Light-Front Holography

and New Advances in Nonperturbative QCD

Fixed $\tau=t+z / c$

Stan Brodsky

with Guy de Tèramond, Hans Günter Dosch, and Alexandre Deur

Goal: An analytic first approximation to QCD

- As Simple as Schrödinger Theory in Atomic Physics
- Relativistic, Frame-Independent, Color-Confining
- Confinement in QCD -- What is the analytic form of the confining interaction?
-What sets the QCD mass scale?
- QCD Running Coupling at all scales
- Hadron Spectroscopy-Regge Trajectories
- Light-Front Wavefunctions
- Form Factors, Structure Functions, Hadronic Observables
- Constituent Counting Rules
- Hadronization at the Amplitude Level
- Insights into QCD Condensates
- Chiral Symmetry
- Svstematicallv improvable

Light-Front Holography and non-perturbative QCD

Stan Brodsky

QCD Lagrangian

Fundamental Theory of Hadron and Nuclear Physics

$$
\begin{gathered}
\text { gluon dynamics } \\
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+\sum_{f=1}^{n_{f}} i \bar{\Psi}_{f} D_{\mu} \gamma^{\mu} \Psi_{f}+\sum_{f=1}^{\text {quarkk inetic energy }+} m_{f} \bar{\Psi}_{f} \Psi_{f} \\
i D^{\mu}=i \partial^{\mu}-g A^{\mu} G^{\mu \nu}=\partial^{\mu} A^{\mu}-\partial^{\nu} A^{\mu}-g\left[A^{\mu}, A^{\nu}\right] \\
\text { Classically Conformal ifm } m_{q}=\boldsymbol{o}
\end{gathered}
$$

Yang Mills Gauge Principle: Color Rotation and Phase Invariance at Every Point of Space and Time

Scale-Invariant Coupling
Renormalizable Asymptotic Freedom Color Confinement

QCD Mass Scale from Confinement not Explicit

Bound States in Relativistic Quantum Field Theory:

Light-Front Wavefunctions Dirac's Front Form: Fixed $\tau=t+z / c$

Fixed $\tau=t+z / c$

$$
\psi\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \quad x_{i}=\frac{k_{i}^{+}}{P^{+}}
$$

Invariant under boosts. Independent of $\mathrm{P}^{\boldsymbol{\mu}}$

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Direct connection to QCD Lagrangian
Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

Measurements ofhadron LF wavefunction are at fixed $L F$ time

Like aflash photograph

$$
x_{b j}=x=\frac{k^{+}}{P^{+}}
$$

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

Eigenstate of LF Hamiltonian

$$
\begin{aligned}
& x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}} \\
& P_{n}\left(x_{i}, \vec{k}_{\perp}, \vec{P}_{\perp}\right. \\
& \left.\mid p, J_{i}\right) \quad \text { Fixed } \tau=t+z / c \\
& \\
& \\
& \\
& \text { Invariant under boosts! Independent of } P^{\mu} \\
& \sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0} .
\end{aligned}
$$

Causal, Frame-independent. Creation Operators on Simple Vacuum, Current Matrix Elements are Overlaps of LFWFS

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

6
GTMD

Transverse density in momentum space

Momentum space

$$
\begin{gathered}
\vec{k}_{\perp} \leftrightarrow \vec{z}_{\perp} \\
\vec{\Delta}_{\perp} \leftrightarrow \vec{b}_{\perp}
\end{gathered}
$$

Transverse density in position space

Lore,
Pasquini
$\rightarrow \quad \int \mathrm{d}^{2} b_{\perp}$
$\rightarrow \quad \int \mathrm{d} x$
$\longrightarrow \quad \int \mathrm{d}^{2} k_{\perp}$

Advantages of the Dirac's Front Form for Hadron Physics

- Measurements are made at fixed τ
- Causality is automatic
- Structure Functions are squares of LFWFs
- Form Factors are overlap of LFWFs
- LFWFs are frame-independent -- no boosts!
- No dependence on observer's frame
- LF Holography: Dual to AdS space
- LF Vacuum trivial -- no condensates!
- Profound implications for Cosmological Constant

GGI Florence April I3, 2015

Light-Front Holography and non-perturbative QCD

Stan Brodsky 든

Exact frame-independent formulation of nonperturbative QCD!

$$
\begin{gathered}
L^{Q C D} \rightarrow H_{L F}^{Q C D} \\
H_{L F}^{Q C D}=\sum_{i}\left[\frac{m^{2}+k_{\perp}^{2}}{x}\right]_{i}+H_{L F}^{i n t} \\
H_{L F}^{i n t}: \text { Matrix in Fock Space } \\
H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}> \\
\left|p, J_{z}>=\sum \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}>
\end{gathered}
$$

Eigenvalues and Eigensolutions give Hadronic Spectrum and Light-Front wavefunctions

$H_{L F}^{i n t}$

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+\sum_{f=1}^{n_{f}} i \bar{\Psi}_{f} D_{\mu} \gamma^{\mu} \Psi_{f}+\sum_{f=1}^{n_{f}} m_{f} \bar{\Psi}_{f} \Psi_{f}
$$

$$
\begin{aligned}
& H_{Q C D}^{L F}=\frac{1}{2} \int d^{3} x \overline{\widetilde{\psi}} \gamma^{+} \frac{\left(\mathrm{i} \partial^{\perp}\right)^{2}+m^{2}}{\mathrm{i} \partial^{+}} \widetilde{\psi}-A_{a}^{i}\left(\mathrm{i} \partial^{\perp}\right)^{2} A_{i a} \\
& -\frac{1}{2} g^{2} \int d^{3} x \operatorname{Tr}\left[\widetilde{A}^{\mu}, \tilde{A}^{\nu}\right]\left[\widetilde{A}_{\mu}, \widetilde{A}_{\nu}\right] \\
& +\frac{1}{2} g^{2} \int d^{3} x \overline{\widetilde{\psi}} \gamma^{+} T^{a} \tilde{\psi} \frac{1}{\left(\mathrm{i} \partial^{+}\right)^{2}} \overline{\tilde{\psi}} \gamma^{+} T^{a} \tilde{\psi} \\
& -g^{2} \int d^{3} x \overline{\tilde{\psi}} \gamma^{+}\left(\frac{1}{\left(\mathrm{i} \partial^{+}\right)^{2}}\left[\mathrm{i} \partial^{+} \tilde{A}^{\kappa}, \widetilde{A}_{\kappa}\right]\right) \tilde{\psi} \\
& +g^{2} \int d^{3} x \operatorname{Tr}\left([\mathrm { i } \partial ^ { + } \tilde { A } ^ { \kappa } , \tilde { A } _ { \kappa }] \frac { 1 } { (\mathrm { i } \partial ^ { + }) ^ { 2 } } \left[\mathrm{i} \partial^{+} \widetilde{A}^{\kappa}\right.\right. \\
& +\frac{1}{2} g^{2} \int d^{3} x \overline{\widetilde{\psi}} \tilde{A} \frac{\gamma^{+}}{\mathrm{i} \partial^{+}} \tilde{A} \tilde{\psi} \\
& +g \int d^{3} x \widetilde{\psi} \tilde{A} \tilde{\psi} \\
& +2 g \int d^{3} x \operatorname{Tr}\left(\mathrm{i} \partial^{\mu} \widetilde{A}^{\nu}\left[\widetilde{A}_{\mu}, \widetilde{A}_{\nu}\right]\right)
\end{aligned}
$$

Physical gauge: $A^{+}=0$

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fock State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fraction

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

Intrinsic heavy quarks $s(x), c(x), b(x)$ at high x !

$$
\begin{aligned}
& \bar{s}(x) \neq s(x) \\
& \bar{u}(x) \neq \bar{d}(x)
\end{aligned}
$$

Semiclassical füst approximation to QED --> Bohr Spectrum

Light-Front QCD

Fixed $\tau=t+z / c$

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Semiclassical first approximation to QCD

Azimuthat Basis

$$
\begin{gathered}
\zeta, \phi \\
m_{q}=0
\end{gathered}
$$

Confining AdS/QCD potential!
Sums an infinite \# diagrams

Fixed $\tau=t+z / c$

ζ^{2} conjugate to $\frac{k_{\perp}^{2}}{x(1-x)}=\left(p_{q}+p_{\bar{q}}\right)^{2}=\mathcal{M}_{q+\bar{q}}^{2}$

$$
\int d k^{-} \Psi_{B S}(P, k) \rightarrow \psi_{L F}\left(x, \vec{k}_{\perp}\right)
$$

$$
e^{\varphi(z)}=e^{+\kappa^{2} z}
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Unique

Light-Front Schrödinger Equation
Confinement Potential!
Preserves Conformal Symmetry of the action

Confinement scale:

$$
\begin{gathered}
\kappa \simeq 0.6 \mathrm{GeV} \\
1 / \kappa \simeq 1 / 3 \mathrm{fm}
\end{gathered}
$$

de Alfaro, Fubini, Furlan:

- Fubini, Rabinovici:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

$$
m_{u}=m_{d}=0
$$

Preview

$$
M^{2}(n, L, S)=4 \kappa^{2}(n+L+S / 2)
$$

GGI Florence April I3, 2015

Light-Front Holography and non-perturbative QCD

Stan Brodsky SLAC

Superconformal Algebra

$$
\frac{M^{2}}{4 \kappa^{2}}
$$

$$
M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) N \frac{7^{-}}{2}
$$

Same slope

Superconformal AdS Light-Front Holographic QCD (LFHQCD): Identical meson and baryon spectra!

Dosch, de Teramond, sjb

Some Features of $A d S / Q C D$

- Regge spectroscopy-same slope in n,Lfor mesons,
- Chiral features for $m_{q}=0: m_{\pi}=0$, chiral-invariant proton
- Hadronic LFWFs
- Counting Rules
- Connection between hadron masses and $\Lambda_{\overline{M S}}$ Superconformal AdS Light-Front Holographic QCD (LFHOCD) Meson-Baryon Mass Degeneracy for $L_{M}=L_{B}+1$

$$
m_{\rho}=\sqrt{2} \kappa
$$

Deur, de Tèramond, sjb

All-Scale QCD Coupling

Analytic, defined at all scales, IR Fixed Point

$$
e^{\varphi}=e^{+\kappa^{2} z^{2}}
$$

Deur, de Tèramond, sjb

Leading Twist Sivers Effect

Hwang, Schmidt, sjb

Collins, Burkardt, Ji, Yuan. Pasquini, ...

QCD S - and P -
Coulomb Phases
--Wilson Line
"Lensing Effect"

Leading-Twist Rescattering Violates PQCD Factorization!

AdS/CFT

- Isomorphism of $S O(4,2)$ of conformal QCD with the group of isometries of AdS space

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right), \quad \text { invariant measure }
$$

$x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$
x^{2} \rightarrow \lambda^{2} x^{2}, \quad z \rightarrow \lambda z .
$$

$x^{2}=x_{\mu} x^{\mu}$: invariant separation between quarks

- The AdS boundary at $z \rightarrow 0$ correspond to the $Q \rightarrow \infty$, UV zero separation limit.

- Truncated AdS/CFT (Hard-Wall) model: cut-off at $z_{0}=1 / \Lambda_{\mathrm{QCD}}$ breaks conformal invariance and allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).
- Smooth cutoff: introduction of a background dilaton field $\varphi(z)$ - usual linear Regge dependence can be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

Light-Front Holography and non-perturbative QCD

Stan Brodsky SI是C

Dülaton-Modified AdS/QCD

$$
d s^{2}=e^{\varphi(z)} \frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} x^{\mu} x^{\nu}-d z^{2}\right)
$$

- Soft-wall dilaton profile breaks conformal invariance $e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}$
- Color Confinement
- Introduces confinement scale κ
- Uses AdS $_{5}$ as template for conformal theory

GGI Florence April I3, 2015

Light-Front Holography and non-perturbative QCD

Stan Brodsky

Introduce "Dilaton" to simulate confinement analytically \downarrow

- Nonconformal metric dual to a confining gauge theory

$$
d s^{2}=\frac{R^{2}}{z^{2}} e^{\varphi(z)}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right)
$$

where $\varphi(z) \longrightarrow 0$ at small z for geometries which are asymptotically AdS_{5}

- Gravitational potential energy for object of mass m

$$
V=m c^{2} \sqrt{g_{00}}=m c^{2} R \frac{e^{\varphi(z) / 2}}{z}
$$

- Consider warp factor $\exp \left(\pm \kappa^{2} z^{2}\right)$
- Plus solution: $V(z)$ increases exponentially confining any object in modified AdS metrics to distances $\langle z\rangle \sim 1 / \kappa$

Klebanor and Maldacena

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

Bosonic Solutions: Hard Wall Model

- Conformal metric: $d s^{2}=g_{\ell m} d x^{\ell} d x^{m} . x^{\ell}=\left(x^{\mu}, z\right), g_{\ell m} \rightarrow\left(R^{2} / z^{2}\right) \eta_{\ell m}$.
- Action for massive scalar modes on AdS_{d+1} :

$$
S[\Phi]=\frac{1}{2} \int d^{d+1} x \sqrt{g} \frac{1}{2}\left[g^{\ell m} \partial_{\ell} \Phi \partial_{m} \Phi-\mu^{2} \Phi^{2}\right], \quad \sqrt{g} \rightarrow(R / z)^{d+1} .
$$

- Equation of motion

$$
\frac{1}{\sqrt{g}} \frac{\partial}{\partial x^{\ell}}\left(\sqrt{g} g^{\ell m} \frac{\partial}{\partial x^{m}} \Phi\right)+\mu^{2} \Phi=0 .
$$

- Factor out dependence along x^{μ}-coordinates, $\Phi_{P}(x, z)=e^{-i P \cdot x} \Phi(z), P_{\mu} P^{\mu}=\mathcal{M}^{2}$:

$$
\left[z^{2} \partial_{z}^{2}-(d-1) z \partial_{z}+z^{2} \mathcal{M}^{2}-(\mu R)^{2}\right] \Phi(z)=0 .
$$

- Solution: $\Phi(z) \rightarrow z^{\Delta}$ as $z \rightarrow 0$,

$$
\begin{array}{cc}
\Phi(z)=C z^{d / 2} J_{\Delta-d / 2}(z \mathcal{M}) & \Delta=\frac{1}{2}\left(d+\sqrt{d^{2}+4 \mu^{2} R^{2}}\right) . \\
\Delta=2+L \quad d=4 & (\mu R)^{2}=L^{2}-4
\end{array}
$$

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}} \quad \text { Positive-sign dilaton }
$$

AdS Soft-Wall Schrodinger Equation for bound state of two scalar constituents:

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d z^{2}}-\frac{1-4 L^{2}}{4 z^{2}}+U(z)\right] \Phi(z)=\mathcal{M}^{2} \Phi(z)} \\
U(z)=\kappa^{4} z^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

Derived from variation of Action for Dilaton-Modified $A d S_{5}$

Identical to Light-Front Bound State Equation!

$$
z \longmapsto \zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

Light-Front Holographic Dictionary

$$
\psi\left(x, \vec{b}_{\perp}\right) \longleftrightarrow \phi(z)
$$

$$
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

$$
\begin{gathered}
\psi(x, \zeta)=\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta) \\
(\mu R)^{2}=L^{2}-(J-2)^{2}
\end{gathered}
$$

Light-Front Holography: Unique mapping derived from equality of $L F$ and AdS formula for $E M$ and gravitational current matrix elements and identical equations of motion

AdS/QCD
Soft-Wall Model

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

Light-Front Holography

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2}
$$

Unique

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Confinement scale:

$$
\begin{gathered}
\kappa \simeq 0.6 \mathrm{GeV} \\
1 / \kappa \simeq 1 / 3 \mathrm{fm}
\end{gathered}
$$

de Alfaro, Fubini, Furlan:
Fubini, Rabinovici:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

de Tèramond, Dosch, sjb

General-Spin Hadrons

- Obtain spin- J mode $\Phi_{\mu_{1} \cdots \mu_{J}}$ with all indices along 3+1 coordinates from Φ by shifting dimensions

$$
\Phi_{J}(z)=\left(\frac{z}{R}\right)^{-J} \Phi(z)
$$

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

- Substituting in the AdS scalar wave equation for Φ

$$
\left[z^{2} \partial_{z}^{2}-\left(3-2 J-2 \kappa^{2} z^{2}\right) z \partial_{z}+z^{2} \mathcal{M}^{2}-(\mu R)^{2}\right] \Phi_{J}=0
$$

- Upon substitution $z \rightarrow \zeta$

$$
\phi_{J}(\zeta) \sim \zeta^{-3 / 2+J} e^{\kappa^{2} \zeta^{2} / 2} \Phi_{J}(\zeta)
$$

we find the LF wave equation

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)\right) \phi_{\mu_{1} \cdots \mu_{J}}=\mathcal{M}^{2} \phi_{\mu_{1} \cdots \mu_{J}}
$$

with $(\mu R)^{2}=-(2-J)^{2}+L^{2}$

Meson Spectrum in Soft Wall Model

Pion: Negative term for $J=0$ cancels positive terms from LFKE and potential

- Effective potential: $U\left(\zeta^{2}\right)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)$
- LF WE

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(J-1)\right) \phi_{J}(\zeta)=M^{2} \phi_{J}(\zeta)
$$

- Normalized eigenfunctions $\langle\phi \mid \phi\rangle=\int d \zeta \phi^{2}(z)^{2}=1$

$$
\phi_{n, L}(\zeta)=\kappa^{1+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{1 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L}\left(\kappa^{2} \zeta^{2}\right)
$$

- Eigenvalues

$$
\mathcal{M}_{n, J, L}^{2}=4 \kappa^{2}\left(n+\frac{J+L}{2}\right)
$$

G. de Teramond, H. G. Dosch, sjb

- $J=L+S, I=1$ meson families $\mathcal{M}_{n, L, S}^{2}=4 \kappa^{2}(n+L+S / 2)$

$$
4 \kappa^{2} \text { for } \Delta L=1
$$

$$
m_{q}=0
$$

$$
2 \kappa^{2} \text { for } \Delta S=1
$$

Massless pion in Chiral Limit! Same slope in n and L!

$\mathrm{I}=1$ orbital and radial excitations for the $\pi(\kappa=0.59 \mathrm{GeV})$ and the ρ-meson families $(\kappa=0.54 \mathrm{GeV})$

- Triplet splitting for the $I=1, L=1, J=0,1,2$, vector meson a-states

$$
\mathcal{M}_{a_{2}(1320)}>\mathcal{M}_{a_{1}(1260)}>\mathcal{M}_{a_{0}(980)}
$$

Mass ratio of the ρ and the a_{1} mesons: coincides with Weinberg sum rules

> G. de Teramond, H. G. Dosch, sjb

Fig: Orbital and radial AdS modes in the soft wall model for $\kappa=0.6 \mathrm{GeV}$. Same slope in n and L!

Soft Wall Model

Pion has zero mass!

Pion mass automatically zero! $m_{q}=0$

Light meson orbital (a) and radial (b) spectrum for $\kappa=0.6 \mathrm{GeV}$.

- Results easily extended to light quarks masses (Ex: K-mesons)
- First order perturbation in the quark masses

$$
\Delta M^{2}=\langle\psi| \sum_{a} m_{a}^{2} / x_{a}|\psi\rangle
$$

- Holographic LFWF with quark masses

$$
\psi(x, \zeta) \sim \sqrt{x(1-x)} e^{-\frac{1}{2 \lambda}\left(\frac{m_{q}^{2}}{x}+\frac{m_{a}^{2}}{1-x}\right)} e^{-\frac{1}{2} \lambda \zeta^{2}} \quad \lambda \equiv \kappa^{2}
$$

- Ex: Description of diffractive vector meson production at HERA
[J. R. Forshaw and R. Sandapen, PRL 109, 081601 (2012)]
- For the K^{*}

$$
M_{n, L, S}^{2}=M_{K^{ \pm}}^{2}+4 \lambda\left(n+\frac{J+L}{2}\right)
$$

- Effective quark masses from reduction of higher Fock states as functionals of the valence state:

$$
m_{u}=m_{d}=46 \mathrm{MeV}, \quad m_{s}=357 \mathrm{MeV}
$$

De Tèramond, Dosch, sjb

$$
m_{u}=m_{d}=46 \mathrm{MeV}, \quad m_{s}=357 \mathrm{MeV}
$$

$$
M^{2}=M_{0}^{2}+\langle X| \frac{m_{q}^{2}}{x}|X\rangle+\langle X| \frac{m_{\bar{q}}^{2}}{1-x}|X\rangle
$$

Prediction from AdS/QCD: Meson LFWF

$$
e^{\varphi(z)}=e^{+\kappa^{2} z}
$$

x

Note coupling

$$
k_{\perp}^{2}, x
$$

$$
\begin{gathered}
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}} \\
f_{\pi}=\sqrt{P_{q \bar{q}}} \frac{\sqrt{3}}{8} \kappa=92.4 \mathrm{MeV}
\end{gathered}
$$

$$
\phi_{\pi}(x)=\frac{4}{\sqrt{3} \pi} f_{\pi} \sqrt{x(1-x)}
$$

Same as DSE!

Provides Connection of Confinement to Hadron Structure

AdS/QCD Holographic Wave Function for the ρ Meson and Diffractive ρ Meson Electroproduction

J. R. Forshaw*
Consortium for Fundamental Physics, School of Physics and Astronomy, University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
R. Sandapen ${ }^{\dagger}$

Département de Physique et d'Astronomie, Université de Moncton, Moncton, New Brunswick E1A3E9, Canada
(Received 5 April 2012; published 20 August 2012)
We show that anti-de Sitter/quantum chromodynamics generates predictions for the rate of diffractive ρ-meson electroproduction that are in agreement with data collected at the Hadron Electron Ring Accelerator electron-proton collider.

$$
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}}
$$

See also Ferreira and Dosch

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

AdS/QCD Holographic Wave Function for the ρ Meson

 and Diffractive ρ Meson Electroproduction
(a) H
J. R. Forshaw,
R. Sandapen
$\gamma^{*} p \rightarrow \rho^{0} p^{\prime}$

(b) ZEUS

$$
\tilde{\phi}(x, k) \propto \frac{1}{\sqrt{x(1-x)}} \exp \left(-\frac{M_{q \bar{q}}^{2}}{2 \kappa^{2}},\right.
$$

See also Ferreira and Dosch

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1) \quad e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

- ζ^{2} confinement potential and dilaton profile unique!
- Linear Regge trajectories in \mathbf{n} and L : same slope!
- Massless pion in chiral limit! No vacuum condensate!
- Conformally invariant action for massless quarks retained despite mass scale
- Same principle, equation of motion as de Alfaro, Furlan, Fubini, Conformal Invariance in Quantum Mechanics Nuovo Cim. A34 (1976) 569

Uniqueness of Dilaton

$$
\varphi_{p}(z)=\kappa^{p} z^{p}
$$

- Dosch, de Tèramond, sjb

Hadron Form Factors from AdS/QCD

Propagation of external perturbation suppressed inside AdS.

$$
\begin{gathered}
J(Q, z)=z Q K_{1}(z Q) \\
F\left(Q^{2}\right)_{I \rightarrow F}=\int \frac{d z}{z^{3}} \Phi_{F}(z) J(Q, z) \Phi_{I}(z)
\end{gathered}
$$

High Q ${ }^{2}$ from small z $\sim 1 / Q$

$$
\operatorname{high} Q^{2>{ }^{2}{ }^{3}{ }^{4}{ }_{5}^{5}}
$$

Polchinski, Strassler de Teramond, sjb

Consider a specific AdS mode $\Phi^{(n)}$ dual to an n partonic Fock state $|n\rangle$. At small $z, \Phi^{(n)}$ scales as $\Phi^{(n)} \sim z^{\Delta_{n}}$. Thus:

$$
F\left(Q^{2}\right) \rightarrow\left[\frac{1}{Q^{2}}\right]^{\tau-1}
$$

where $\tau=\Delta_{n}-\sigma_{n}, \sigma_{n}=\sum_{i=1}^{n} \sigma_{i}$

Dimensional Quark Counting Rules: General result from
AdS/CFT and Conformal Invariance
Twist $\tau=n+L$

Holographic Mapping of AdS Modes to QCD LFWFs

Drell-Yan-West: Form Factors are

- Integrate Soper formula over angles: Convolution of LFWFs

$$
F\left(q^{2}\right)=2 \pi \int_{0}^{1} d x \frac{(1-x)}{x} \int \zeta d \zeta J_{0}\left(\zeta q \sqrt{\frac{1-x}{x}}\right) \tilde{\rho}(x, \zeta)
$$

with $\widetilde{\rho}(x, \zeta)$ QCD effective transverse charge density.

- Transversality variable

$$
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}}
$$

- Compare AdS and QCD expressions of FFs for arbitrary Q using identity:

$$
\int_{0}^{1} d x J_{0}\left(\zeta Q \sqrt{\frac{1-x}{x}}\right)=\zeta Q K_{1}(\zeta Q)
$$

the solution for $J(Q, \zeta)=\zeta Q K_{1}(\zeta Q)$!

$$
\begin{gathered}
\psi\left(x, \vec{b}_{\perp}\right) \\
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}} \\
\psi(x, \zeta)=\sqrt{x(1-x)} \zeta^{-1 / 2} \phi(\zeta)
\end{gathered}
$$

Light-Front Holography: Unique mapping derived from equality of LF and $A d S$ formula for $E M$ and gravitational current matrix elements and identical equations of motion

$$
e^{\varphi(z)}=e^{+\kappa^{2} z}
$$

- Propagation of external current inside AdS space described by the AdS wave equation

$$
\left[z^{2} \partial_{z}^{2}-z\left(1+2 \kappa^{2} z^{2}\right) \partial_{z}-Q^{2} z^{2}\right] J_{\kappa}(Q, z)=0
$$

- Solution bulk-to-boundary propagator

$$
J_{\kappa}(Q, z)=\Gamma\left(1+\frac{Q^{2}}{4 \kappa^{2}}\right) U\left(\frac{Q^{2}}{4 \kappa^{2}}, 0, \kappa^{2} z^{2}\right),
$$

Dressed

$$
\Gamma(a) U(a, b, z)=\int_{0}^{\infty} e^{-z t} t^{a-1}(1+t)^{b-a-1} d t
$$

- Form factor in presence of the dilaton background $\varphi=\kappa^{2} z^{2}$

$$
F\left(Q^{2}\right)=R^{3} \int \frac{d z}{z^{3}} e^{-\kappa^{2} z^{2}} \Phi(z) J_{\kappa}(Q, z) \Phi(z)
$$

- For large $Q^{2} \gg 4 \kappa^{2}$

$$
J_{\kappa}(Q, z) \rightarrow z Q K_{1}(z Q)=J(Q, z)
$$

the external current decouples from the dilaton field.

Dressed soft-wall current brings in higher Fock states and more vector meson poles

Timelike Pion Form Factor from AdS/QCD and Light-Front Holography

Pion Form Factor from AdS/QCD and Light-Front Holography

Remarkable Features of Light-Front Schrödinger Equation

- Relativistic, frame-independent

$$
e^{\varphi(z)}=e^{+\kappa^{2} z}
$$

- QCD scale appears - unique LF potential
- Reproduces spectroscopy and dynamics of light-quark hadrons with one parameter
- Zero-mass pion for zero mass quarks!
- Regge slope same for n and L -- not usual HO
- Splitting in L persists to high mass -- contradicts conventional wisdom based on breakdown of chiral symmetry
- Phenomenology: LFWFs, Form factors, electroproduction
- Extension to heavy quarks

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

GGI Florence April I3, 2015

Light-Front Holography and non-perturbative QCD

Stan Brodsky

AdS5: Conformal Template for QCD

- Líght-Front Holography

Fixed $\tau=t+z / c$
Duality of AdS $_{5}$ with LF Hamiltonian Theory

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

- Light Front Wavefunctions:

Light-Front Schrödinger Equation Spectroscopy and Dynamics
$k_{\perp}(\mathrm{GeV})^{1.4}$

$$
A d S / Q C D
$$

Soft-Wall Model $e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}$

Single schemeindependent fundamental mass scale κ

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

$$
\kappa \simeq 0.6 \mathrm{GeV}
$$

Confinement scale:

$$
\left(\mathrm{m}_{\mathrm{q}}=0\right)
$$

$$
1 / \kappa \simeq 1 / 3 \mathrm{fm}
$$

de Alfaro, Fubini, Furlan:
Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

QCD Lagrangian

$$
\mathcal{L}_{Q C D}=-\frac{1}{4} \operatorname{Tr}\left(G^{\mu \nu} G_{\mu \nu}\right)+\sum_{f=1}^{n_{f}} i \bar{\Psi}_{f} D_{\mu} \gamma^{\mu} \Psi_{f}+\sum_{f=1}^{n_{f}} \bar{\Psi}_{f} \Psi_{f}
$$

$i D^{\mu}=i \partial^{\mu}-g A^{\mu} \quad G^{\mu \nu}=\partial^{\mu} A^{\mu}-\partial^{\nu} A^{\mu}-g\left[A^{\mu}, A^{\nu}\right]$

Classical Chiral Lagrangian is Conformally Invariant Where does the QCD Mass Scale Λ_{QCD} come from?

How does color confinement arise?

- de Alfaro, Fubini, Furlan:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!
Unique confinement potential!

$$
\begin{gathered}
G\left|\psi(\tau)>=i \frac{\partial}{\partial \tau}\right| \psi(\tau)> \\
G=u H+v D+w K \\
G=H_{\tau}=\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+\frac{g}{x^{2}}+\frac{4 u w-v^{2}}{4} x^{2}\right)
\end{gathered}
$$

Retains conformal invariance of action despite mass scale!

$$
4 u w-v^{2}=\kappa^{4}=[M]^{4}
$$

Identical to LF Hamiltonian with unique potential and dilaton!

- Dosch, de Teramond, sjb

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)} \\
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

- Mass scale does not appear in the QCD Lagrangian (massless quarks)
- Dimensional Transmutation? Requires external constraint such as $\quad \alpha_{s}\left(M_{Z}\right)$
- dAFF: Confinement Scale K appears spontaneously via the Hamiltonian: $\quad G=u H+v D+w K \quad 4 u w-v^{2}=\kappa^{4}=[M]^{4}$
- The confinement scale regulates infrared divergences, connects $\Lambda_{\text {QCD }}$ to the confinement scale K
- Only dimensionless mass ratios (and M times R) predicted
- Mass and time units [GeV] and [sec] from physics external to QCD
- New feature: bounded frame-independent relative time between constituents

> Light-Front Holography and non-perturbative QCD
dAFF: New Time Variable
$\tau=\frac{2}{\sqrt{4 u w-v^{2}}} \arctan \left(\frac{2 t w+v}{\sqrt{4 u w-v^{2}}}\right)$,

- Identify with difference of LF time $\Delta \mathbf{x}^{+} / \mathbf{P}^{+}$ between constituents
- Finite range
- Measure in Double-Parton Processes

GGI Florence April I3, 2015

Light-Front Holography and non-perturbative QCD

Stan Brodsky

Interpretation of Mass Scale κ

- Does not affect conformal symmetry of QCD action
- Self-consistent regularization of IR divergences
- Determines all mass and length scales for zero quark mass
- Compute scheme-dependent $\Lambda_{\overline{M S}}$ determined in terms of
- Value of K itself not determined -- place holder
- Need external constraint such as f_{π}

Baryon Spectrum in Soft-Wall Model

- Upon substitution $z \rightarrow \zeta$ and

$$
\Psi_{J}(x, z)=e^{-i P \cdot x} z^{2} \psi^{J}(z) u(P)
$$

find LFWE for $d=4$

$$
\begin{aligned}
& \quad \frac{d}{d \zeta} \psi_{+}^{J}+\frac{\nu+\frac{1}{2}}{\zeta} \psi_{+}^{J}+U(\zeta) \psi_{+}^{J}=\mathcal{M} \psi_{-}^{J} \\
& -\frac{d}{d \zeta} \psi_{-}^{J}+\frac{\nu+\frac{1}{2}}{\zeta} \psi_{-}^{J}+U(\zeta) \psi_{-}^{J}=\mathcal{M} \psi_{+}^{J} \\
& U=\kappa^{2} \zeta
\end{aligned}
$$

- Eigenfunctions

$$
\psi_{+}^{J}(\zeta) \sim \zeta^{\frac{1}{2}+\nu} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{\nu}\left(\kappa^{2} \zeta^{2}\right), \quad \psi_{-}^{J}(\zeta) \sim \zeta^{\frac{3}{2}+\nu} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{\nu+1}\left(\kappa^{2} \zeta^{2}\right)
$$

- Eigenvalues

$$
\mathcal{M}^{2}=4 \kappa^{2}(n+\nu+1), \quad \nu=L+1 \quad(\tau=3)
$$

- Full $J-L$ degeneracy (different J for same L) for baryons along given trajectory !

Light-Front Holography and non-perturbative QCD

Table 1: $S U(6)$ classification of confirmed baryons listed by the PDG. The labels S, L and n refer to the internal spin, orbital angular momentum and radial quantum number respectively. The $\Delta \frac{5}{2}^{-}(1930)$ does not fit the $S U(6)$ classification since its mass is too low compared to other members 70-multiplet for $n=0, L=3$.

PDG 2012

Fermionic Modes and Baryon Spectrum

[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]
[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

- Nucleon LF modes

$$
\begin{aligned}
\psi_{+}(\zeta)_{n, L} & =\kappa^{2+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{3 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+1}\left(\kappa^{2} \zeta^{2}\right) \\
\psi_{-}(\zeta)_{n, L} & =\kappa^{3+L} \frac{1}{\sqrt{n+L+2}} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{5 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+2}\left(\kappa^{2} \zeta^{2}\right)
\end{aligned}
$$

- Normalization

$$
\int d \zeta \psi_{+}^{2}(\zeta)=\int d \zeta \psi_{-}^{2}(\zeta)=1
$$

Chiral Symmetry of Eigenstate!

- Eigenvalues

$$
\mathcal{M}_{n, L, S=1 / 2}^{2}=4 \kappa^{2}(n+L+1)
$$

- "Chiral partners"

$$
\frac{\mathcal{M}_{N(1535)}}{\mathcal{M}_{N(940)}}=\sqrt{2}
$$

Chiral Features of Soft-Wall AdS/QCD Model

- Boost Invariant
- Trivial LF vacuum! No condensate, but consistent with GMOR
- Massless Pion
- Hadron Eigenstates (even the pion) have LF Fock components of different $\mathbf{L}^{\mathbf{z}}$
- Proton: equal probability $S^{z}=+1 / 2, L^{z}=0 ; S^{z}=-1 / 2, L^{z}=+1$

$$
J^{z}=+1 / 2:<L^{z}>=1 / 2,<S_{q}^{z}>=0
$$

- Self-Dual Massive Eigenstates: Proton is its own chiral partner.
- Label State by minimum L as in Atomic Physics
- Minimum L dominates at short distances
- AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=o.

No mass -degenerate parity partners!

- Compute Dirac proton form factor using SU(6) flavor symmetry

$$
F_{1}^{p}\left(Q^{2}\right)=R^{4} \int \frac{d z}{z^{4}} V(Q, z) \Psi_{+}^{2}(z)
$$

- Nucleon AdS wave function

$$
\Psi_{+}(z)=\frac{\kappa^{2+L}}{R^{2}} \sqrt{\frac{2 n!}{(n+L)!}} z^{7 / 2+L} L_{n}^{L+1}\left(\kappa^{2} z^{2}\right) e^{-\kappa^{2} z^{2} / 2}
$$

- Normalization $\quad\left(F_{1}{ }^{p}(0)=1, \quad V(Q=0, z)=1\right)$

$$
R^{4} \int \frac{d z}{z^{4}} \Psi_{+}^{2}(z)=1
$$

- Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

$$
V(Q, z)=\kappa^{2} z^{2} \int_{0}^{1} \frac{d x}{(1-x)^{2}} x^{\frac{Q^{2}}{\kappa^{2}}} e^{-\kappa^{2} z^{2} x /(1-x)}
$$

- Find

$$
F_{1}^{p}\left(Q^{2}\right)=\frac{1}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)}
$$

with $\mathcal{M}_{\rho_{n}}^{2} \rightarrow 4 \kappa^{2}(n+1 / 2)$

Fubini and Rabinovici

Superconformal Algebra

de Teramond Bosch and SJB

$$
1+1
$$

$$
\left\{\psi, \psi^{+}\right\}=1
$$

two anti-commuting fermionic operators

$$
\psi=\frac{1}{2}\left(\sigma_{1}-i \sigma_{2}\right), \quad \psi^{+}=\frac{1}{2}\left(\sigma_{1}+i \sigma_{2}\right) \quad \text { Realization as Pauli Matrices }
$$

$$
Q=\psi^{+}\left[-\partial_{x}+W(x)\right], \quad Q^{+}=\psi\left[\partial_{x}+W(x)\right],
$$

$$
W(x)=\frac{f}{x}
$$

(Conformal)

$$
S=\psi^{+} x, \quad S^{+}=\psi x \quad \text { Introduce new spinor operators }
$$

$$
\left\{Q, Q^{+}\right\}=2 H, \quad\left\{S, S^{+}\right\}=2 K
$$

$$
Q \simeq \sqrt{H}, \quad S \simeq \sqrt{K}
$$

$$
\{Q, Q\}=\left\{Q^{+}, Q^{+}\right\}=0, \quad[Q, H]=\left[Q^{+}, H\right]=0
$$

Superconformal Algebra

$$
\begin{gathered}
\left\{\psi, \psi^{+}\right\}=1 \quad B=\frac{1}{2}\left[\psi^{+}, \psi\right]=\frac{1}{2} \sigma_{3} \\
\psi=\frac{1}{2}\left(\sigma_{1}-i \sigma_{2}\right), \quad \psi^{+}=\frac{1}{2}\left(\sigma_{1}+i \sigma_{2}\right)
\end{gathered}
$$

$$
Q=\psi^{+}\left[-\partial_{x}+\frac{f}{x}\right], \quad Q^{+}=\psi\left[\partial_{x}+\frac{f}{x}\right], \quad S=\psi^{+} x, \quad S^{+}=\psi x
$$

$$
\left\{Q, Q^{+}\right\}=2 H, \quad\left\{S, S^{+}\right\}=2 K
$$

$$
\left\{Q, S^{+}\right\}=f-B+2 i D, \quad\left\{Q^{+}, S\right\}=f-B-2 i D
$$

generates the conformal algebra
$[\mathrm{H}, \mathrm{D}]=\mathrm{i} \mathrm{H}, \quad[\mathrm{H}, \mathrm{K}]=2 \mathrm{i} \mathrm{D}, \quad[\mathrm{K}, \mathrm{D}]=-\mathrm{i} \mathrm{K}$

Superconformal Algebra

Baryon Equation

Consider $R_{w}=Q+w S$;
w : dimensions of mass squared

$$
G=\left\{R_{w}, R_{w}^{+}\right\}=2 H+2 w^{2} K+2 w f I-2 w B \quad 2 B=\sigma_{3}
$$

New Extended Hamiltonian G is diagonal:

$$
\begin{aligned}
& G_{11}=\left(-\partial_{x}^{2}+w^{2} x^{2}+2 w f-w+\frac{4\left(f+\frac{1}{2}\right)^{2}-1}{4 x^{2}}\right) \\
& G_{22}=\left(-\partial_{x}^{2}+w^{2} x^{2}+2 w f+w+\frac{4\left(f-\frac{1}{2}\right)^{2}-1}{4 x^{2}}\right) \\
& \text { Identify } f-\frac{1}{2}=L_{B}, w=\kappa^{2}
\end{aligned}
$$

Eigenvalue of $G: M^{2}(n, L)=4 \kappa^{2}\left(n+L_{B}+1\right)$

$$
\begin{array}{cc}
\left(-\frac{d^{2}}{d \zeta^{2}}+\lambda_{B}^{2} \zeta^{2}+2 \lambda_{B}\left(L_{B}+1\right)+\frac{4 L_{B}^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{+}=M^{2} \psi_{J}^{+}, \\
\left(-\frac{d^{2}}{d \zeta^{2}}+\lambda_{B}^{2} \zeta^{2}+2 \lambda_{B} L_{B}+\frac{4\left(L_{B}+1\right)^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{-}=M^{2} \psi_{J}^{-} . \\
M_{B}^{2}\left(n, L_{B}\right)=4 \lambda_{B}^{2}\left(n+L_{B}+1\right) & \mathbf{s}=1 / 2, \mathbf{P}=+
\end{array}
$$

Meson Equation

both chiralities
$\left(-\frac{d^{2}}{d \zeta^{2}}+\lambda_{M}^{2} \zeta^{2}+2 \lambda_{M}(J-1)+\frac{4 \nu^{2}-1}{4 \zeta^{2}}\right) \phi_{J}=M^{2} \phi_{J}$,

$$
M_{M}^{2}\left(n, L_{M}, S=0\right)=4 \lambda_{M}^{2}\left(n+L_{M}\right) \quad \nu=L_{M}
$$

$\mathbf{S}=\mathbf{0}$, $\mathrm{I}=\mathrm{I}$ Meson is superpartner of $\mathbf{S}=\mathrm{I} / \mathbf{2}, \mathrm{I}=\mid$ Baryon
Meson-Baryon Degeneracy for $L_{M}=L_{B}+1 \quad \lambda_{M}^{2}=\lambda_{B}^{2}=\kappa^{4}$

Superconformal Algebra

$$
\frac{M^{2}}{4 \kappa^{2}}
$$

$$
M^{2}\left(n, L_{B}\right)=4 \kappa^{2}\left(n+L_{B}+1\right) N N^{7^{-}}
$$

Same к

$$
\begin{gathered}
\begin{array}{c}
\text { Meson-Baryon } \\
\text { Mass Degeneracy } \\
\text { for } L_{M}=L_{B}+1
\end{array}
\end{gathered}
$$

$\lambda=\kappa^{2}$
$S=0$, $I=\mid$ Meson is superpartner of $S=\mid / 2$, I=| Baryon

Superconformal AdS Light-Front Holographic QCD (LFHQCD):

$$
\lambda=\kappa^{2}
$$

Identical meson and baryon spectra!

$$
\begin{aligned}
& \text { 6. } M^{2}\left(\mathrm{GeV}^{2}\right) \\
& \rho-\Delta \text { superpartner trajectories } \\
& \Delta^{\frac{11^{+}}{2}} \\
& L_{M}=L_{B}+1 \\
& \text { Dosch, de Teramond, sjb }
\end{aligned}
$$

Features of Supersymmetric Equations

- J =L+S baryon simultaneously satisfies both equations of G with $L, L+1$ for same mass eigenvalue
- $J^{z}=L^{z}+1 / 2=\left(L^{z}+1\right)-1 / 2$

$$
S^{z}= \pm 1 / 2
$$

- Baryon spin carried by quark orbital angular momentum: $<\mathrm{J}^{\mathrm{z}}>=\mathrm{L}^{\mathrm{z}}+1 / 2$
- Mass-degenerate meson "superpartner" with $L_{M}=L_{B}+1$. "Shifted meson-baryon Duality"
Meson and baryon have same κ !

Light-Front Holography and non-perturbative QCD

Stan Brodsky

Baryon Spectrum

$$
M^{2}=4 \kappa^{2}(n+\nu+1)
$$

Table 1. Orbital assignment for baryon trajectories according to parity and internal spin.

$$
\begin{array}{l|cl}
& S=\frac{1}{2} & S=\frac{3}{2} \\
\hline \mathrm{P}=+ & v=L & v=L+\frac{1}{2} \\
\mathrm{P}=- & v=L+\frac{1}{2} & v=L+1 \\
\hline
\end{array}
$$

No spin-orbit coupling

J=I/2 "Chiral partners", e.g. N(I535) and N(I400), with different L, non-degenerate

Space-Like Dirac Proton Form Factor

- Consider the spin non-flip form factors

$$
\begin{aligned}
F_{+}\left(Q^{2}\right) & =g_{+} \int d \zeta J(Q, \zeta)\left|\psi_{+}(\zeta)\right|^{2} \\
F_{-}\left(Q^{2}\right) & =g_{-} \int d \zeta J(Q, \zeta)\left|\psi_{-}(\zeta)\right|^{2}
\end{aligned}
$$

where the effective charges g_{+}and g_{-}are determined from the spin-flavor structure of the theory.

- Choose the struck quark to have $S^{z}=+1 / 2$. The two AdS solutions $\psi_{+}(\zeta)$ and $\psi_{-}(\zeta)$ correspond to nucleons with $J^{z}=+1 / 2$ and $-1 / 2$.
- For $S U(6)$ spin-flavor symmetry

$$
\begin{aligned}
F_{1}^{p}\left(Q^{2}\right) & =\int d \zeta J(Q, \zeta)\left|\psi_{+}(\zeta)\right|^{2} \\
F_{1}^{n}\left(Q^{2}\right) & =-\frac{1}{3} \int d \zeta J(Q, \zeta)\left[\left|\psi_{+}(\zeta)\right|^{2}-\left|\psi_{-}(\zeta)\right|^{2}\right]
\end{aligned}
$$

where $F_{1}^{p}(0)=1, F_{1}^{n}(0)=0$.

Using $S U(6)$ flavor symmetry and normalization to static quantities

Spacelike Pauli Form Factor

From overlap of $L=1$ and $L=0$ LFWFs

Predict hadron spectroscopy and dynamics

Excited Baryons in Holographic QCD
 G. de Teramond \& sjb

Nucleon Transition Form Factors

- Compute spin non-flip EM transition $N(940) \rightarrow N^{*}(1440): \quad \Psi_{+}^{n=0, L=0} \rightarrow \Psi_{+}^{n=1, L=0}$
- Transition form factor

$$
F_{1}^{p} p N^{*}\left(Q^{2}\right)=R^{4} \int \frac{d z}{z^{4}} \Psi_{+}^{n=1, L=0}(z) V(Q, z) \Psi_{+}^{n=0, L=0}(z)
$$

- Orthonormality of Laguerre functions $\quad\left(F_{1 \rightarrow N^{*}}^{p}(0)=0, \quad V(Q=0, z)=1\right)$

$$
R^{4} \int \frac{d z}{z^{4}} \Psi_{+}^{n^{\prime}, L}(z) \Psi_{+}^{n, L}(z)=\delta_{n, n^{\prime}}
$$

- Find

$$
F_{1}{ }_{N \rightarrow N^{*}}\left(Q^{2}\right)=\frac{2 \sqrt{2}}{3} \frac{\frac{Q^{2}}{M_{P}^{2}}}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime \prime}}}\right)}
$$

with $\mathcal{M}_{\rho_{n}}^{2} \rightarrow 4 \kappa^{2}(n+1 / 2)$
de Teramond, sjb
Consistent with counting rule, twist 3

Nucleon Transition Form Factors

$$
F_{1 N \rightarrow N^{*}}^{p}\left(Q^{2}\right)=\frac{\sqrt{2}}{3} \frac{\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime \prime}}}\right)} .
$$

Proton transition form factor to the first radial excited state. Data from JLab

Flavor Decomposition of Elastic Nucleon Form Factors

G. D. Cates et al. Phys. Rev. Lett. 106, 252003 (2011)

- Proton SU(6) WF: $\quad F_{u, 1}^{p}=\frac{5}{3} G_{+}+\frac{1}{3} G_{-}, \quad F_{d, 1}^{p}=\frac{1}{3} G_{+}+\frac{2}{3} G_{-}$
- Neutron SU(6) WF: $\quad F_{u, 1}^{n}=\frac{1}{3} G_{+}+\frac{2}{3} G_{-}, \quad F_{d, 1}^{n}=\frac{5}{3} G_{+}+\frac{1}{3} G_{-}$

Prediction from Super Conformal AdS/QCD:
Same Form Factors for $H=M$ and $H=B$ if $L_{M}=L_{B}+I$

Running Coupling from Modífied AdS/QCD

Deur, de Teramond, sjb

- Consider five-dim gauge fields propagating in AdS_{5} space in dilaton background $\varphi(z)=\kappa^{2} z^{2}$

$$
S=-\frac{1}{4} \int d^{4} x d z \sqrt{g} e^{\varphi(z)} \frac{1}{g_{5}^{2}} G^{2}
$$

- Flow equation

$$
\frac{1}{g_{5}^{2}(z)}=e^{\varphi(z)} \frac{1}{g_{5}^{2}(0)} \quad \text { or } \quad g_{5}^{2}(z)=e^{-\kappa^{2} z^{2}} g_{5}^{2}(0)
$$

where the coupling $g_{5}(z)$ incorporates the non-conformal dynamics of confinement

- YM coupling $\alpha_{s}(\zeta)=g_{Y M}^{2}(\zeta) / 4 \pi$ is the five dim coupling up to a factor: $g_{5}(z) \rightarrow g_{Y M}(\zeta)$
- Coupling measured at momentum scale Q

$$
\alpha_{s}^{A d S}(Q) \sim \int_{0}^{\infty} \zeta d \zeta J_{0}(\zeta Q) \alpha_{s}^{A d S}(\zeta)
$$

- Solution

$$
\alpha_{s}^{A d S}\left(Q^{2}\right)=\alpha_{s}^{A d S}(0) e^{-Q^{2} / 4 \kappa^{2}}
$$

where the coupling $\alpha_{s}^{A d S}$ incorporates the non-conformal dynamics of confinement

Bjorken sum rule defines effective charge $\alpha_{g 1}\left(Q^{2}\right)$

$$
\int_{0}^{1} d x\left[g_{1}^{e p}\left(x, Q^{2}\right)-g_{1}^{e n}\left(x, Q^{2}\right)\right] \equiv \frac{g_{a}}{6}\left[1-\frac{\alpha_{g 1}\left(Q^{2}\right)}{\pi}\right]
$$

- Can be used as standard QCD coupling
- Well measured
- Asymptotic freedom at large $\mathbf{Q}^{\mathbf{2}}$
- Computable at large $\mathbf{Q}^{\mathbf{2}}$ in any pQCD scheme
- Universal $\boldsymbol{\beta}_{0}, \boldsymbol{\beta}_{\text {I }}$

GGI Florence April I3, 2015

Light-Front Holography and non-perturbative QCD

Stan Brodsky SLAC

Analytic, defined at all scales, IR Fixed Point

AdS/QCD dilaton captures the higher twist corrections to effective charges for $\mathbf{Q}<\mathbf{I} \mathbf{G e V}$

$$
e^{\varphi}=e^{+\kappa^{2} z^{2}}
$$

Deur, de Teramond, sjb

$$
m_{\rho}=\sqrt{2} \kappa
$$

Deur, de Teramond, sjb

All-Scale QCD Coupling

Deur, de Teramond, sjb

$$
\begin{aligned}
& \Lambda_{\overline{M S}}=0.5983 \kappa=0.5983 \frac{m_{\rho}}{\sqrt{2}}=0.4231 m_{\rho}=0.328 \mathrm{GeV} \\
& \text { Connect } \Lambda_{\overline{M S}} \text { to hadron masses! }
\end{aligned}
$$

Experiment: $M_{o}=0.7753 \pm 0.0003 \mathrm{GeV}$

$$
m_{\rho}=\sqrt{2} \kappa
$$

All-Scale QCD Coupling

Interpretation of Mass Scale κ

- Does not affect conformal symmetry of QCD action
- Self-consistent regularization of IR divergences
- Determines all mass and length scales for zero quark mass
- Compute scheme-dependent $\Lambda_{\overline{M S}}$ determined in terms of κ
- Value of K itself not determined -- place holder
- Need external constraint such as f_{π}

Connection to the Linear Instant-Form Potential

Linear instant nonrelativistic form $V(r)=C r$ for heavy quarks

Harmonic Oscillator $U(\zeta)=\kappa^{4} \zeta^{2}$ LF Potential for relativistic light quarks

Connection to the Linear Instant-Form Potential

- Compare invariant mass in the instant-form in the hadron center-of-mass system $\mathbf{P}=0$,

$$
M_{q \bar{q}}^{2}=4 m_{q}^{2}+4 \mathbf{p}^{2}
$$

with the invariant mass in the front-form in the constituent rest frame, $\mathbf{k}_{q}+\mathbf{k}_{\bar{q}}=0$

$$
M_{q \bar{q}}^{2}=\frac{\mathbf{k}_{\perp}^{2}+m_{q}^{2}}{x(1-x)}
$$

obtain

$$
U=V^{2}+2 \sqrt{\mathbf{p}^{2}+m_{q}^{2}} V+2 V \sqrt{\mathbf{p}^{2}+m_{q}^{2}}
$$

where $\mathbf{p}_{\perp}^{2}=\frac{\mathbf{k}_{\perp}^{2}}{4 x(1-x)}, \quad p_{3}=\frac{m_{q}(x-1 / 2)}{\sqrt{x(1-x)}}$, and V is the effective potential in the instant-form

- For small quark masses a linear instant-form potential V implies a harmonic front-form potential U and thus linear Regge trajectories
A.P.Trawinski, S.D. Glazek, H. D. Dosch, G. de Teramond, sjb

AdS/QCD and Light-Front Holography

$$
\mathcal{M}_{n, J, L}^{2}=4 \kappa^{2}\left(n+\frac{J+L}{2}\right)
$$

- Zero mass pion for $m_{q}=\mathbf{O} \quad(\mathbf{n}=\mathbf{J}=\mathbf{L}=\mathbf{0})$
- Regge trajectories: equal slope in n and L
- Form Factors at high Q 2 : Dimensional counting

$$
\left[Q^{2}\right]^{n-1} F\left(Q^{2}\right) \rightarrow \text { const }
$$

- Space-like and Time-like Meson and Baryon Form Factors
- Running Coupling for NPQCD

$$
\alpha_{s}\left(Q^{2}\right) \propto e^{-\frac{Q^{2}}{4 \kappa^{2}}}
$$

- Meson Distribution Amplitude

$$
\phi_{\pi}(x) \propto f_{\pi} \sqrt{x(1-x)}
$$

GGI Florence April I3, 2015

Light-Front Holography and non-perturbative QCD

Stan Brodsky

Features of $A d S / Q C D$

- Color confining potential $\kappa^{4} \zeta^{2}$ and universal mass scale from dilaton

$$
e^{\phi(z)}=e^{\kappa^{2} z^{2}} \quad \alpha_{s}\left(Q^{2}\right) \propto \exp -Q^{2} / 4 \kappa^{2}
$$

- Dimensional transmutation $\Lambda_{\overline{M S}} \leftrightarrow \kappa \leftrightarrow m_{H}$
- Chiral Action remains conformally invariant despite mass scale DAFF
- Light-Front Holography: Duality of AdS and frame-independent LF QCD
- Reproduces observed Regge spectroscopy same slope in n, L, and J for mesons and baryons

Massless pion for massless quark

- Supersymmetric meson-baryon dynamics and spectroscopy: $\mathbf{L}_{\mathbf{M}}=\mathbf{L}_{\mathbf{B}}+\mathbf{I}$
- Dynamics: LFWFs, Form Factors, GPDs

Superconformal Algebra
Fubini and Rabinovici

An analytic first approximation to QCD

AdS/QCD + Light-Front Holography

- As Simple as Schrödinger Theory in Atomic Physics
- LF radial variable ζ conjugate to invariant mass squared
\bullet Relativistic, Frame-Independent, Color-Confining
- Unique confining potential!
- QCD Coupling at all scales: Essential for Gauge Link phenomena
- Hadron Spectroscopy and Dynamics from one parameter
- Wave Functions, Form Factors, Hadronic Observables, Constituent Counting Rules
- Insight into QCD Condensates: Zero cosmological constant!
- Systematically improvable with DLCQ-BLFQ Methods

Light-Front Holography and non-perturbative QCD

Stan Brodsky
String Theory

Counting rules for Hard Exclusive Scattering
Regge Trajectories
QCD at the Amplitude Level

- Conformal template:
- Use isometries of AdS5

Mapping of Poincare' and Conformal $\operatorname{SO}(4,2)$ symmetries of 3+1 space to AdS5 space

Conformal behavior at short distances

Confinement at large distance Unique!

Semi-Classical QCD / Wave Equations
Holography

$$
\begin{aligned}
& \text { Boost Invariant 3+1 Light-Front Wave Equation } \\
& J=0,1,1 / 2,3 / 2 \text { plus } L \\
& \text { Hadron Spectra, Wavefunctions, Dynamics }
\end{aligned}
$$

- Hadronization at the Amplitude Level
- Diffractive dissociation of pion and proton to jets
- Identify the factorization Scale for ERBL, DGLAP evolution: Q_{0}
- Compute Tetraquark Spectroscopy Sequentially
- Update SU(6) spin-flavor symmetry
- Heavy Quark States: Supersymetry, not conformal
- Compute higher Fock states; e.g. Intrinsic Heavy Quarks
- Nuclear States - Hidden Color
- Basis LF Ouantization

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

Unique

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Confinement Potential!
Preserves Conformal Symmetry of the action

Confinement scale:

$$
\begin{gathered}
\kappa \simeq 0.6 \mathrm{GeV} \\
1 / \kappa \simeq 1 / 3 \mathrm{fm}
\end{gathered}
$$

de Alfaro, Fubini, Furlan:

- Fubini, Rabinovici:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Light-Front Holography

 and New Advances in Nonperturbative QCD

Fixed $\tau=t+z / c$

Stan Brodsky

with Guy de Tèramond, Hans Günter Dosch, and Alexandre Deur

