

Heavy Ion Physics at ATLAS, CMS and LHCb

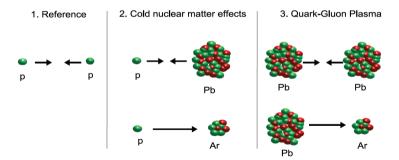
Michael Schmelling - MPI for Nuclear Physics

- on behalf of the

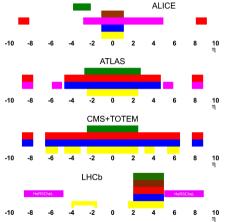
collaborations -

Outline

- Introduction
- Quarkonia production
- Correlation studies
- Ultra-peripheral collisions
- Fixed target physics
- Summary

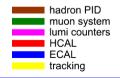

XXXII Les Recontres de Physique de la Vallée d'Aoste

1 Introduction


- theoretical understanding of strong interactions:
 - the QCD Lagrangian is well known and tested
 - good agreement between data and theory where perturbative QCD is applicable
 - many open questions in the non-perturbative regime, such as . . .
 - properties of hadronic matter at high densities and temperatures (QGP)
 - bound states, e.g. nucleon structure (vital for BSM searches)
 - nuclear effects in multiparticle production (nuclear PDFs, energy loss)
 - dynamics of soft processes, e.g. diffractive scattering and hadronisation
 - also interesting: QED at extreme field strengths

Experimental approach

- different nucleon-nucleon centre-of-mass energies
- different beam-target combinations
- comparison of different systems → always look at the complete picture



Angular coverage of the LHC experiments

ALICE

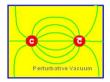
- central detector
- forward muon coverage
- ATLAS & CMS
 - central tracking detectors
 - forward calorimeter
- LHCb
 - forward detector
 - tracking, PID and calorimetry in the full acceptance

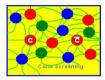
rich harvest of papers and conference notes

generic topics addressed in papers:

	ATLAS	CMS	LHCb
Flow- and correlation measurements	17	24	1
Jets and QCD	10	19	0
Quarkonia	3	10	4
Particle production	6	15	1
Electroweak gauge bosons	3	5	1
QED	1	1	0
total	40	74	7
200 papara by the ALICE collaboration			

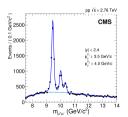
■ plus > 200 papers by the ALICE collaboration (→ next talk)

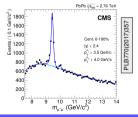

many papers touch on more than a single topic


textbook results from the LHC \rightarrow

Melting of bound states in QGP

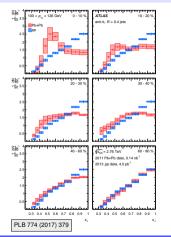
ullet check the Matsui-Satz-idea regarding $b \bar{b}$ and $c \bar{c}$ systems





heavy-quark bound states melt in the hot medium of the deconfined colour charges of a QGP

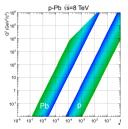
- → experiment: Y production in pp and PbPb collisions
 - negligible recombination
 less tightly bound states are strongly suppressed

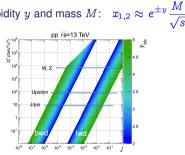

→ intriguing QGP signature

Jet quenching

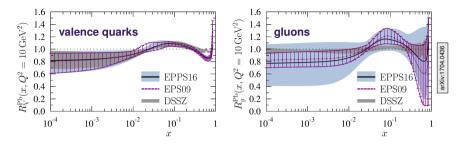
energy loss of hard partons in QGP

- look at the p_T -ratio for jet pairs
 - $x_J = rac{p_{T_2}}{p_{T_1}}$ with $p_{T_1} > p_{T_2}$
- preference for balanced jetscomparison of pp and PbPb
 - fewer high-energy jets in central PbPb collisions
 - same behaviour for pp and peripheral PbPb collisions


→ signature of a dense deconfined QCD medium

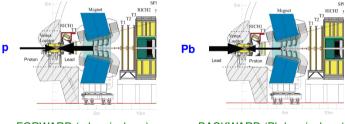

2 Quarkonia production

study p-Pb collisions to probe cold nuclear matter effects


- effects of energy loss in nuclear matter
- modification of parton densities of bound nucleons
- study by inclusive particle production of heavy resonances

 \rightarrow probe two x-values for given rapidity y and mass M:

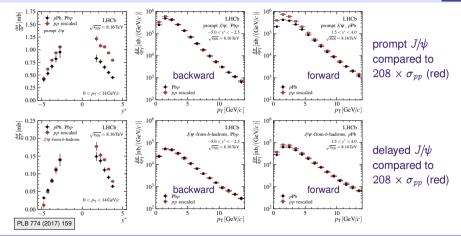
♦ parametrisation of nuclear PDFs by ratios of nucleon PDFs: $F_N(Pb)/F_N(free)$


still large uncertainties - EPPS16 error band for gluons larger than EPS09

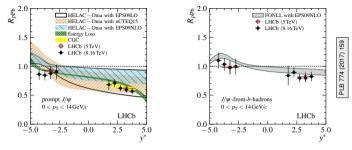
- Suppression at small $x \rightarrow$ shadowing
- lenhancement at medium $x \rightarrow$ anti-shadowing
- enhancement at large $x \rightarrow \text{EMC}$ effect

experimental observable sensitive to nuclear effects:

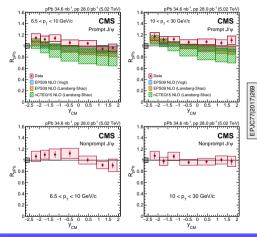
nuclear modification factor:
$$R_{pA}(y) = rac{1}{A} \cdot rac{d\sigma_{pA}/dy}{d\sigma_{pp}/dy}$$


central detectors: simultaneous measurement of forward and backward production
 forward detectors: flip beam directions to measure both hemispheres

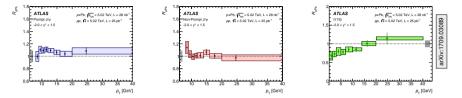
FORWARD (p hemisphere)


BACKWARD (Pb hemisphere)

Results from prompt J/ψ and J/ψ from b-decays


nuclear modification factors in the forward/backward region

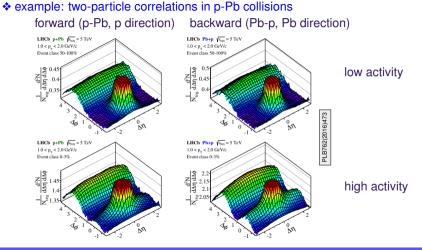
- consistent results for data with $\sqrt{s_{NN}} = 5$ and 8.16 TeV
- nuclear effects clearly visible in the forward region
- \blacksquare stronger effects for prompt J/ψ production than for J/ψ from b-meson decays
- $\Box J/\psi$ from b-meson decays described by effects of NLO nPDFs
- **D** prompt J/ψ described by NLO nPDFs plus energy loss effects



nuclear modification factors in the central region

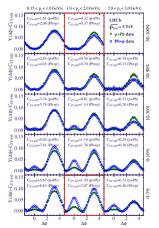
- nuclear modification factors close to unity
- theory lower, though consistent, with the data
- similar behaviour for prompt and non-prompt J/ψ mesons
- indication for a slight enhancement for lower p_T

\diamond closer look at p_T dependence

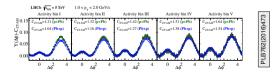

- small nuclear effects for centrally produced J/ψ mesons
- indication for slight enhancement of prompt production
- local no significant p_T dependence for prompt and non-prompt J/ψ production
- I indication of p_T dependence for Υ production
 - open and hidden heavy flavour seem to be affected differently
 - maybe related to breakup of bound states in nuclear matter, which for J/ψ from b is compensated by recombination and/or anti-shadowing?

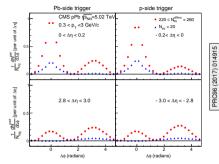
3 Correlation studies

- distribution of phase space distance between particle pairs
 - probing the underlying dynamics, e.g.
 - dimensions of the particle emitting regions Bose-Einstein correlations, HBT
 - particle production in jets fragmentation dynamics
 - flow effects due to properties of QCD medium
 - lacksquare example: per trigger-particle associated yield vs angular distances $\Delta\eta$ and $\Delta\phi$


$$rac{1}{N_{ ext{trig}}}rac{d^2N_{ ext{pair}}}{d\Delta\eta\;d\Delta\phi}=rac{S(\Delta\eta,\Delta\phi)}{B(\Delta\eta,\Delta\phi)} imes B(0,0)$$

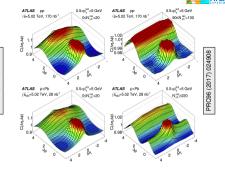
- ▶ 2-dim correlation functions of prompt particles in $(\Delta \eta, \Delta \phi)$
- select particles in fixed p_T-range as "trigger" and study all pairs with the trigger
- compare associated yields per trigger, within an event $(S(\Delta \eta, \Delta \phi))$ and with random combinations $(B(\Delta \eta, \Delta \phi))$ from mixed events



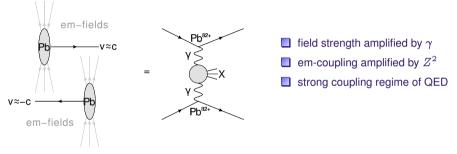

after offset subtraction (Zero-Yield-At-Minimum):

- near-side ridge largest at $1 < p_T < 2 \,\text{GeV}/c$
- ► fixed relative activity (left):

ridge of the 3% most active Pb-p events stronger than the ridge of the 3% most active p-Pb events


 fixed absolute activity in the LHCb acceptance: similar ridges in p-Pb and Pb-p events

results from central measurements


- outside the jet peak (bottom) the ridge appears in high-multiplicity events (red)
- similar strengths for p-side and Pb-side

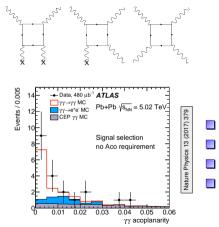
- ridge also in high multiplicity pp events
- universal feature when many QCD degrees of freedom are present?


4 Ultra-peripheral collisions

exploit the high-intensity photon flux from relativistic Pb nuclei

- distinguish two photon-processes (depicted above) and photoproduction (not shown)
- common characteristic: low transverse momentum of the final state system
- existing/upcoming results also from LHCb

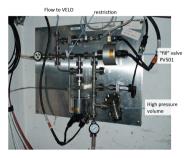
Coherent production of J/ψ mesons in PbPb collisions

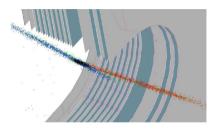


experimental selections with a breakup neutron accepts coherent (on the entire nucleus) and incoherent (on a single nucleon) production

- clean signal on top of a small and well understood background
- measurement of the photoproduction cross-section probes the gluon density
- cross-section consistent with nuclear effects as expected from gluon shadowing

Evidence for light-by-light scattering

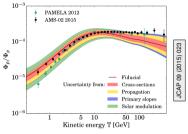


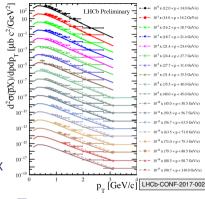


- back-to-back photons transverse to the beam
- \square 13 candidates in 480 μ b⁻¹
 - expected background 2.6±0.7 events
 - cross-section consistent with SM

5 Fixed target physics

exploit the LHCb SMOG "System for Measuring Overlap with Gas"




- Inject noble gases (10^{-7} mbar) into the interaction region: He, Ne, Ar
- motivation: beam-profile measurements with beam-gas interactions
- plus: full charm and (soft) QCD fixed-target physics program with p and Pb beams

* links to cosmic ray and astroparticle physics: antiproton/proton ratio

- indication of antiproton excess
- dark-matter annihilation?
- large cross-section uncertainties for $pH \rightarrow \overline{p}X$
- predictions vary within a factor 2
- → LHCb: measure pHe $\rightarrow \overline{p}X$ at $\sqrt{s_{NN}} = 110$ GeV

7% uncertainty
 data compared to EPOS-LHC

6 Summarv

- extremely rich (heavy) ions physics portfolio and results at the LHC
 - simultaneous views are the key to the understanding of non-perturbative QCD
 - study of the same observables in pp, p-Pb and Pb-Pb collisions
 - central and forward measurements
 - understanding QGP signatures requires understanding of nuclear effects
 - heavy flavour measurements probe nuclear PDFs and properties of the medium
 - correlation measurements probe collective effects in the final state
 - hints of universality when sufficiently many degrees of freedom are excited
 - fixed target physics radiates also into neighbouring fields
 - ultra-peripheral collisions test soft QCD and QED under extreme conditions

Stay tuned for more from the

24