Purely leptonic decays of beauty and charm mesons at e^+e^- colliders

Anže Zupanc

Jožef Stefan Institute and University of Ljubljana, Slovenia

XIIth Workshop on B Physics May 24, 2017

Leptonic decays in the Standard Model

• Leptonic decay of B^+ meson

 \hookrightarrow via annihilation of meson's constituent quarks to a W^+ boson

- Helicity suppression factor
 - favors decays to τ over μ and e
- CKM (suppression) factor
- Phase-space factor
- Decay constant
 - calculated on the Lattice

Flag averages:

Leptonic decays in the Standard Model

• Leptonic decay of B^+ meson

 \hookrightarrow via annihilation of meson's constituent quarks to a W^+ boson

$$\mathcal{B}(B^+ \to \ell^+ \nu_\ell) = \frac{\Gamma(B^+ \to \ell^+ \nu_\ell)}{\Gamma(B^+ \to \text{all})} = \frac{G_F^2}{8\pi} \tau_B f_B^2 |V_{ub}|^2 m_B^3 \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2 \left(\frac{m_\ell}{m_B}\right)^2$$

Standard Model Predictions		
Mode	${\cal B}(B^+ o \ell^+ u_\ell)$	
$\tau \nu_{\tau}$	$(1.03\pm0.2) imes10^{-4}$	Accessible with current data sets
μu_{μ}	$\sim 0.47 imes 10^{-6}$	Need Belle II statistics
$e\nu_e$	$\sim 1.1~ imes 10^{-11}$	Beyond the reach of experiments

New Physics in leptonic decays

Purely leptonic B-meson decays can be by new physics effects, e.g.:

 Interference from charged Higgs can suppress or enhance SM decay rate:

$$\mathcal{B} = \mathcal{B}^{SM} \times \underbrace{\left(1 - m_B^2 \frac{\tan^2 \beta}{m_{H^{\pm}}^2}\right)^2}_{\equiv r_H}$$

Effect independent of lepton flavor!

• Test of Lepton Flavour Universality

$$\begin{split} R &= \frac{\mathcal{B}(B^- \to \tau^- \bar{\nu}_{\tau})}{\mathcal{B}(B^- \to \mu^- \bar{\nu}_{\mu})} \\ &= \frac{m_{\tau}^2}{m_{\mu}^2} \frac{(1 - m_{\tau}^2 / m_B^2)^2}{(1 - m_{\mu}^2 / m_B^2)^2} \big| 1 + r_{\mathsf{NP}}^{\tau} \big|^2 \\ &\simeq 222.37 \left| 1 + r_{\mathsf{NP}}^{\tau} \right|^2 \end{split}$$

Experimental techniques

- Decay modes with neutrino(s) in the final state
 - offer no or very little kinematic constraints to separate signal from background
 - e.g. invariant mass of decaying particle
 - can be studied, if
 - initial state is known

2 detector encloses interaction region hermetically

B-factory

Tools of the trade – Recoil B-meson reconstruction

() Reconstruct one of the *B* mesons (B_{tag}) in the event

Tools of the trade - Recoil B-meson reconstruction

- **(**) Reconstruct one of the *B* mesons (B_{tag}) in the event
- All remaining particle(s) in the detector originate from the decay of other B

Tools of the trade - Recoil B-meson reconstruction

1 Reconstruct one of the *B* mesons (B_{tag}) in the event

2 All remaining particle(s) in the detector originate from the decay of other B

- What is the number of remaining charged tracks?
- Is it kaon, pion, electron, or?
- What is its charge?

Tools of the trade - Recoil B-meson reconstruction

(1) Reconstruct one of the *B* mesons (B_{tag}) in the event

All remaining particle(s) in the detector originate from the decay of other B

- What is the number of remaining charged tracks?
- Is it kaon, pion, electron, or?
- What is its charge?
- Is there any additional activity in the calorimeter?

Reconstruction of $B_{ m tag}$

• need to reconstruct tagging *B* mesons in as many modes as possible in order to increase overall number of reconstructed events

$$N(B_{\text{tag}}B_{\text{sig}}) = N_{B\overline{B}}\left(\sum_{f} \mathcal{B}(B_{\text{tag}} \to f)\varepsilon_{f}\right) \mathcal{B}(B_{\text{sig}})\varepsilon_{\text{sig}}$$

Reconstruction of B_{tag}

• need to reconstruct tagging *B* mesons in as many modes as possible in order to increase overall number of reconstructed events

$$N(B_{\mathrm{tag}}B_{\mathrm{sig}}) = N_{B\overline{B}}\left(\sum_{f} \mathcal{B}(B_{\mathrm{tag}} \to f)\varepsilon_{f}\right) \mathcal{B}(B_{\mathrm{sig}})\varepsilon_{\mathrm{sig}}$$

• Most probable B meson decay chains involve b
ightarrow c
ightarrow s transitions

Reconstruction of B_{tag}

• need to reconstruct tagging *B* mesons in as many modes as possible in order to increase overall number of reconstructed events

$$N(B_{\mathrm{tag}}B_{\mathrm{sig}}) = N_{B\overline{B}}\left(\sum_{f} \mathcal{B}(B_{\mathrm{tag}} \to f)\varepsilon_{f}\right) \mathcal{B}(B_{\mathrm{sig}})\varepsilon_{\mathrm{sig}}$$

• Most probable B meson decay chains involve b
ightarrow c
ightarrow s transitions

• Hadronic B_{tag} recon.: $B \to D^{(*)}n\pi$, $B \to D_s^{(*)}D^{(*)}$, $B \to J/\psi Kn\pi$ $\mathcal{B} \sim 10\%$

• Semileptonic B_{tag} recon.: $B \to D^{(*)} \ell \nu_{\ell} \ (\ell = e, \mu)$ $\mathcal{B} \sim 15\%$

$$\hookrightarrow D \to Kn\pi$$
 $\mathcal{B} \sim 1/3$

7 / 31

Reconstruction of B_{tag} – Belle's solution

 hierarchical reconstruction procedure and probabilistic calculus instead of classical selection cuts

Input variables:

- topological
- decay dynamics
- signal probabilities of children particles

...

Reconstruction of B_{tag} – Belle's solution

 hierarchical reconstruction procedure and probabilistic calculus instead of classical selection cuts

Input variables:

- topological
- decay dynamics
- signal probabilities of children particles

• ...

Comparison of neural-net-based selection vs. cut-based selection:

A. Zupanc (JSI and UL)

Leptonic b and c decays

Reconstruction of B_{tag} – Belle's solution

 hierarchical reconstruction procedure and probabilistic calculus instead of classical selection cuts

Input variables:

- topological
- decay dynamics
- signal probabilities of children particles

9 / 31

• ...

Comparison of neural-net-based selection vs. cut-based selection:

$B_{\rm tag}$ reconstruction at Belle II

- Similar reconstruction approach as in case of the Belle
- Includes more *B*, *D* meson decay modes
- Results in around factor of two improvement in the reconstruction efficiency

Tag	FR @ Belle	FEI @ Belle	FEI @ Belle II
Hadronic B^+	0.28 %	0.49 %	0.61 %
Semileptonic B^+	0.67 %	1.42 %	1.45 %
Hadronic B ⁰	0.18 %	0.33%	0.34 %
Semileptonic B ⁰	0.63 %	1.33%	1.25 %

Maximum reconstruction efficiency

$B^+ \rightarrow \tau^+ u_{ au}$ at Belle (with hadronic $B_{ ext{tag}}$)

Results using Belle's full data sample and improved $B_{\rm tag}$ reconstruction:

• $\tau^+ \to e^+ \nu_e \overline{\nu}_{\tau}, \ \mu^+ \nu_\mu \overline{\nu}_{\tau}, \ \pi^+ \overline{\nu}_{\tau}, \ \pi^+ \pi^0 \overline{\nu}_{\tau}$

70% of all τ decays

A. Zupanc (JSI and UL)

Workshop on B Physics 11 / 31

$B^+ \rightarrow \tau^+ \nu_{\tau}$ at Belle (with semileptonic B_{tag})

Full Belle data sample:

 Major systematic uncertainties are the continuum background description (14%) and efficiency calibration (13%) – data driven and scale with luminosity.

$B^+ \rightarrow \tau^+ \nu_{\tau}$ (World average)

- The average is consistent with the SM prediction
- Important input in future to resolve the $V_{\rm ub}$ puzzle

A D > A A P >

$B^+ ightarrow au^+ u_ au$ at Belle II

E _{extra} < 1 GeV	Babar <u>PRD 88,</u> 031102 (2013)	Belle <u>PRL 110,</u> <u>131801 (2013)</u>	Belle II (this study)
Signal Efficiency (‰)	0.72	1.1	2.5

Expected Belle II sensitivity @ 1 ab-1: ~30%

$$\mathcal{B}(B^+ \to \tau^+ \nu_{\tau}) = (0.83 \pm 0.22) \times 10^{-4}$$

[NB: No KL veto applied in the study; 1D fit only; Only hadronic reconstruction of the companion B;]

Guess-estimate of systematics

Integrated Luminosity (ab^{-1})	1	5	50
statistical uncertainty (%)	29.2	13.0	4.1
systematic uncertainty (%)	12.6	6.8	4.6
total uncertainty (%)	31.6	14.7	6.2

- A lot of sources of systematic scale with luminosity (sig./bkg. PDF), tagging efficiency;
- Peaking backgrounds will have to be measured more precisely M.Merola (Napoli)

- < A

$B ightarrow \mu u$ at Belle and BaBar

- Measurement of $B \to \mu \nu$ can provide an independent consistency check of $B \to \tau \nu$ measurement
- Interesting also in the context of recent hints of Lepton Flavour Universality Violation

Tagged method

- $B_{\text{tag}} + \mu$
- better knowledge of signal kinematics and better continuum background rejection
- B. Aubert et al. [Babar collab.] PRD77, 091104 (2008)

•
$$\mathcal{B}(B^+ o \mu^+
u_\mu) < 5.6 imes 10^{-6}$$
 @ 90% C.L

Untagged method

- Single high momentum muon
- almost mono-energetic ($p_B^* \approx 380 \text{ MeV}$)
- infer $p(B_{sig})$ from all other detected p.

N. Satoyama et al. [Belle collab.] PLB 647, 67 (2007)

• $\mathcal{B}(B^+ \to \mu^+ \nu_\mu) < 1.7 \times 10^{-6}$ e 90% c.L.

- Upper limits approaching SM expectation
- Inclusive tag analysis with the full Belle data sample is ongoing
- Belle II expectations are
 - observation at SM level with 5 ab^{-1}
 - $\sigma(\mathcal{B})/\mathcal{B}\sim 7\%$ at 50 ab^{-1}
- theory free LFU violation test $R = \mathcal{B}(B \to \tau \nu) / \mathcal{B}(B \to \mu \nu)$

Charm tagging at *B*-factories

Reconstruction of charm hadron recoiling against $\overline{D}_{tag}X_{frag}$ in events of type:

$$e^+e^- \rightarrow c\overline{c} \rightarrow \overline{D}_{\rm tag} X_{\rm frag} D_{\rm recoil}^{(*)}$$

 $(X_{\text{frag}} \text{ additional particles produced in fragmentation of } c\overline{c})$

Provides

• knowledge of $D_{\text{recoil}}^{(*)}$ momentum

$$\hookrightarrow \ p_{D_{\text{recoil}}^{(*)}} = p_{e^+e^-} - p_{\overline{D}_{\text{tag}}} - p_{X_{\text{frag}}}$$

• knowledge of decay products of $D_{\text{recoil}}^{(*)}$

 \hookrightarrow all remaining tracks/energy deposits not associated to \overline{D}_{tag} or X_{frag}

Charm tagging at B-factory vs. charm factory

B-factory

 $e^+e^-
ightarrow \overline{D}_{
m tag} X_{
m frag} D_{
m recoil}^{(*)}$

• low tagging efficiency (O(0.1 - 1%)) due to $X_{\rm frag}$

- access to all charm hadrons $D_{\rm recoil}^{(*)} = D^{(*)0}, D^{(*)+}, \Lambda_c^{(*)+}$
- large sample of continuum events $\int \mathcal{L}dt = 1 \rightarrow 50 \text{ ab}^{-1}$ @ Belle II $\sigma(e^+e^- \rightarrow c\overline{c}) = 1.30 \text{ nb}$

Charm factory

$$\begin{array}{ll} e^+e^- \to \overline{D}_{\mathrm{tag}} D_{\mathrm{recoil}} & @~\sqrt{s} = 3.77 ~\mathrm{GeV} \\ e^+e^- \to \overline{D}_s^{\mathrm{tag}} D_s^{\mathrm{recoil}} & @~\sqrt{s} = 4.17 ~\mathrm{GeV} \end{array}$$

- high tagging efficiency ($\mathcal{O}(10\%)$)
- cleaner events (no additional particles)
- need to take data at different energies

•
$$\int \mathcal{L} dt = 10 - 20 \text{ fb}^{-1} \text{ @ BESIII}$$

 $\sigma(e^+e^- \rightarrow \psi(3770)) = 6 \text{ nb}$
 $\sigma(e^+e^- \rightarrow D_s^*D_s) = 1 \text{ nb} \text{ @ 4.17 GeV}$

18 / 31

- 2 step reconstruction:
 - Recoil reconstruction of charm hadrons (for normalization)
 - 2 Within the recoil sample search for $D \rightarrow f$ decays

enables measurements of absolute branching fractions and studies of decays with missing energy:

$$\mathcal{B}(D \to f) = \frac{N_{D \to f}^{\text{excl}}}{N_{D}^{\text{recoil}} \cdot \varepsilon (D \to f | D_{\text{recoil}})}$$

- $\mathcal B$ of *normalization* modes
 - $D_s \rightarrow KK\pi$
 - $D \to K \pi \pi$
 - $\Lambda_c \to pK\pi$
 - ...
- CKM matrix elements
 - $D_{(s)} \rightarrow \ell \nu$

• Searches for rare decays with missing energy:

•
$$D^0 \rightarrow \text{invisible}(\gamma)$$

• $D \rightarrow X_{\mu} \nu \bar{\nu}$

• ...

A E > A E >

Leptonic D_s decays in the Standard Model

• Unlike $B \to \ell \nu$ the $D_s \to \ell \nu$ decays are not CKM suppressed • $\mathcal{B}(B \to \tau \nu) \sim 1 \times 10^{-4}$ vs. $\mathcal{B}(D_s \to \tau \nu) \sim 5 \times 10^{-2}$

• Extract D_s decay constant, f_{D_s} , by measuring $\mathcal{B}(D_s o \ell
u)$

- to test lattice QCD calculations (needed in extraction of the SM parameters from measurements in $B_{(s)}$ meson system)
- Measurements of D^+ and D_s^+ decay constants provide the SU(3) flavor breaking ratio f_{D_s}/f_D
 - To good approximation $f_{B_s}/f_B = f_{D_s}/f_D$ [see Grinstein '93 and JHEP,1112,(2011)088 and references therein]
- Could receive contributions from New Physics... .

Effect of charged Higgs (2HDM)

Akeroyd and Chen, PRD75, 075004 (2007)

Large effect possible on $\mathcal{B}(B \to \ell \nu)$ but only small perturbation to the $\mathcal{B}(Ds \to \ell \nu)$ and no effect on $\mathcal{B}(D \to \ell \nu)$.

A. Zupanc (JSI and UL)

Workshop on B Physics 21 / 31

Recoil D_s reconstruction

$$e^+e^-
ightarrow c\overline{c}
ightarrow \overline{D}_{
m tag} X_{
m frag} \mathcal{K} D_s^{*+} \left(
ightarrow D_s^+ \gamma
ight)$$

D^0	B [%]	D^+	B [%]	Λ_c^+	B [%]
$K^{-}\pi^{+}$	3.9	$K^-\pi^+\pi^+$	9.4	$\rho K^- \pi^+$	5.0
$K^-\pi^+\pi^0$	13.9	$K^-\pi^+\pi^+\pi^0$	6.1	$\rho K^- \pi^+ \pi^0$	3.4
$K^-\pi^+\pi^+\pi^-$	8.1	$\kappa_{s}^{0}\pi^{+}$	1.5	pK ⁰ S	1.1
$K^{-}\pi^{+}\pi^{+}\pi^{-}\pi^{0}$	4.2	$\kappa_{s}^{0}\pi^{+}\pi^{0}$	6.9	$\Lambda \pi^+$	1.1
$K_{S}^{0}\pi^{+}\pi^{-}$	2.9	$K_{S}^{0}\pi^{+}\pi^{+}\pi^{-}$	3.1	$\Lambda \pi^+ \pi^0$	3.6
$K_{S}^{0}\pi^{+}\pi^{-}\pi^{0}$	5.4	$\breve{K^+}K^-\pi^+$	1.0	$\Lambda \pi^+ \pi^+ \pi^-$	2.6
Sum	38.4	Sum	28.0	Sum	16.8

- Strangeness balancing kaon: $K = K^{\pm}, \ K_S^0$
- Fragmentation system:

 $X_{\rm frag} = {\rm nothing}, \ \pi^{\pm}, \ \pi^{0}, \ \pi^{\pm}\pi^{\pm}, \ \pi^{\pm}\pi^{0}, \ \pi^{\pm}\pi^{\pm}\pi^{\pm}, \ \pi^{\pm}\pi^{\pm}\pi^{0}$

• Kinematic fit to improve resolution of $p_{D_{\text{recoil}}}$

• mass constrained vertex fit to $D_{s \text{ recoil}}^*$

• Recoil $D_{s \text{ recoil}}$ candidates identified in missing (recoil) mass

$$M_{\rm miss}(\overline{D}_{\rm tag}KX_{\rm frag}\gamma) = \sqrt{|p_{e^+e^-} - p_{\overline{D}_{\rm tag}} - p_{\mathcal{K}} - p_{X_{\rm frag}} - p_{\gamma}|^2}$$

A. Zupanc (JSI and UL)

22 / 31

Recoil D_s yield

$$e^+e^-
ightarrow c\overline{c}
ightarrow \overline{D}_{ ext{tag}} X_{ ext{frag}} rac{\mathcal{K} D_s^{*+}}{\mathcal{D}_s^+} \left(
ightarrow \left[D_s^+
ight. \gamma
ight)$$

Belle, JHEP09(2013)139

23 / 31

A. Zupanc (JSI and UL)

Workshop on B Physics

$D_s^+ \to \mu^+ \nu_\mu$

- 1 charged track pointing to the IP passing muon PID requirements
- Fit to the $M_{
 m miss}^2(D_{
 m tag}KX_{
 m frag}\gamma\mu^{\pm}) = \sqrt{|p_{e^+e^-} p_{D_{
 m tag}} p_K p_{X_{
 m frag}} p_{\gamma} p_{\mu}|^2}$

24 / 31

$D_s \to \tau^+ \nu_\tau$

Fit to *E*_{ECL}:

- Signal
 - $\hookrightarrow \tau$ cross-feed between modes, e.g. $\tau(\rho) \rightarrow \tau(\pi)$, is part of signal PDF and fixed
- True D_s background is fixed $\hookrightarrow \ell$ modes: dominantly $D_s \to X \ell \nu$ $\hookrightarrow \pi$ mode: $D_s \to K^0 K$, $\eta \pi$, ρK
- Combinatorial background

$$N_{D_s
ightarrow au(e)
u_ au}^{
m excl} = 952 \pm 59$$

Extraction of V_{cs} and Comparison

Lepton Flavour Universality test

 $R^{
m exp} = \mathcal{B}(D_s o au
u) / \mathcal{B}(D_s o \mu
u) = 9.95 \pm 0.57$ vs. $R^{
m SM} = 9.76 \pm 0.03$.

• significant improvement at Belle II possible since most of the systematics cancels in the ratio $(\sigma(R^{exp})/R^{exp} \sim 1\%)$

26 / 31

Recoil D^+ yield

٩

$$e^+e^-
ightarrow c\overline{c}
ightarrow \overline{D}_{
m tag} X_{
m frag} D^{*+} \left(
ightarrow D^+ \left(
ightarrow D^+
ightarrow \pi_{
m slow}^0
ight)$$

$D^+ ightarrow \mu^+ u_\mu$ and $f_D |V_{cd}|$

• 1 charged track pointing to the IP passing muon PID requirements

Assuming similar systematics as in $D_s^+
ightarrow \mu^+
u_\mu$ measurement:

- \mathcal{B} : $\sigma(\text{stat.})/\mathcal{B} \sim 4.5 \ (3)\%$ at 20 (50) ab⁻¹ and $\sigma(\text{syst.})/\mathcal{B} \sim 3\%$
- BESIII (PRD89,051104) @ 2.9 fb⁻¹: $\sigma/B \sim 5.1(\text{stat.}) \pm 1.6(\text{syst.})\%$

$D^+ ightarrow au^+ u_{ au}$ and $|V_{cd}|$

• 1 charged track pointing to the IP passing muon ($\tau(\mu)\nu$ mode) or pion ($\tau(\pi)\nu$ mode) PID requirements

Signal and Peaking background yield per ab⁻¹

Mode	Signal Yield	Peaking background
$\tau(e)\nu$	15	3200 $K^0(ightarrow K^0_L)e u$
$\tau(\mu)\nu$	10	4200 $K^0(\rightarrow K_L^0)\mu\nu$
$\tau(\pi)\nu$	10	1500 ${ m \it K}^0(ightarrow { m \it K}^0_L)\pi$

Dominated by the SL $D^+ \rightarrow K_L^0 \ell^+ \nu_\ell$ decays, however no K_L rejection attempted, yet. To use these modes further K_L reconstruction/rejection to be studied.

A. Zupanc (JSI and UL)

Extraction of V_{cd} and Comparison

• Expected precision of $f_D |V_{cd}|$ with full Belle II sample is around 2-3%

A. Zupanc (JSI and UL)

Image: Image:

- A lot of effort at Belle II invested into improvement of tag reconstruction algorithm and understanding the beam background induced background on measurements with missing energy
- Leptonic decays of *B* and *D* meson decays will enter precision era with Belle II sample
 - provide important input to global CKM fits $(|V_{ub}|)$
 - sensitive to new physics
- Measurements will become systematically limited and the key will be to have excellent calibration of the tag reconstruction efficiency