma_2)$ Realization as Pauli Matrices

$$Q = \psi^{+}[-\partial_{x} + W(x)], \quad Q^{+} = \psi[\partial_{x} + W(x)], \qquad W(x) = \frac{f}{x}$$
(Conformal)

$$S = \psi^+ x, \quad S^+ = \psi x \qquad \mathbf{I}$$

Introduce new spinor operators

 $\{Q, Q^+\} = 2H, \{S, S^+\} = 2K$

$$Q \simeq \sqrt{H}, \quad S \simeq \sqrt{K}$$

 $\{Q,Q\} = \{Q^+,Q^+\} = 0, \ [Q,H] = [Q^+,H] = 0$

Superconformal Algebra

$$\begin{split} \{\psi,\psi^+\} &= 1 \qquad B = \frac{1}{2}[\psi^+,\psi] = \frac{1}{2}\sigma_3 \\ \psi &= \frac{1}{2}(\sigma_1 - i\sigma_2), \quad \psi^+ = \frac{1}{2}(\sigma_1 + i\sigma_2) \\ \psi^+[-\partial_x + \frac{f}{x}], \quad Q^+ &= \psi[\partial_x + \frac{f}{x}], \qquad S = \psi^+ x, \quad S^+ = \psi x \\ \{Q,Q^+\} &= 2H, \quad \{S,S^+\} = 2K \\ \{Q,S^+\} &= f - B + 2iD, \quad \{Q^+,S\} = f - B - 2iD \\ \hline \text{generates the conformal algebra} \\ [\text{H},\text{D}] &= \text{i H}, \quad [\text{H},\text{K}] = 2 \text{ i D}, \quad [\text{K},\text{D}] = - \text{ i K} \end{split}$$

Superconformal Algebra

Baryon Equation

Consider
$$R_w = Q + wS;$$

w: dimensions of mass squared

$$G = \{R_w, R_w^+\} = 2H + 2w^2K + 2wfI - 2wB \qquad 2B = \sigma_3$$

Retains Conformal Invariance of Action

Fubini and Rabinovici

New Extended Hamíltonían G ís díagonal:

$$G_{11} = \left(-\partial_x^2 + w^2 x^2 + 2wf - w + \frac{4(f + \frac{1}{2})^2 - 1}{4x^2}\right)$$

$$G_{22} = \left(-\partial_x^2 + w^2 x^2 + 2wf + w + \frac{4(f - \frac{1}{2})^2 - 1}{4x^2}\right)$$

Identify $f - \frac{1}{2} = L_B$, $w = \kappa^2$
Eigenvalue of G : $M^2(n, L) = 4\kappa^2(n + L_B + 1)$

LF Holography

Baryon Equation

 $x \to \zeta$

Superconformal AdS Light-Front Holographic QCD (LFHQCD): Identical meson and baryon spectra!

 $\lambda = \kappa^2$

Features of Supersymmetric Equations

- J =L+S baryon simultaneously satisfies both equations of G with L , L+1 for same mass eigenvalue
- $J^z = L^z + 1/2 = (L^z + 1) 1/2$ $S^z = \pm 1/2$
- Baryon spin carried by quark orbital angular momentum: <J^z> =L^z+1/2
- Mass-degenerate meson "superpartner" with L_M=L_B+1. "Shifted meson-baryon Duality" Meson and baryon have same κ !

GGI Florence April 13, 2015 Light-Front Holography and non-perturbative QCD

$$M^2 = 4\kappa^2(n+\nu+1)$$

Table 1. Orbital assignment for baryon trajectories according to parity and internal spin.

		$S = \frac{1}{2}$	$S = \frac{3}{2}$
	P = +	v = L	$\nu = L + \frac{1}{2}$
$\nu = \mu R - 1/2$	P = -	$\nu = L + \frac{1}{2}$	v = L + 1

$$M_{n,L,S=\frac{3}{2}}^{2\,(+)} = M_{n,L,S=\frac{1}{2}}^{2\,(-)}$$

No spin-orbit coupling

J=1/2 "Chiral partners", e.g. N(1535) and N(1400), with different L, non-degenerate

Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

$$F_{+}(Q^{2}) = g_{+} \int d\zeta J(Q,\zeta) |\psi_{+}(\zeta)|^{2},$$

$$F_{-}(Q^{2}) = g_{-} \int d\zeta J(Q,\zeta) |\psi_{-}(\zeta)|^{2},$$

where the effective charges g_+ and g_- are determined from the spin-flavor structure of the theory.

- Choose the struck quark to have $S^z = +1/2$. The two AdS solutions $\psi_+(\zeta)$ and $\psi_-(\zeta)$ correspond to nucleons with $J^z = +1/2$ and -1/2.
- For SU(6) spin-flavor symmetry

$$F_1^p(Q^2) = \int d\zeta J(Q,\zeta) |\psi_+(\zeta)|^2,$$

$$F_1^n(Q^2) = -\frac{1}{3} \int d\zeta J(Q,\zeta) \left[|\psi_+(\zeta)|^2 - |\psi_-(\zeta)|^2 \right],$$

where $F_1^p(0) = 1$, $F_1^n(0) = 0$.

Using SU(6) flavor symmetry and normalization to static quantities

Predict hadron spectroscopy and dynamics

G. de Teramond & sjb

Nucleon Transition Form Factors

- Compute spin non-flip EM transition $N(940) \rightarrow N^*(1440)$: $\Psi^{n=0,L=0}_+ \rightarrow \Psi^{n=1,L=0}_+$
- Transition form factor

$$F_{1N \to N^*}^{p}(Q^2) = R^4 \int \frac{dz}{z^4} \Psi_+^{n=1,L=0}(z) V(Q,z) \Psi_+^{n=0,L=0}(z)$$

• Orthonormality of Laguerre functions $(F_1^p_{N \to N^*}(0) = 0, V(Q = 0, z) = 1)$

$$R^4 \int \frac{dz}{z^4} \Psi_+^{n',L}(z) \Psi_+^{n,L}(z) = \delta_{n,n'}$$

• Find

$$F_{1N\to N^{*}}^{p}(Q^{2}) = \frac{2\sqrt{2}}{3} \frac{\frac{Q^{2}}{M_{P}^{2}}}{\left(1 + \frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1 + \frac{Q^{2}}{\mathcal{M}_{\rho'}^{2}}\right)\left(1 + \frac{Q^{2}}{\mathcal{M}_{\rho''}^{2}}\right)}$$
 with $\mathcal{M}_{\rho_{n}}^{2} \to 4\kappa^{2}(n+1/2)$

de Teramond, sjb

Consistent with counting rule, twist 3

Nucleon Transition Form Factors

$$F_{1 N \to N^*}^p(Q^2) = \frac{\sqrt{2}}{3} \frac{\frac{Q^2}{\mathcal{M}_{\rho}^2}}{\left(1 + \frac{Q^2}{\mathcal{M}_{\rho}^2}\right) \left(1 + \frac{Q^2}{\mathcal{M}_{\rho'}^2}\right) \left(1 + \frac{Q^2}{\mathcal{M}_{\rho''}^2}\right)}.$$

Proton transition form factor to the first radial excited state. Data from JLab

Flavor Decomposition of Elastic Nucleon Form Factors

G. D. Cates et al. Phys. Rev. Lett. 106, 252003 (2011)

- Proton SU(6) WF: $F_{u,1}^p = \frac{5}{3}G_+ + \frac{1}{3}G_-, \quad F_{d,1}^p = \frac{1}{3}G_+ + \frac{2}{3}G_-$
- Neutron SU(6) WF: $F_{u,1}^n = \frac{1}{3}G_+ + \frac{2}{3}G_-, \quad F_{d,1}^n = \frac{5}{3}G_+ + \frac{1}{3}G_-$

Prediction from Super Conformal AdS/QCD: Same Form Factors for H= M and H=B if $L_M=L_B+I$

Running Coupling from Modified Ads/QCD

Deur, de Teramond, sjb

• Consider five-dim gauge fields propagating in AdS $_5$ space in dilaton background $arphi(z)=\kappa^2 z^2$

$$S = -\frac{1}{4} \int d^4x \, dz \, \sqrt{g} \, e^{\varphi(z)} \, \frac{1}{g_5^2} \, G^2$$

• Flow equation

$$\frac{1}{g_5^2(z)} = e^{\varphi(z)} \frac{1}{g_5^2(0)} \quad \text{or} \quad g_5^2(z) = e^{-\kappa^2 z^2} g_5^2(0)$$

where the coupling $g_5(z)$ incorporates the non-conformal dynamics of confinement

- YM coupling $\alpha_s(\zeta) = g_{YM}^2(\zeta)/4\pi$ is the five dim coupling up to a factor: $g_5(z) \to g_{YM}(\zeta)$
- $\bullet\,$ Coupling measured at momentum scale Q

$$\alpha_s^{AdS}(Q) \sim \int_0^\infty \zeta d\zeta J_0(\zeta Q) \, \alpha_s^{AdS}(\zeta)$$

Solution

 $\alpha_s^{AdS}(Q^2)=\alpha_s^{AdS}(0)\,e^{-Q^2/4\kappa^2}.$ where the coupling α_s^{AdS} incorporates the non-conformal dynamics of confinement

Bjorken sum rule defines effective charge
$$\alpha_{g1}(Q^2)$$
$$\int_0^1 dx [g_1^{ep}(x,Q^2) - g_1^{en}(x,Q^2)] \equiv \frac{g_a}{6} [1 - \frac{\alpha_{g1}(Q^2)}{\pi}]$$

- •Can be used as standard QCD coupling
- Well measured
- Asymptotic freedom at large Q^2
- Computable at large Q² in any pQCD scheme
- Universal β_0 , β_1

GGI Florence April 13, 2015 Light-Front Holography and non-perturbative QCD

Analytic, defined at all scales, IR Fixed Point

AdS/QCD dilaton captures the higher twist corrections to effective charges for Q < 1 GeV

$$e^{\varphi} = e^{+\kappa^2 z}$$

 $\mathbf{2}$

Deur, de Teramond, sjb

Deur, de Teramond, sjb

Experiment: $M_o = 0.7753 \pm 0.0003 \ GeV$

de Tèramond, Dosch, sjb

Interpretation of Mass Scale K

- Does not affect conformal symmetry of QCD action
- Self-consistent regularization of IR divergences
- Determines all mass and length scales for zero quark mass
- Compute scheme-dependent $\Lambda_{\overline{MS}}$ determined in terms of $~{\cal K}$
- Value of κ itself not determined -- place holder
- Need external constraint such as f_{π}

Connection to the Linear Instant-Form Potential

A.P. Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb

Connection to the Linear Instant-Form Potential

• Compare invariant mass in the instant-form in the hadron center-of-mass system ${f P}=0,$

$$M_{q\overline{q}}^2 = 4\,m_q^2 + 4\mathbf{p}^2$$

with the invariant mass in the front-form in the constituent rest frame, ${f k}_q+{f k}_{\overline{q}}=0$

$$M_{q\overline{q}}^2 = \frac{\mathbf{k}_{\perp}^2 + m_q^2}{x(1-x)}$$

obtain

$$U = V^2 + 2\sqrt{\mathbf{p}^2 + m_q^2} \, V + 2 \, V \sqrt{\mathbf{p}^2 + m_q^2}$$

where $\mathbf{p}_{\perp}^2 = \frac{\mathbf{k}_{\perp}^2}{4x(1-x)}$, $p_3 = \frac{m_q(x-1/2)}{\sqrt{x(1-x)}}$, and V is the effective potential in the instant-form

• For small quark masses a linear instant-form potential V implies a harmonic front-form potential U and thus linear Regge trajectories

A.P.Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb

AdS/QCD and Light-Front Holography $\mathcal{M}^2_{n,J,L} = 4\kappa^2 \big(n + \frac{J+L}{2}\big)$

- Zero mass pion for m_q = 0 (n=J=L=0)
- Regge trajectories: equal slope in n and L
- Form Factors at high Q²: Dimensional counting $[Q^2]^{n-1}F(Q^2) \rightarrow \text{const}$
- Space-like and Time-like Meson and Baryon Form Factors
- Running Coupling for NPQCD
- Meson Distribution Amplitude

 $\alpha_s(Q^2) \propto e^{-\frac{Q^2}{4\kappa^2}}$

 $\Phi \quad \phi_{\pi}(x) \propto f_{\pi} \sqrt{x(1-x)}$

GGI Florence April 13, 2015 Light-Front Holography and non-perturbative QCD

Features of Ads/QCD de Teramond, Dosch, Deur, sjb

- Color confining potential $\kappa^4 \zeta^2$ and universal mass scale from dilaton $ho^{\phi(z)} = e^{\kappa^2 z^2} \qquad \alpha_s(Q^2) \propto \exp{-Q^2/4\kappa^2}$
- Dimensional transmutation $\Lambda_{\overline{MS}} \leftrightarrow \kappa \leftrightarrow m_H$
- Chiral Action remains conformally invariant despite mass scale DAFF
- Light-Front Holography: Duality of AdS and frame-independent LF QCD
- Reproduces observed Regge spectroscopy same slope in n, L, and J for mesons and baryons
- Massless pion for massless quark
- Supersymmetric meson-baryon dynamics and spectroscopy:
 L_M=L_B+1
- Dynamics: LFWFs, Form Factors, GPDs

Superconformal Algebra Fubini and Rabinovici

An analytic first approximation to QCD AdS/QCD + Light-Front Holography

- As Simple as Schrödinger Theory in Atomic Physics
- LF radial variable ζ conjugate to invariant mass squared
- Relativistic, Frame-Independent, Color-Confining
- Unique confining potential!
- QCD Coupling at all scales: Essential for Gauge Link phenomena
- Hadron Spectroscopy and Dynamics from one parameter
- Wave Functions, Form Factors, Hadronic Observables, Constituent Counting Rules
- Insight into QCD Condensates: Zero cosmological constant!
- Systematically improvable with DLCQ-BLFQ Methods

GGI Florence April 13, 2015 Light-Front Holography and non-perturbative QCD

de Teramond, Dosch, Lorce, sjb Future Directions for Ads/QCD

- Hadronization at the Amplitude Level
- Diffractive dissociation of pion and proton to jets
- Identify the factorization Scale for ERBL, DGLAP evolution: Q₀
- Compute Tetraquark Spectroscopy Sequentially
- Update SU(6) spin-flavor symmetry
- Heavy Quark States: Supersymetry, not conformal
- Compute higher Fock states; e.g. Intrinsic Heavy Quarks
- Nuclear States Hidden Color
- Basis LF Quantization

AdS/QCD Soft-Wall Model

 $e^{\varphi(z)} = e^{+\kappa^2 z^2}$

 $\zeta^2 = x(1-x)\mathbf{b}^2_{\perp}$

de Tèramond, Dosch, sjb

<mark>Líght-Front Holography</mark>

Unique

Confinement Potential!

Preserves Conformal Symmetry

of the action

$$\left[-\frac{d^2}{d\zeta^2} + \frac{1-4L^2}{4\zeta^2} + U(\zeta)\right]\psi(\zeta) = \mathcal{M}^2\psi(\zeta)$$

Light-Front Schrödinger Equation $U(\zeta) = \kappa^4 \zeta^2 + 2\kappa^2 (L + S - 1)$

 $\kappa \simeq 0.6 \ GeV$

Confinement scale:

$$1/\kappa\simeq 1/3~fm$$

de Alfaro, Fubini, Furlan:
 Fubini, Rabinovici:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Líght-Front Holography and New Advances in Nonperturbative QCD

Stan Brodsky

with Guy de Tèramond, Hans Günter Dosch, and Alexandre Deur

