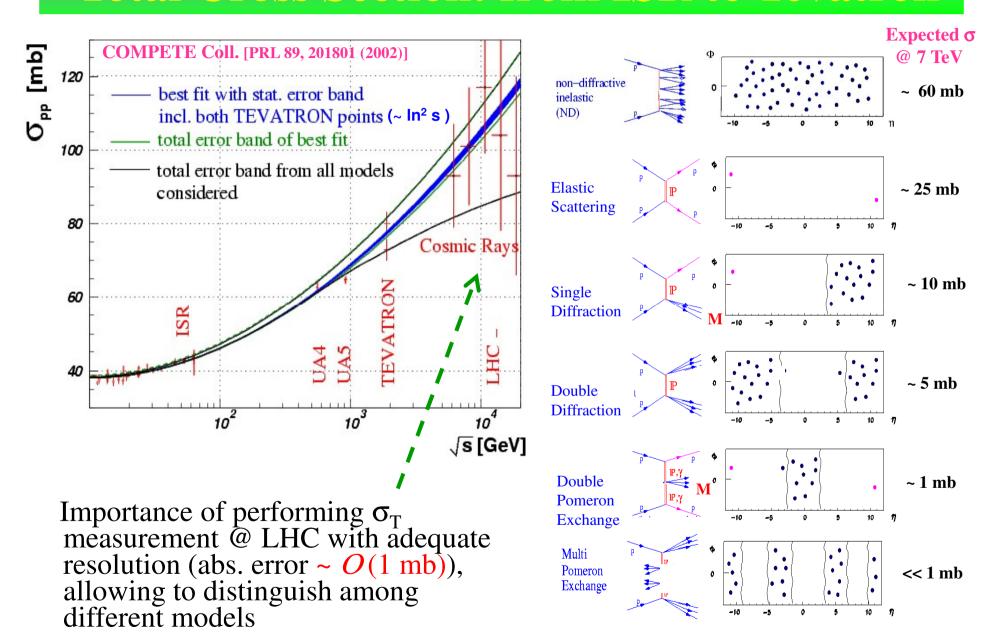
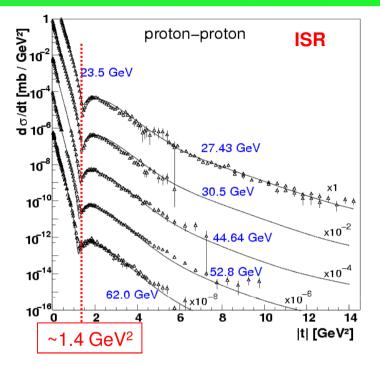
TOTEM

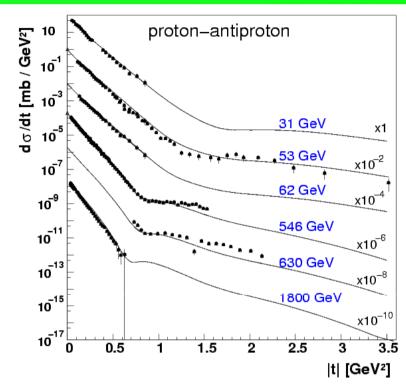
Total, Elastic and Inelastic p-p Scattering @ LHC

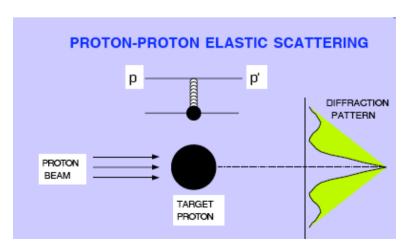
Giuseppe Latino


(University of Siena & Pisa INFN)

NPQCD 2015Cortona – April 21, 2015


Overview


- General aspects on p-p scattering measurements
- The LHC experiments
- Elastic p-p scattering
- Inelastic p-p cross-section
- Total p-p cross-section
- Summary


Total Cross Section: from ISR to Tevatron

Elastic Scattering: from ISR to Tevatron

Diffractive minimum analogous to Fraunhofer diffraction:

- minimum moves to lower ltl with increasing s
 - \rightarrow interaction region grows (as also seen from σ_T)
- depth of minimum changes
 - → shape of proton profile changes
- depth of minimum differs between pp, pbarp
 - → different mix of processes

Three Methods for σ_T Measurement

Optical Theorem:
$$\sigma_T = \frac{8\pi}{p\sqrt{s}} \text{Im } F(s,t)|_{t=0}$$

1) Elastic Scattering + Inelastic Scattering + L:

no dependence on ρ

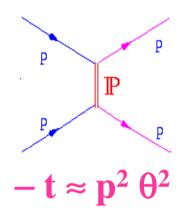
$$\sigma_{\text{tot}} = \frac{1}{\mathcal{L}} \left(N_{\text{el}} + N_{\text{inel}} \right)$$

2) Elastic Scattering + L + Optical Th.: -----

no dependence on N_{inel}

$$\sigma_{tot}^2 = \frac{16\pi}{(1+\rho^2)} \frac{1}{\mathcal{L}} \left(\frac{dN_{el}}{dt}\right)_{t=0}$$

3) Elastic Scattering + Inelastic Scattering + Optical Th.:


L-independent

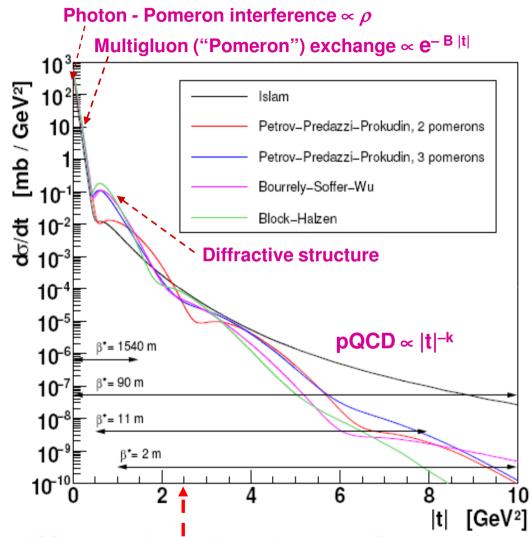
$$\sigma_{tot} = \frac{16\pi}{(1+\rho^2)} \frac{(dN_{el}/dt)_{t=0}}{(N_{el}+N_{inel})}$$

Proper tracking acceptance in very forward region required: elastically scattered p detection mandatory

Elastic Scattering Cross Section dσ_{el}/dt @ LHC

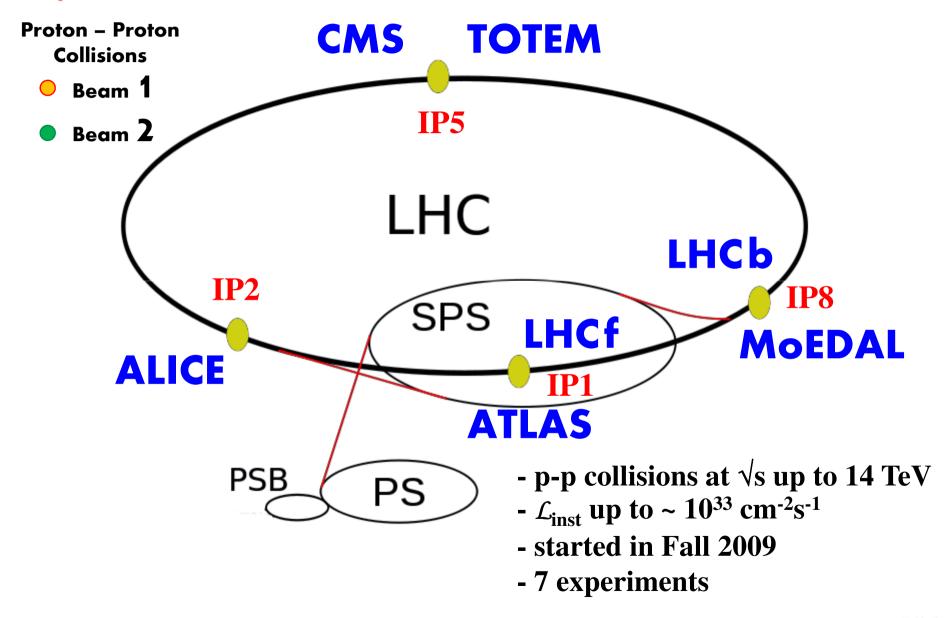
Wide range of predictions; big uncertainties at large |t|. → Importance of measuring whole |t| range with good statistics

Angular divergence @ IP:

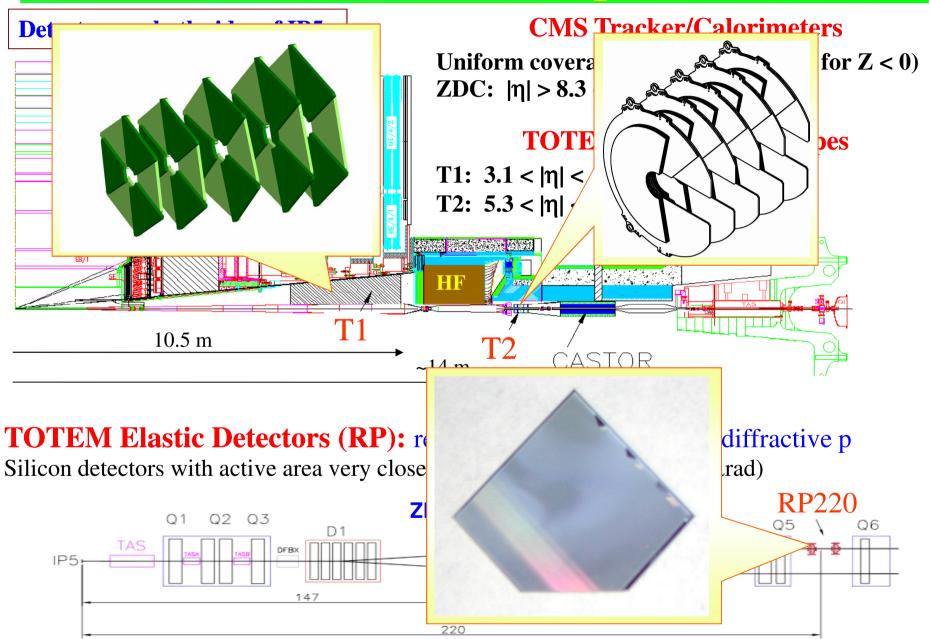

$$\sigma_{\theta^*} = \sqrt{(\epsilon/\beta^*)}$$

Beam size @ IP:

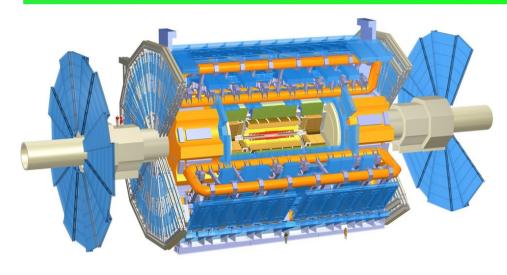
$$\sigma^* = \sqrt{(\epsilon \beta^*)}$$


Minimal reachable |t|:

$$|\mathbf{t}_{\min}| = \mathbf{n}_{\sigma}^2 \mathbf{p}^2 \varepsilon / \beta^*$$

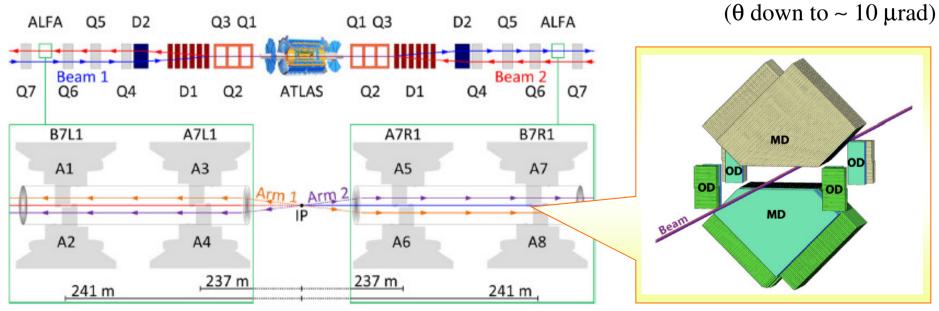


Allowed |t| range depends on beam optics (special high $\beta*-low\mathcal{L}$ runs required for low |t|) and on proton detector approach to the beam

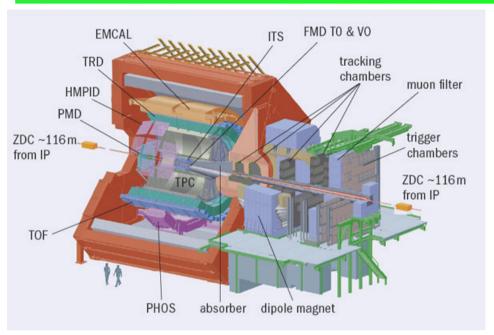

The LHC Collider and its Experiments

CMS/TOTEM Detector Setup @ IP5 of LHC

ATLAS Detector Setup @ IP1 of LHC


Atlas Tracker/Calorimeters

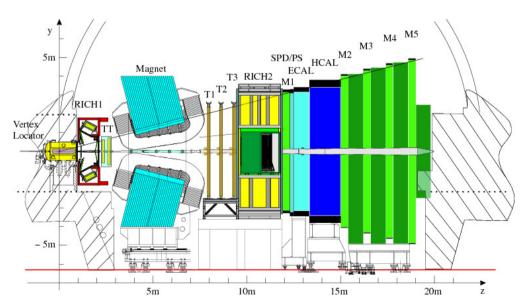
Uniform coverage up to $|\eta| < 4.9$


LUCID: $|\eta| \sim 5.8$

ZDC: $|\eta| > 8.3$ (for n)

Elastic Detectors (ALFA RP): Sci-Fiber detectors with active area very close to the beam

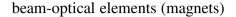
ALICE/LHCb Detector Setup @ IP2/IP8 of LHC

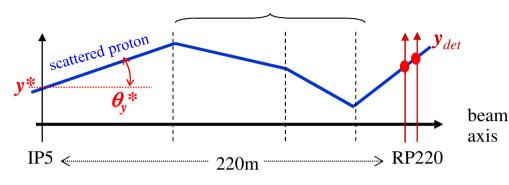

ALICE Tracker/Calorimeters

Uniform coverage for $-3.7 < |\eta| < 5.1$

ZDC:
$$|\eta| > 8.8$$
 (**ZN, for n**)

 $6.5 < |\eta| < 7.5$ (ZP, for p)


 $4.8 < \eta < 5.7$ (ZEM, for e/ γ)



LHCb Tracker/Calorimeters

Uniform coverage for $2 < |\eta| < 5$

Proton Transport from IP5 to RP Location

$$\begin{pmatrix} x \\ \Theta_x \\ y \\ \Delta p/p \end{pmatrix}_{RP} = \begin{pmatrix} v_x & L_x & 0 & 0 & D_x \\ v_x' & L_x' & 0 & 0 & D_x' \\ 0 & 0 & v_y & L_y & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x^* \\ \Theta_x^* \\ y^* \\ \Theta_y^* \\ \Delta p/p \end{pmatrix}_{IP5}$$
With: $\xi = \Delta p/p$; $t = t_x + t_y$; $t_i \sim -(p\theta_i^*)^2$ (x, y): vertex position at RP location (s) (x*, y*): vertex position at IP (\theta_x^*, \theta_y^*): emission angle at IP

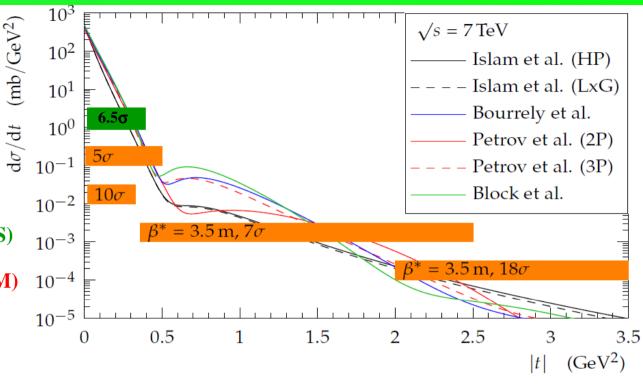
Optical functions:

L (effective length), V (magnification), D (machine dispersion)

- Describe the explicit path of particles through the magnetic elements as a function of the particle parameters at IP
- Define t and ξ-range (acceptance)
- Depend on LHC machine optics configuration

With:
$$\xi = \Delta p/p$$
; $t = t_x + t_y$; $t_i \sim -(p\theta_i^*)^2$
(x, y): vertex position at RP location (s)
(x*, y*): vertex position at IP
(θ_x^*, θ_y^*): emission angle at IP

Excellent optics determination (~ 0.25% using constraints from proton tracks in RPs, TOTEM: New J. Phys. 16 (2014) 103041) and detector alignment required.

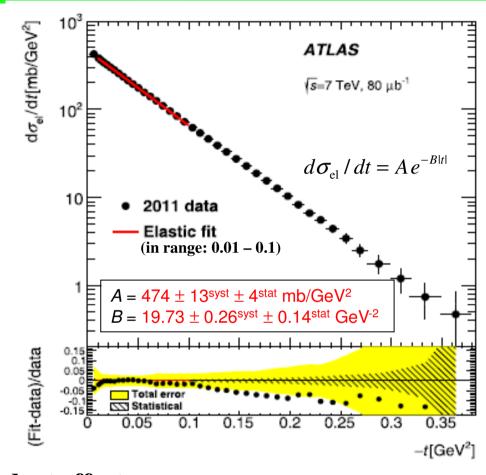

Similar procedure in ATLAS (from IP1 to ALFA RP location)

Elastic Scattering Cross Section Measurements @ 7 TeV

Data taking in various LHC configurations and different RP detector approach to the beam allowed the measurement in a wide range of |t|:

$$1.0 \cdot 10^{-2} - 0.38 \text{ GeV}^2$$
 (ATLAS)

 $5 \cdot 10^{-3} - 3.5 \text{ GeV}^2$ (TOTEM)

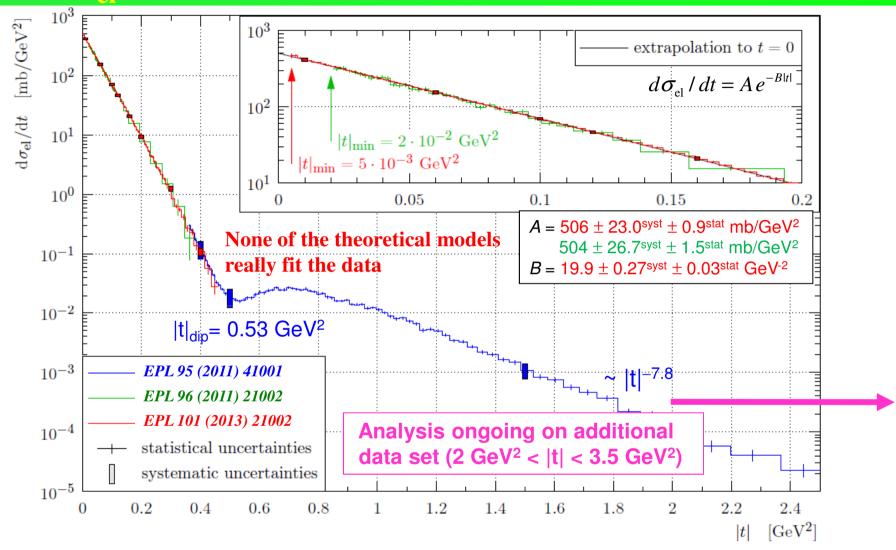

Experiment	β *(m)	RP approach (beam σ)	$\mathcal{L}_{ ext{int}}$ (μ b ⁻¹)	ltl- range (GeV²)	Elastic events	Reference
ATLAS	90	6.5	80	0.01-0.38	805K	Nucl. Phys. B 889 (2014), 486
TOTEM	90	4.8 – 6.5	83	5·10 ⁻³ – 0.4	1M	EPL 101 (2013), 21002
66	90	10	1.7	0.02 - 0.33	15K	EPL 96 (2011), 21002
"	3.5	7	$6.1 \cdot 10^3$	0.36 - 2.5	66K	EPL 95 (2011), 41001
"	3.5	18	2.3.106	2 – 3.5	10K	Ongoing

dσ_{el}/dltl Measurement @ 7 TeV (I): ATLAS

(Common) Analysis steps:

- > Alignment procedures/corrections
- > LHC optics calibration
- **Elastic candidate event selection**
- > Background subtraction
- > Acceptance correction
- > Unfolding of resolution effects
- > Normalization (recon. efficiencies)
- > Luminosity determination

Systematic uncertainties:


dominated by \mathcal{L} and by analysis t-dependent effects (energy offset, acceptance correction, misalignments, optics imperfections and un-smearing correction)

Integrated elastic cross-section: $\sigma_{el} = \sigma_{el, Meas.} + \sigma_{el, Extr.}$

ATLAS result: $\sigma_{el} = 24.00 \pm 0$

 $\sigma_{el} = 24.00 \pm 0.57^{syst} \pm 0.19^{stat}$ mb (90% directly measured)

dσ_{el}/dltl Measurement @ 7 TeV (II): TOTEM

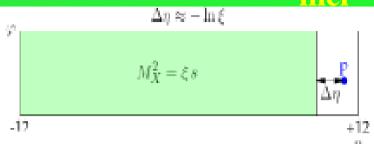
TOTEM results:

(L from CMS, with 4% unc.)

$$\begin{split} \sigma_{el} &= 25.4 \pm 1.0^{lumi} \pm 0.3^{syst} \pm 0.03^{stat} \quad mb \\ \sigma_{el} &= 24.8 \pm 1.0^{lumi} \pm 0.7^{syst} \pm 0.2^{stat} \quad mb \end{split}$$

(91% directly measured) (67% directly measured)

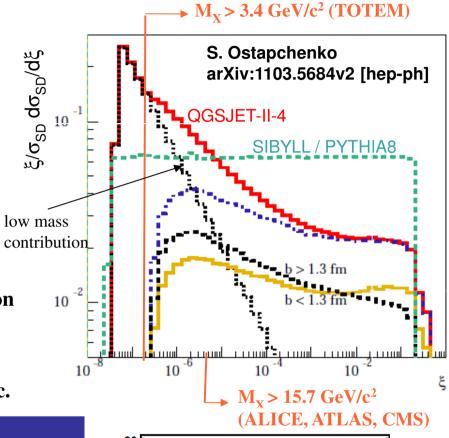
Inelastic Cross Section Measurement @ 7 TeV

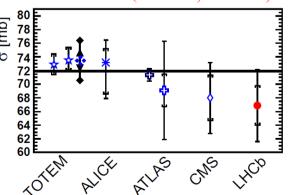

All experiments performed direct measurement: $\sigma_{inel} = N_{inel} / L$

General analysis steps for the measurement

- ightharpoonup Corrections to the "visible" σ_{inel} in the given kinematic acceptance region trigger and event reconstruction efficiency, background rejection and pile-up (experimental uncertainty dominated by uncertainty on \mathcal{L})
- Corrections for "missing" σ_{inel}
 events lost due to (eventually) limited acceptance in *central* region, events lost due limited acceptance in *forward* region, related to low mass diffraction → leading contribution (and uncertainty)

Experiment	Acceptance η range	"Visible" ξ range	M _X range (GeV/c²)	Reference
ALICE	$-3.7 < \eta < 5.1$	$\xi > 5.10^{-6}$	$M_X > 15.7$	EPJ C73 (2013), 2456
ATLAS	$2.09 < \eta < 3.84$	$\xi > 5 \cdot 10^{-6}$	$M_X > 15.7$	Nat. Commun. 2 (2011), 463
CMS	$3 < \eta < 5$	$\xi > 5.10^{-6}$	$M_X > 15.7$	Phys. Lett. B 722 (2013), 5
LHCb	$2 < \eta < 4.5$	$\xi > \sim 1.5 \cdot 10^{-6} (n)$	$M_X > \sim 8.6 (n)$	arXiv: 1412.2500 (2014)
TOTEM	$3.1 < \eta < 6.5$	$\xi > 2.4 \cdot 10^{-7}$	$M_X > 3.4$	EPL 101 (2013), 21003


Direct σ_{inel} Measurement @ 7 TeV



Impact of Low-Mass diffraction:

- **Extrapolation to low M_X region: main source of systematic uncertainty on \sigma_{inel}**
- Minimal M_X depends on maximal $|\eta|$ coverage: lower M_X reachable \rightarrow minimal model dependence on corrections for low mass diffraction
- TOTEM (T1+T2: 3.1 < |η| < 6.5) gives an unique forward charged particle coverage @ LHC
 → direct measurement of σ_{inel} with lower sys. unc.

Experiment	O _{inel} (mb)
ALICE	$73.2^{+2.0}_{-4.6}$ (model) \pm 2.6 (exp)
ATLAS	$69.1 \pm 6.9 \text{ (model)} \pm 2.4 \text{ (exp)}$
CMS	$68.0 \pm 4.0 \text{ (model)} \pm 3.1 \text{ (exp)}$
LHCb	$66.9 \pm 4.4 \text{ (model)} \pm 2.9 \text{ (exp)}$
TOTEM	$73.7 \pm 1.5 \text{ (model) } \pm 2.9 \text{ (exp)}$

Low-Mass Diffraction: Constraint from N_{el}

Constraint on low mass diffraction cross-section from TOTEM data:

Use total cross-section determined from elastic observables (via the Optical Theorem) $\sigma_{tot}^2 = \frac{16\pi}{1 + \varrho^2} \frac{1}{\mathcal{L}} \left. \frac{dN_{el}}{dt} \right|_0$

$$\sigma_{\text{inel}} = \sigma_{\text{tot}} - \sigma_{\text{el}} = 73.2 \pm 1.3 \text{ mb}$$

and the measured "visible" inelastic cross-section for $|\eta| < 6.5 \; (T1,\, T2)$

$$\sigma_{\text{inel, } |\eta| < 6.5} = 70.5 \pm 2.9 \text{ mb}$$

to obtain the low-mass diffractive cross-section ($|\eta| > 6.5$ or $M_X < 3.4~GeV/c^2$)

$$\sigma_{\text{inel, }|\eta| > 6.5} = \sigma_{\text{inel}} - \sigma_{\text{inel, }|\eta| < 6.5} = 2.6 \pm 2.2 \text{ mb}$$
(or < 6.3 mb @ 95% CL) [MC: 3.1 ± 1.5 mb]

Total Cross Section Measurements @ 7 TeV

1) Elastic Scatt. + Inelastic Scatt. + L

(no dependence on ρ)

$$\sigma_T = \sigma_{el} + \sigma_{inel}$$

$$\sigma_{\text{tot}} = \frac{1}{\mathcal{L}} \left(N_{\text{el}} + N_{\text{inel}} \right)$$

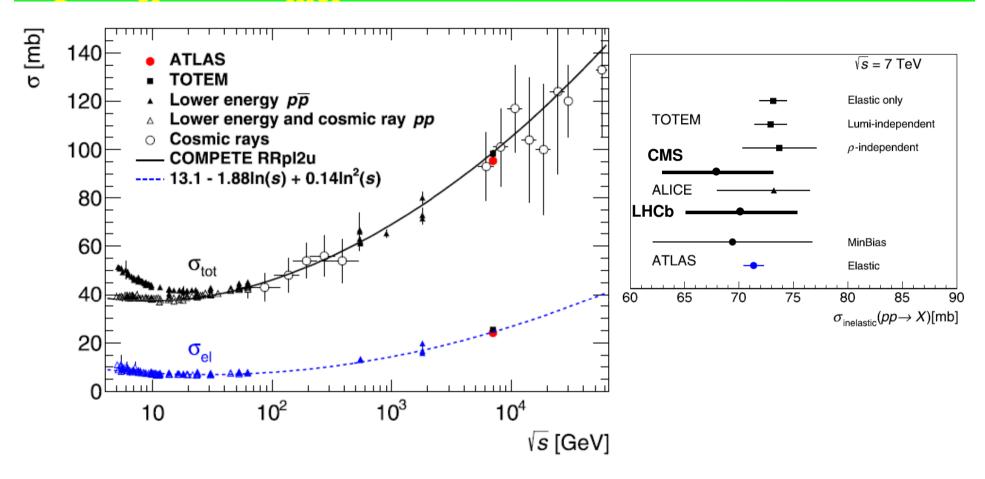
2) Elastic Scatt. + \mathcal{L} + Optical Th.

(no assumption on low mass diffr.)

$$\sigma_{inel} = \sigma_{T} - \sigma_{el}$$

$$\sigma_{tot}^2 = \frac{16\pi}{(1+\rho^2)} \frac{1}{\mathcal{L}} \left(\frac{dN_{el}}{dt}\right)_{t=0}$$

3) Elastic Scatt. + Inel. Scatt. + Optical Th.


(no dependence on L)

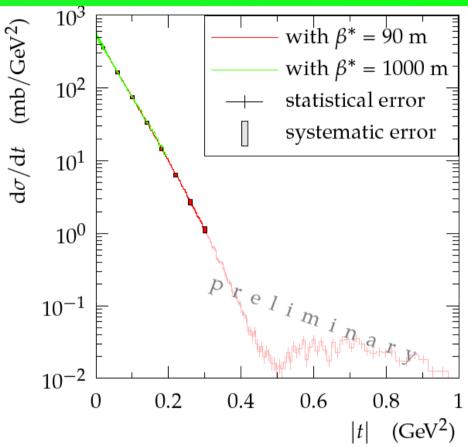
 σ_{el} and σ_{inel} : from σ_{T} and N_{el}/N_{inel}

$$\sigma_{tot} = \frac{16\pi}{(1+\rho^2)} \frac{(dN_{el}/dt)_{t=0}}{(N_{el}+N_{inel})}$$

Experiment	Method	O _T (mb)	σ _{inel} (mb)	G _{el} (mb)	Reference
ATLAS	2	95.35 ± 1.36	71.3 ± 0.9	24.0 ± 0.6	Nucl. Phys. B 889 (2014), 486
TOTEM	1	99.1 ± 4.3	73.7 ± 3.4	25. 4 ± 1.1	EPL 101 (2013), 21002 EPL 101 (2013), 21003
66	2	98.3 ± 2.8	73.5 ± 1.6	24.8 ± 1.2	EPL 96 (2011), 21002
66	2	98.6 ± 2.2	73.2 ± 1.3	25.4 ± 1.1	EPL 101(2013), 21002
"	3	98.0 ± 2.5	72.9 ± 1.5	25.1 ± 1.1	EPL 101 (2013), 21004

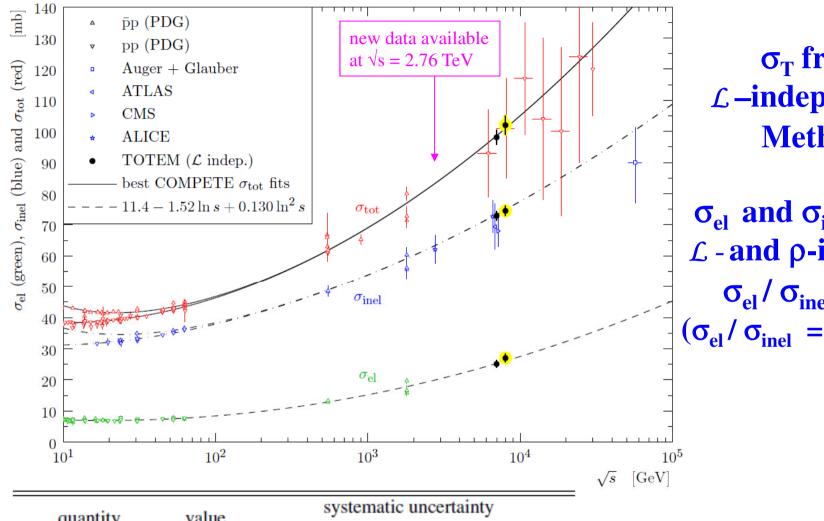
σ_T, σ_{el} and σ_{inel} Measurement @ 7 TeV: Summary

Very good agreement:


- among TOTEM measurement with different methods (understanding of systematic uncertainties and corrections)
- among LHC experiments

dσ_{el}/dltl Measurement @ 8 TeV: TOTEM

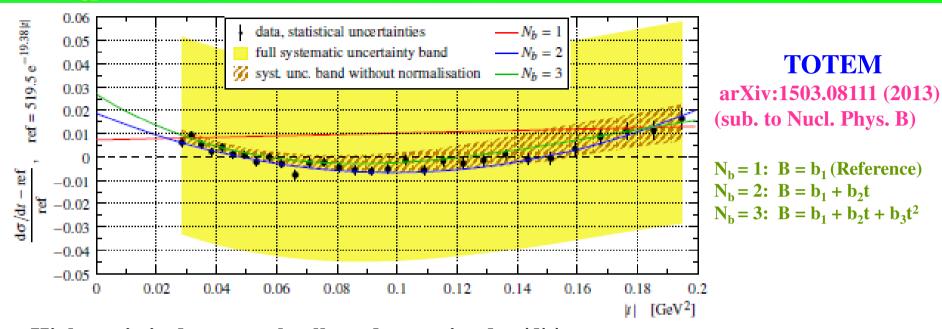
 β * = 90 m data


Follow the same analysis steps as @ 7 TeV (optical functions basically the same): $N_{el}, (dN_{el}/dt)|_{t=0} \ measurement \\ \rightarrow \sigma_T, \sigma_{el} \ and \ \sigma_{inel} \ with \ \mathcal{L}\mbox{-indep.}$ method

 β * = 1000 m data
Preliminary studies towards ρ measurement

β *(m)	RP approach (beam σ)	$\mathcal{L}_{ ext{int}}$ (μ b ⁻¹)	ltl- range (GeV²)	Elastic events	Reference	
90	6 – 9.5	60	0.01 - 0.1	0.6M	PRL 111 (2013), 012001	
90	9.5	735	0.027 - 0.2	7.2M	arXiv:1503.08111 (2015)	D 11 111
1000	3	20	$6 \cdot 10^{-4} - 0.2$	0.4M	Analysis Ongoing -	Possibility of ρ measurement
						measur ement

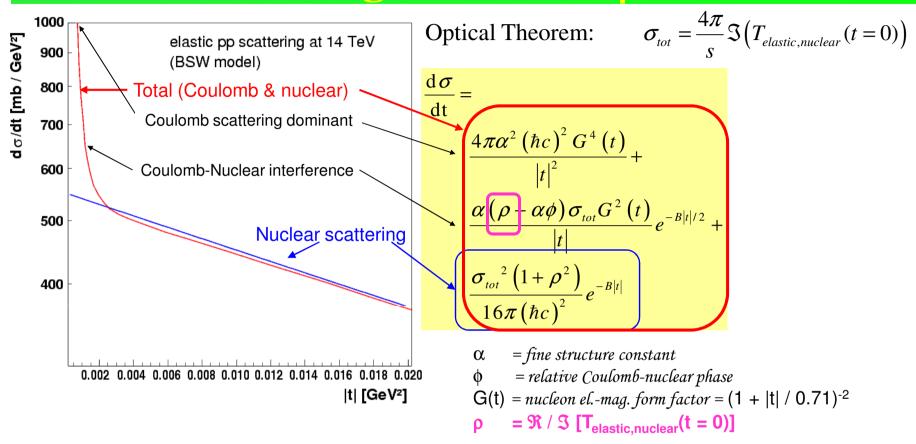
σ_T Measurement @ 8 TeV: TOTEM


 $\sigma_{\rm T}$ from **L**-independent **Method**

 σ_{el} and σ_{inel} from \mathcal{L} - and ρ -indepen. $\sigma_{\rm el}/\sigma_{\rm inel}$ ratio $(\sigma_{\rm el}/\sigma_{\rm inel} = N_{\rm el}/N_{\rm inel})$

quantity		value	systematic uncertainty				
qu	quantity		el. t-dep	el. norm	inel	ρ	\Rightarrow full
$\sigma_{ m tot}$	[mb]	101.7	± 1.8	± 1.4	±1.9	± 0.2	$\Rightarrow \pm 2.9$
$\sigma_{ m inel}$	[mb]	74.1	± 1.2	± 0.6	± 0.9	± 0.1	$\Rightarrow \pm 1.7$
$\sigma_{\! m el}$	[mb]	27.1	± 0.5	± 0.7	± 1.0	± 0.1	$\Rightarrow \pm 1.4$

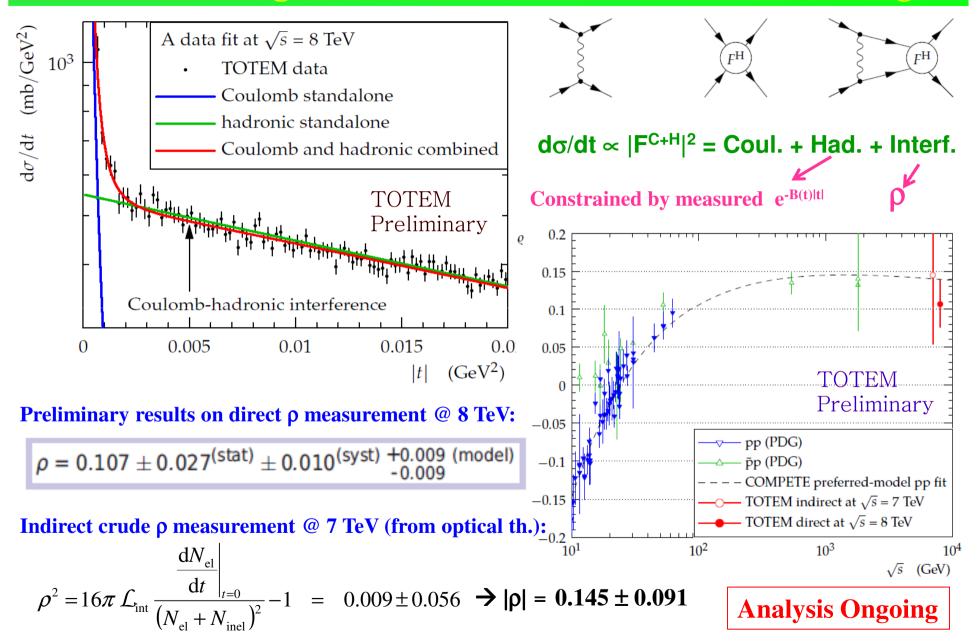
PRL 111 (2013) 012001


dσ_{el}/dltl Measurement @ 8 TeV with High Statistics

- $\begin{tabular}{ll} \hline \textbf{Figh statistic data sample allowed a precise $d\sigma_{el}/d|t|$ measurement (for 0.027 < |t| < 0.2~GeV^2) \\ \hline \end{tabular}$
- \triangleright "Purely" exponential slope excluded with a significance > 7σ (→ dσ_{el}/d|t| = Ae^{-B(t)|t|})
- > Quadratic and cubic polynomials in the exponent well describe data
- ▶ Using the new parametrisations for extrapolation to t = 0 and applying the optical theorem, new results for σ_T are found in agreement with previous measurement:

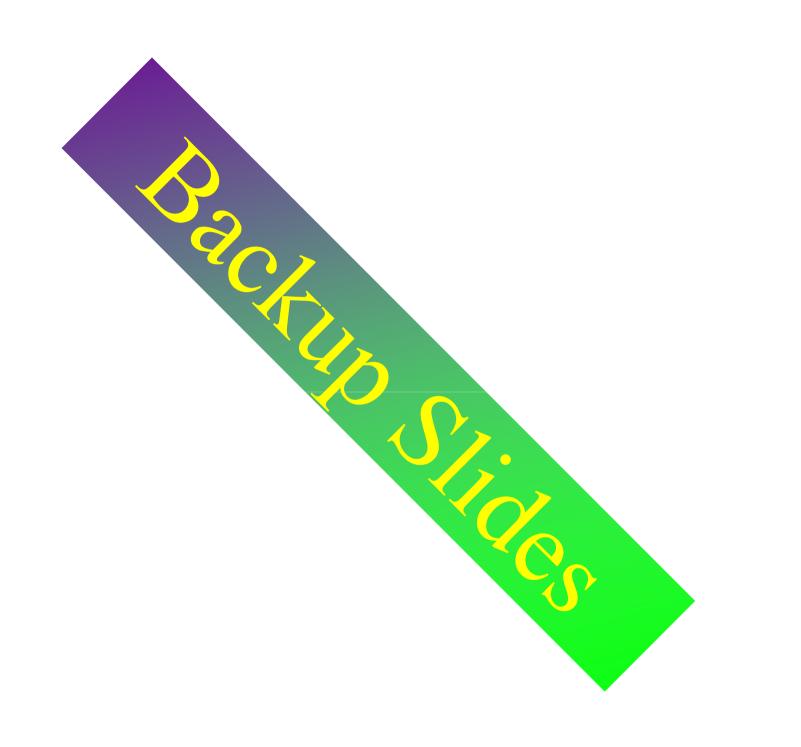
```
N_b = 1 (previous, purely exponential) \rightarrow \sigma_T = 101.7 \pm 2.9 mb (with \mathcal{L}-indep. method) N_b = 2 (quadratic polynomial) \rightarrow \sigma_T = 100.8 \pm 2.1 mb \rightarrow \sigma_T = 101.2 \pm 2.1 mb
```

Elastic Scattering at Low Itl: p Measurement

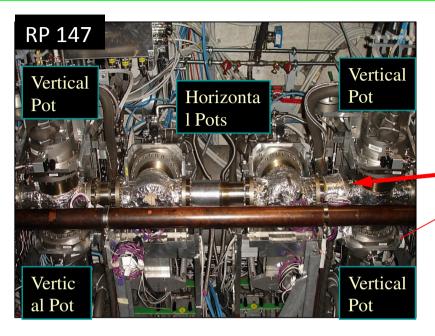


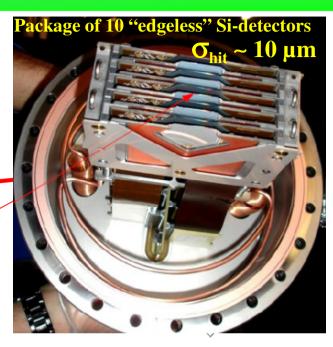
Measurement of ρ by studying the Coulomb – Nuclear interference region down to

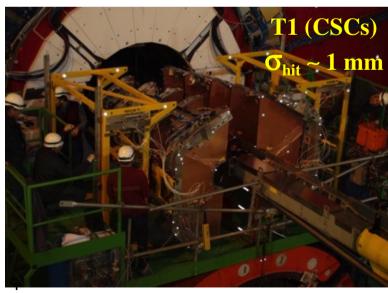
$$|t| \sim 6.10^{-4} \, GeV^2$$

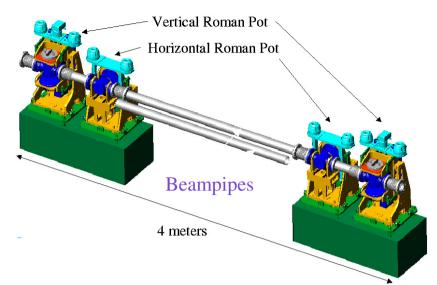

Reached @ \sqrt{s} = 8 TeV, with β * = 1000 m and RP approaching the beam centre @ ~ 3σ

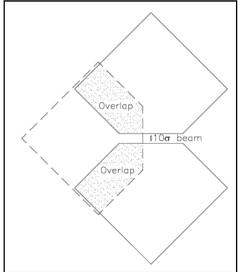
Elastic Scattering in the Coulomb-Nuclear Interference Region




Summary & Outlook

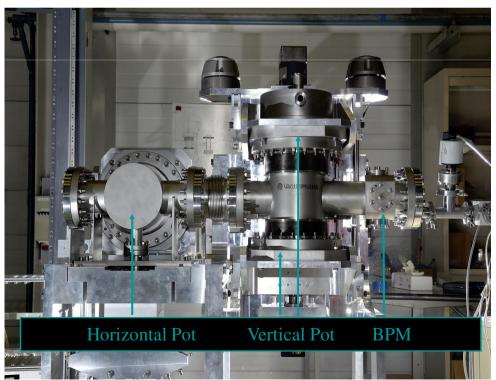

- \Box Extensive programme of σ_T , σ_{el} and σ_{inel} measurements @ LHC in Run I
- \bigcirc @ $\sqrt{s} = 7$ TeV collision data taken in special runs with different beam conditions (β * = 3.5, 90 m) allowed measurements of:
 - elastic scattering in a wide |t| range $(5 \cdot 10^{-3} < |t| < 3.5 \text{ GeV}^2)$
 - elastic, inelastic and total p-p cross-section
 (very good agreement among results from different experiments)
- - elastic scattering down to very low |t| $(6 \cdot 10^{-4} < |t| < 0.2 \text{ GeV}^2)$
 - \rightarrow evidence for non-exponential slope
 - \rightarrow preliminary ρ measurement
 - elastic, inelastic and total p-p cross-section (*L*-independent only)
- □ Looking forward for new data during LHC Run II, so to perform new measurements at higher \sqrt{s}


TOTEM Detectors



Each RP station has 2 units, ~5m apart. Each unit has 3 insertions ('pots'): 2 vertical and 1 horizontal

Horizontal Pot: extend acceptance; overlap for relative alignment using common track


Absolute (w.r.t. beam) alignment from beam position monitor (**BPM**)

Roman Pots (I)

Units installed into the beam vacuum chamber allowing to put proton detectors as close as possible to the beam

Protons at few μ rad angles detected down to $\sim 5\sigma + d$ from beam ($\sigma_{beam} \sim 80\mu$ m at RP)

⇒ 'Edgeless' detectors to minimize d

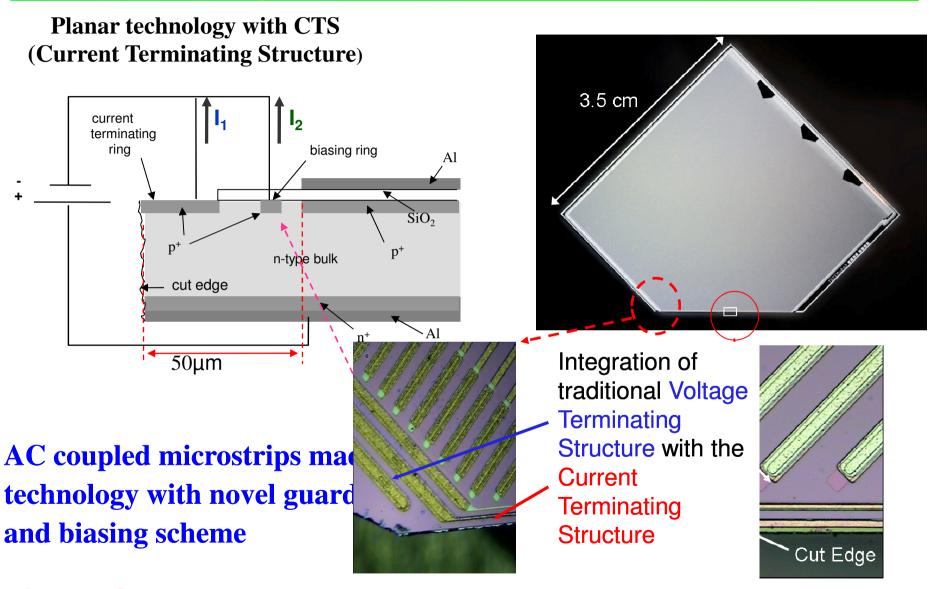
58 mm 106 mm 200µm thick window Bottom foil beam **Edgeless Si detector:** 50 µm of dead area

Roman Pots (II)

Each Pot:

- □ 10 planes of Si detectors
- □ 512 strips at 45° orthogonal
- Pitch: 66 μm
- ☐ Total ~ 5.1K channels
- ☐ Digital readout (VFAT): trigger/tracking
- □ Hit Resolution: $σ \sim 10 μm$

Integration of traditional

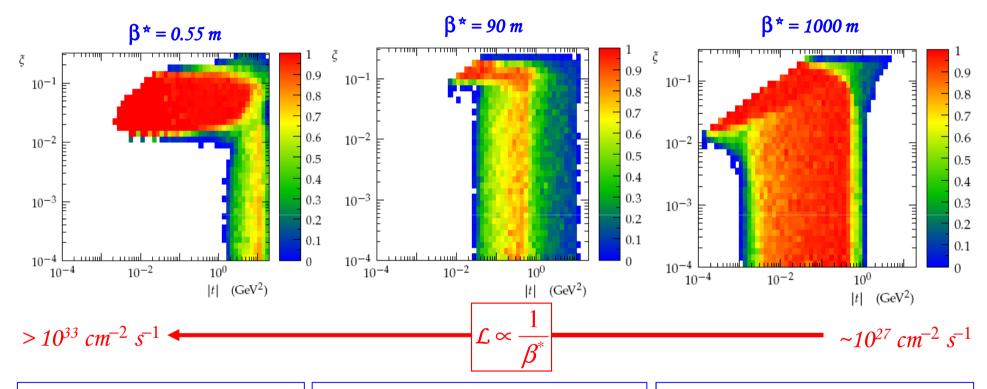

Voltage Terminating Structure with the

Current Terminating Structure

Detectors expected to work up to $\mathcal{L}_{int} \sim 1 \text{ fb}^{-1}$

(no loss of performance during Run I)

Si CTS Edgeless Detectors for Roman Pots



50 μm of dead area

LHC Optics and TOTEM Running Scenarios

Acceptance for diffractive protons:

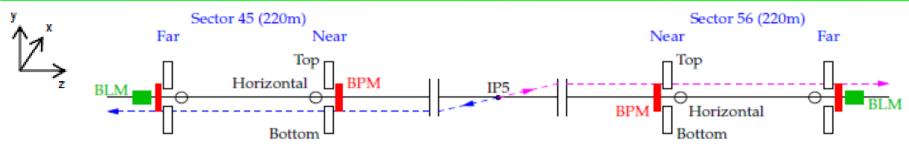
 $t \approx -p^2 \theta^{*2}$: four-momentum transfer squared; $\xi = \Delta p/p$: fractional momentum loss

Diffraction:

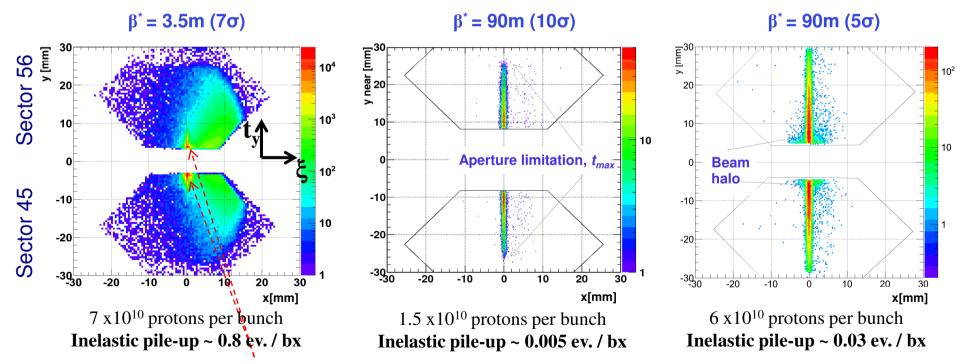
 $\xi > \sim 0.01$

low cross-section processes (hard diffraction)

Elastic scattering: large ltl

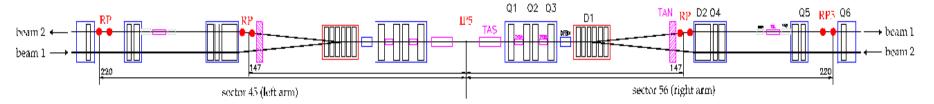

Diffraction:

all ξ if $|t| > \sim 10^{-2} \text{ GeV}^2$


Elastic scattering: low to mid ltl Total Cross-Section

Elastic scattering: very low ltl Coulomb-Nuclear Interference Total Cross-Section

Elastic pp Scattering: Hit Map in RPs



Coincidences of tracks reconstructed in left(45) and right(56) sectors: two "diagonals" analyzed independently

Hits associated to elastic scattering candidates

Details on Optics

Proton position at a given RP (x, y) is a function of position (x^*, y^*) and angle (Θ_x^*, Θ_v^*) at IP5:

measured in Roman Pots
$$\begin{bmatrix} \begin{pmatrix} x \\ \Theta_x \\ y \\ \Theta_y \\ \Delta p/p \end{pmatrix}_{RP} = \begin{pmatrix} v_x & L_x & 0 & 0 & D_x \\ v_x' & L_x' & 0 & 0 & D_x' \\ 0 & 0 & v_y & L_y & 0 \\ 0 & 0 & v_y' & L_y' & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} x^* \\ \Theta_x^* \\ y^* \\ \Theta_y^* \\ \Delta p/p \end{pmatrix}_{IP5} - reconstructed$$

The effective length (L) and magnification (v) expressed with the phase advance (μ) and β :

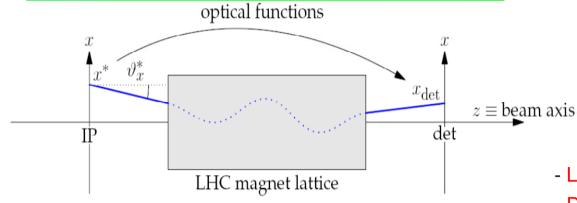
$$L(s) = \sqrt{\beta(s)\beta^*} \sin \Delta \mu(s) \qquad v(s) = \sqrt{\beta(s)\beta^{*-1}} \cos \Delta \mu(s) \qquad \Delta \mu(s) = \int_0^s \beta^{-1}(s')ds'$$

Elastic proton reconstruction (simplified):

- $\sigma(\Theta_{\nu}^*)=1.7 \,\mu\text{rad}$ for $\beta^*=90 \,\text{m}$ and low t-range $\sigma(\Theta_{\nu}^{\star})=12.5 \,\mu\text{rad}$ for $\beta^{\star}=3.5 \,\text{m}$ and high t-range

Scattering angle reconstructed in both projections

High
$$\Theta^*$$
-reconstruction resolution available


$$\sigma(\Theta_y^*)=1.7 \,\mu\text{rad} \text{ for } \beta^*=90 \text{ m and low t-range}$$

$$\Theta_x^* = \left(\Theta_{x,RP} - \frac{dv_x}{ds}x^*\right) / \frac{dL_x}{ds}, \quad \Delta p = 0$$

$$\Theta_y^* = \left(y_{RP} - v_y y^*\right) / L_y$$

Excellent optics calibration and alignment required

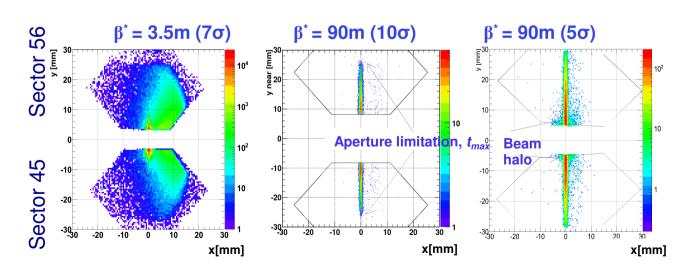
Details on Optics

$$\xi = \Delta p/p$$
; $t = t_x + t_y$; $t_i \sim -(p\theta_i^*)^2$

 (x^*, y^*) : vertex position at IP

 (θ_x^*, θ_v^*) : emission angle at IP

Proton transport equations (from transport matrix):


$$y(s) = v_y(\xi,s) \cdot y^* + L_y(\xi,s) \cdot \theta_y^*$$

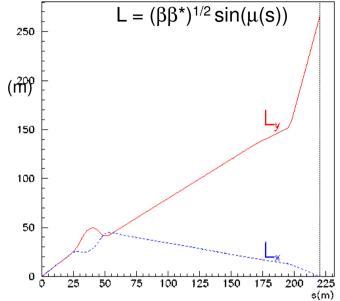
$$x(s) = v_x(\xi,s) \cdot x^* + L_x(\xi,s) \cdot \theta_x^* + \xi \cdot D(\xi,s)$$

Optical functions:

- L (effective length); v (magnification);
- D (machine dispersion)

Describe the explicit path of particles through the magnetic elements as a function of the particle parameters at IP.

 \Rightarrow Define t and ξ range (acceptance)



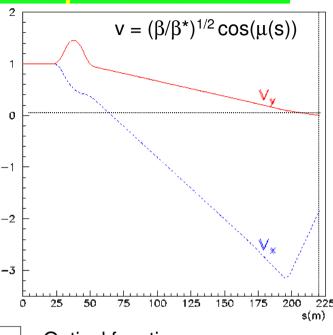
Example:

same sample of diffractive protons at different β^*

- low β^* : p detected by momentum loss (ξ)
- high β *: p detected by trans. momentum (t_y)

Optical Functions: Example at $\beta^* = 90$ m

Idea:


L_v large

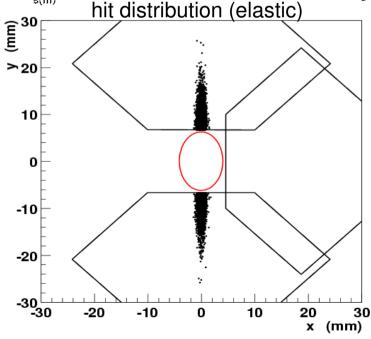
 $L_v=0$

 $v_v = 0$

$$\mu_{\text{y}}(220) = \pi/2 \quad \ \mu_{\text{x}}(220) = \pi$$

(parallel-to-point focusing on y) _2

 $x = L_{x}\theta_{x}^{*} + v_{x}x^{*} + D\xi$ $y = L_{y}\theta_{y}^{*} + v_{y}y^{*}$


$$y = L_y \theta_y^* + v_y y$$

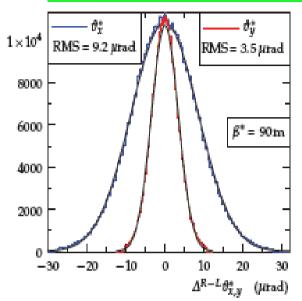
$$\xi = \Delta p/p$$

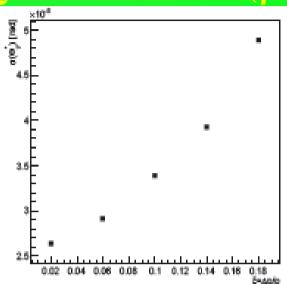
 (x^*, y^*) : vertex position at IP

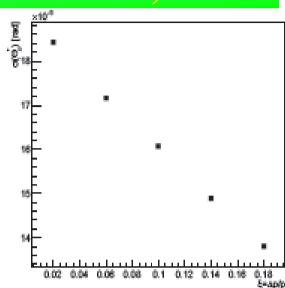
 (θ_x^*, θ_y^*) : emission angle at IP

$$t = t_x + t_y$$
$$t_i \sim -(p\theta_i^*)^2$$

G. Latino – TOTEM Physics Summary

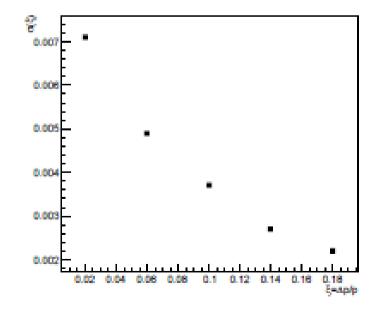

Optical functions:

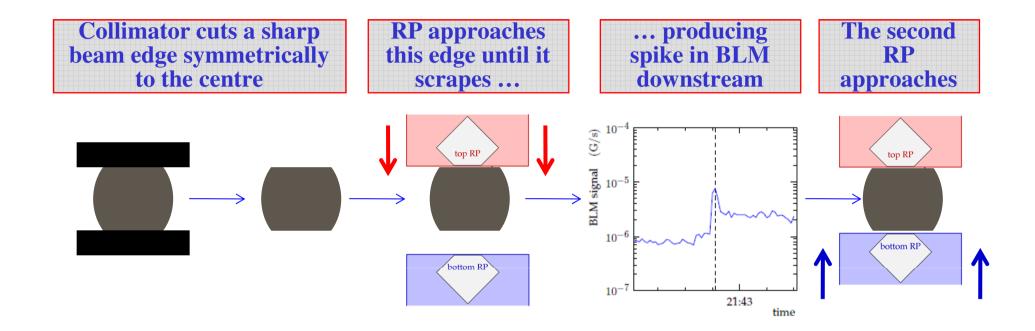

- L (effective length)
- v (magnification)


defined by β (betatron function) and μ (phase advance);

- D (machine dispersion)
- ⇒ describe the explicit path of particles through the magnetic elements as a function of the particle parameters at IP

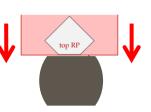
θ^* and ξ Resolution ($\beta^* = 90 \text{ m}$)




Elastic p

Diffractive p

Roman Pot Alignment wrt Beam Centre: BLM

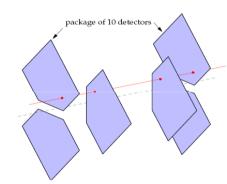


When both top and bottom pots "feel" the edge: they are at the same number of sigmas from the beam centre as the collimator and the beam centre is exactly in the middle between top and bottom pot

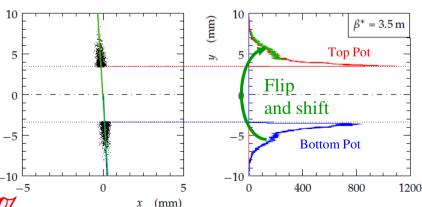
TOTEM Roman Pot Alignment Procedures

Critical procedures (fill-based): movable devices, beam optics variations

- > Pot position wrt LHC beam center:
 - alignment wrt collimators by approaching the beam "cut edge" (~ 20 µm)


> Internal alignment of components within detector assembly:

metrology, local tracks (few µm)


> Relative alignment of the pots in a station:

tracks in overlapping regions (Millepede algorithm, few µm)

> Global alignment:

track based exploiting symmetries (co-linearity) $\widehat{\xi}$ of hit profiles for elastically scattered protons, also allows "left-right" constraints (< 10 μ m in x, ~ 20 μ m in y)

Final precision achieved:

~ $10(50) \mu m \text{ in } x(y) \rightarrow \delta t/t \sim 0.3\text{-}0.6\%$

TOTEM Elastic pp Scattering: Analysis (I)

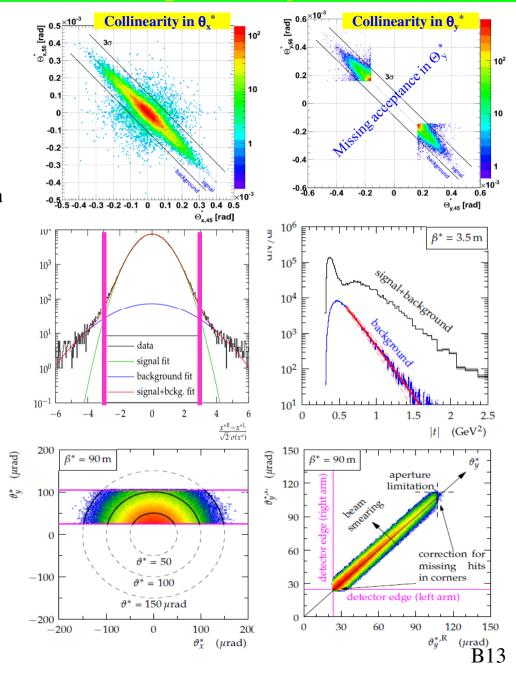
Proton selection cuts

- collinearity cuts (left-right):

$$\Theta^*_{x,45} \leftrightarrow \Theta^*_{x,56}$$

 $\Theta^*_{y,45} \leftrightarrow \Theta^*_{y,56}$

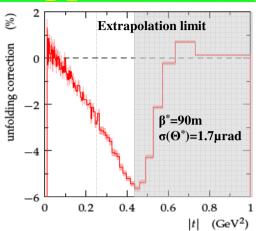
(width in agreement with beam divergence)

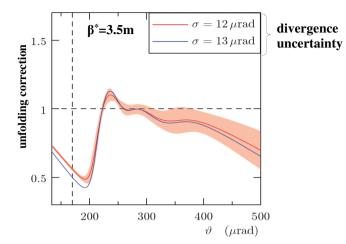

- low ξ cuts: $|x^*| < 0.6$ mm and 2σ cut in $\Delta\theta_v^*$
- vertex cuts (beam halo): $|x^*_{45} x^*_{56}| < 27 \mu m$
- optics related cuts

Background subtraction

- interpolating the background tails (> 3 σ) into the signal region (< 3 σ)

Acceptance correction


- assuming azimuthal symmetry
- correcting for smearing around limitation edges



TOTEM Elastic pp Scattering: Analysis (II)

Unfolding of resolution effects:

MC based iterative procedure

Normalization (reconstruction efficiencies):

Trigger Efficiency (from zero-bias data stream) > 99.8% (68% CL) **DAQ Efficiency** 98.142 ± 0.001 %

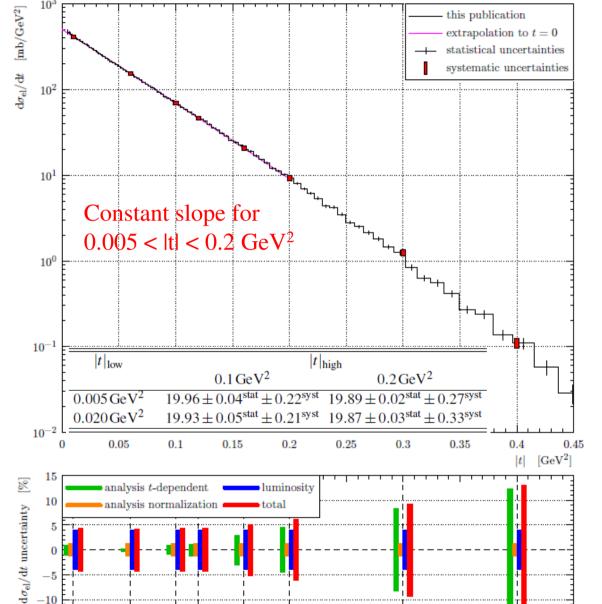
Reconstruction Efficiency

- intrinsic detector inefficiency:

- elastic proton lost due to interaction:

- event lost due to overlap with beam halo (depends on RP position wrt beam and diagonals): 4-8% (β *=90m); 30% (β *=3.5m)

1.5 - 3% / pot


1.5% / pot

Luminosity from CMS: systematic error of 4%

Systematic uncertainties: dominated by \mathcal{L} and by analysis t-dependent effects

(misalignments, optics imperfections, energy offset, acceptance correction and un-smearing correction)

Elastic Scattering at low ltl: Systematic Errors

-15

0.05

0.1

0.15

0.2

0.25

0.35

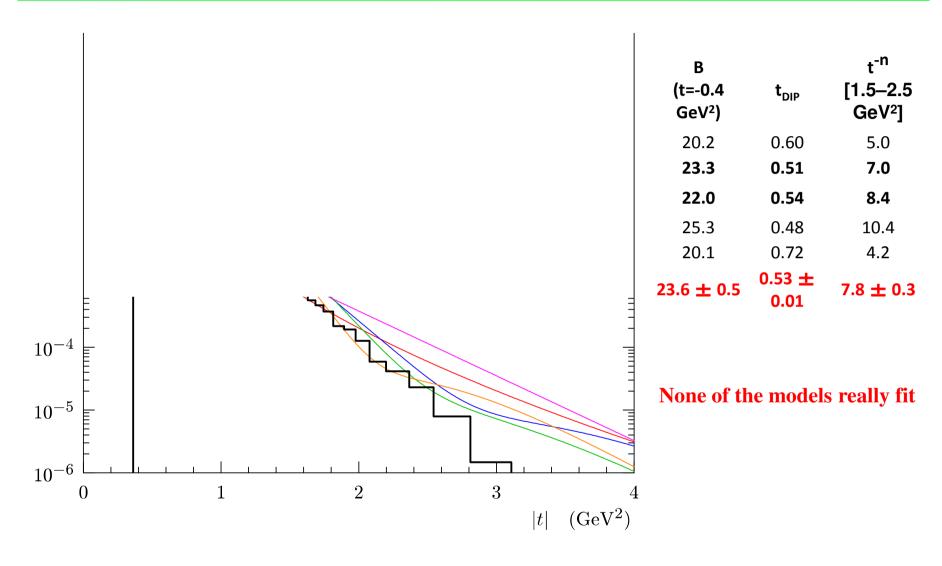
0.3

0.4

0.45

Individual contributions to errors:

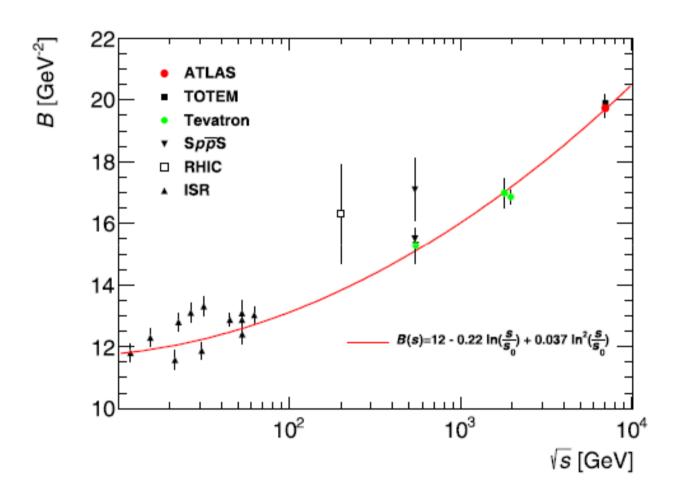
analysis t-dependent:


- misalignments
- optics imperfections
- energy offset
- acceptance correction
- unsmearing correction

analysis normalization:

- event tagging
- background subtraction
- detector efficiency
- reconstruction efficiency
- trigger efficiency
- "pile-up" correction

Luminosity from CMS (± 4%)


Comparison to some models

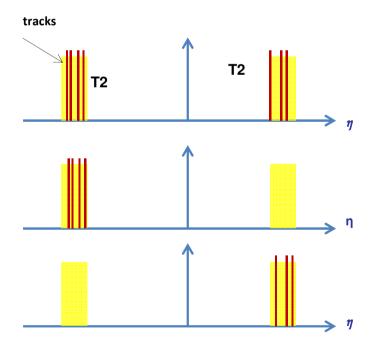
Better statistics at large ltl needed (in progress)

Dependence of Nuclear Slope B on Energy

ATLAS Collaboration / Nuclear Physics B 889 (2014) 486-548

Inelastic Cross Section @ 7 TeV: TOTEM

Direct T1 and T2 measurement: $\sigma_{inel} = N_{inel} / \mathcal{L}$ (\mathcal{L} from CMS)


Data sample

- Oct. 2011 run with β * = 90 m: same data subsets used for the \mathcal{L} -independent total cross section measurement
- T2 triggered events
- **Low pile-up:** ($\mu = 0.03$)

Inelastic events in T2: classification

- Tracks in both hemispheres: mainly non-Diffractive minimum bias (ND) and Double Diffraction (DD)
- Tracks in a single hemisphere: mainly single diffraction (SD) with $M_X > 3.4 \text{ GeV/c}^2$
- → Optimized study of trigger efficiency and beam gas background corrections

Subset	Inelastic events	\mathcal{L}_{in} [μ b ⁻¹]
DS 1a	1.14M	17.0 ± 0.7
DS 1b	1.78M	26.6 ± 1.1
DS 1c	1.64M	24.5 ± 1.0
DS 2	0.55M	8.2 ± 0.3
DS 3	0.44M	6.6 ± 0.3
Total	5.54M	82.8 ± 3.3

σ_{inel} @ 7 TeV: TOTEM (Corrections)

Corrections to the "T2 visible" events (~ 95%)

- Trigger Efficiency	(from zero bias data, vs track multiplicity):	$2.3 \pm 0.7 \%$
----------------------	---	------------------

- Track reconstruction efficiency (based on MC tuned with data):
$$1.0 \pm 0.5 \%$$

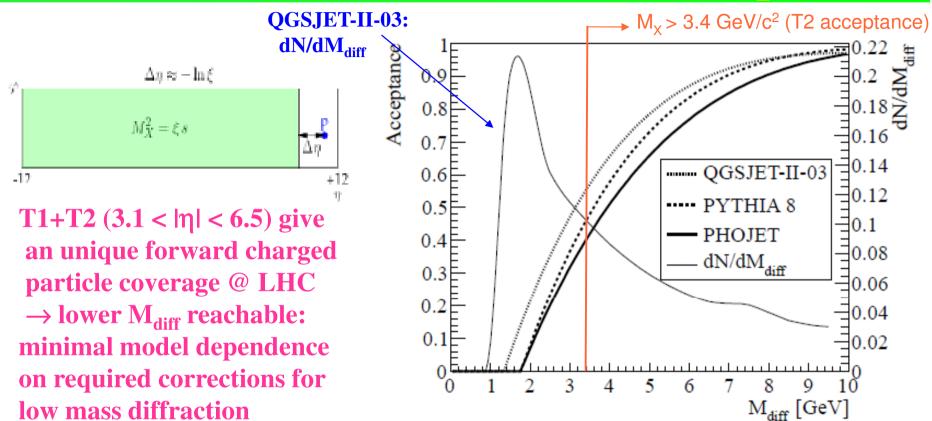
- Beam-gas background (from non colliding bunch data):
$$0.6 \pm 0.4 \%$$

- Pile-up (
$$\mu = 0.03$$
) (from zero bias data): 1.5 \pm 0.4 %

Corrections for "missing" inelastic cross-section

- Events visible in T1 but not in T2 (from zero bias data):	$1.6 \pm 0.4 \%$
---	------------------

- Rapidity gap in T2 (from T1 gap probability transferred to T2):
$$0.35 \pm 0.15 \%$$

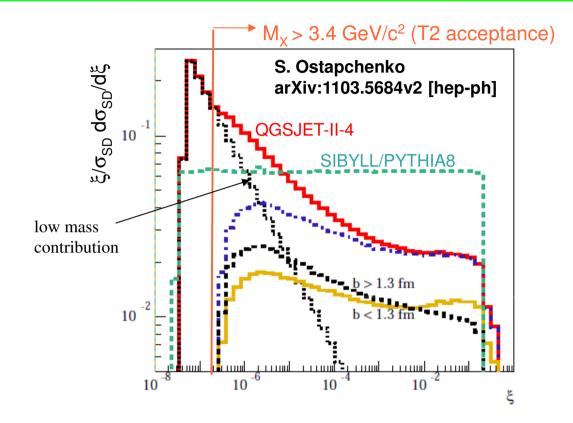

- Central Diffraction: T1 & T2 empty (based on MC):
$$0.0 \pm 0.35 \%$$

Uncertainty related to \mathcal{L} (CMS): 4%

$$\sigma_{\text{inelastic}} = 73.7 \pm 0.1^{\text{stat}} \pm 1.7^{\text{syst}} \pm 3.0^{\text{lumi}} \text{ mb}$$
- EPL 101 (2013) 21003 -

Compatible with other similar meas. @ LHC

Low-Mass Diffraction: T1+T2 Acceptance



Several models studied: correction for low mass single diffractive cross-section based on <u>QGSJET-II-03</u> (well describing low mass diffraction at lower energies), imposing observed 2hemisphere/1hemisphere event ratio and the effect of "secondaries"

$$\sigma_{Mx < 3.4 \text{ GeV}} = 3.1 \pm 1.5 \text{ mb}$$

Low-Mass Diffraction: MC Predictions

$$\begin{aligned} \mathbf{M_x}^2 &\approx \mathbf{s} \cdot \boldsymbol{\xi} \\ \Delta \boldsymbol{\eta} &\approx -\text{log} \boldsymbol{\xi} \\ \mathbf{M_x}^2 &\approx \mathbf{s} \cdot \mathbf{e}^{-\Delta \boldsymbol{\eta}} \end{aligned}$$

Several models studied: correction for low mass single diffractive cross-section based on QGSJET-II-03 (well describing low mass diffraction at lower energies), imposing observed 2hemisphere/1hemisphere event ratio and the effect of "secondaries"

$$\sigma_{Mx < 3.4 \text{ GeV}} = 3.1 \pm 1.5 \text{ mb}$$

Further Measurements (TOTEM)

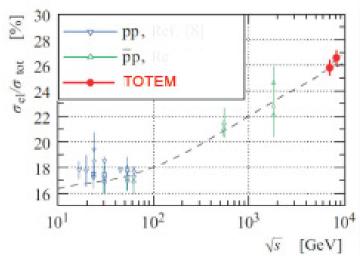
Absolute luminosity measurement (@ 7 TeV):

The "luminosity-independent" method also yields the luminosity calibration

$$\mathcal{L} = \frac{(1+\rho^2)}{16\pi} \frac{(N_{el} + N_{inel})^2}{(dN_{el}/dt)_{t=0}}$$

 $L_{int} = (1.65 \pm 0.07) \text{ mb}^{-1}$ [CMS: $(1.65 \pm 0.07) \text{ mb}^{-1}$] June 2011:

October 2011:


 $L_{int} = (83.7 \pm 3.2) \text{ mb}^{-1}$ [CMS: $(82.0 \pm 3.3) \text{ mb}^{-1}$]

Excellent agreement with CMS L measurement

Luminosity- and ρ-independent ratios:

7 TeV 8 TeV

 $\sigma_{elastic}$ / σ_{total} = $~0.257\,\pm\,0.005~$; $~0.266\,\pm\,0.006$ $\sigma_{elastic}$ / $\sigma_{inelastic}$ = 0.354 \pm 0.009 ; 0.362 \pm 0.011

Elastic Scattering in the Coulomb-Nuclear Interference Region

Experimental data \longrightarrow Physics parameters $(\rho, ...)$

Theoretical/phenomenological models

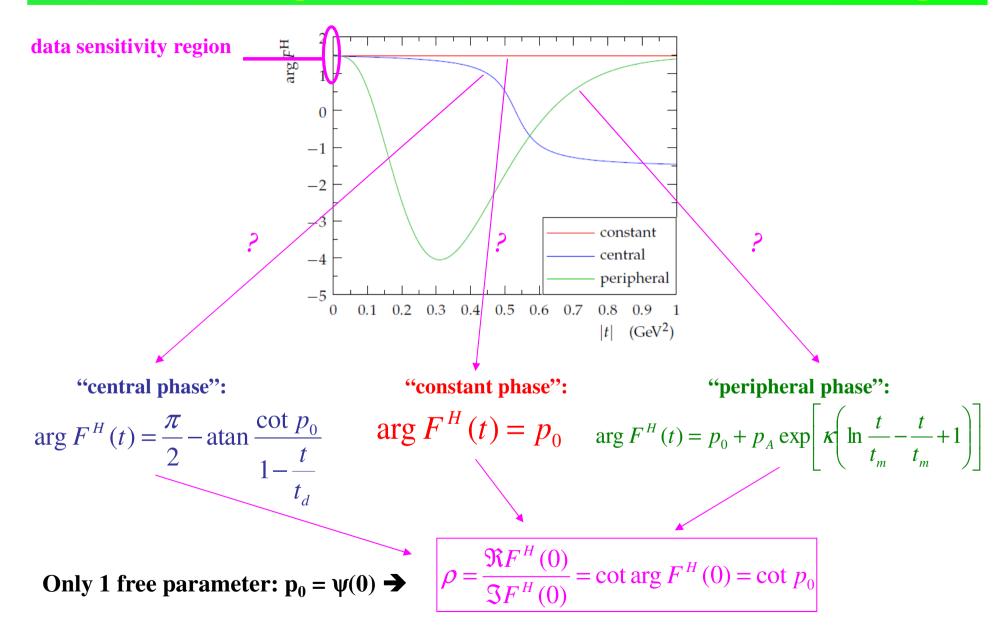
$$F^{C+H} = F^C + F^H e^{i\alpha \Psi}$$
(QED)

$$F^{C} = \frac{\alpha s}{t} \mathcal{F}^{2}(t)$$

- Comparison
- Modulus constrained by measurement: $d\sigma/dt \cong A e^{-B(t)/t/t}$ $B(t) = b_0 + b_1 t + \cdots$
- $B(t) = D_0 + D_1 t + ...$ Phase argF^H (interference term): very little guidance by data

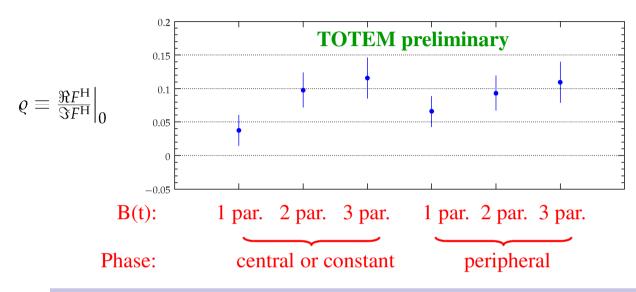
Simplified West-Yennie formula:

- constant slope $B(t) = b_0$
- constant hadronic phase $arg(F^H) = p_0$ ("costant phase")
- $\Psi(t)$ acts as real interference phase:


$$\Psi(t) = \ln \frac{B(t)}{2} + \gamma_{\text{Euler}}$$

General Kundrát-Lokajíček formula:

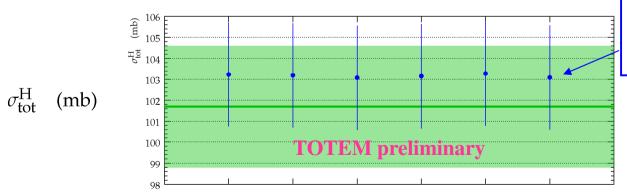
- any slope B(t)
- any hadronic phase: if $argF^{H}(t) \rightarrow$ "peripheral phase" if $argF^{H} \sim cost \rightarrow$ "central phase"
- complex $\Psi(t)$:


$$\begin{split} \Psi(t) = & \mp \int\limits_{t_{min}}^0 dt' \ln \frac{t'}{t} \, \frac{d}{dt'} \mathcal{F}^2(t') \pm \int\limits_{t_{min}}^0 dt' \left(\frac{F^H(t')}{F^H(t)} - 1 \right) \, \frac{I(t,t')}{2\pi} \\ I(t,t') = & \int\limits_0^{2\pi} d\phi \, \frac{\mathcal{F}^2(t'')}{t''} \, , \qquad t'' = t + t' + 2\sqrt{tt'} \cos\phi \end{split}$$

Elastic Scattering in the Coulomb-Nuclear Interference Region

Preliminary Results for p

Put unknown elements of the functional form into the systematic uncertainty.



Data fits:

p₀ and parameters for B(t) left free

Data favour ≥ 2 parameters

$$ho = 0.107 \pm 0.027^{ ext{(stat)}} \pm 0.010^{ ext{(syst)}} \stackrel{+0.009}{_{-0.009}} \text{(model)}$$

$$\sigma_{tot}^2 = \frac{16\pi}{(1+\rho^2)} \frac{1}{\mathcal{L}} \bigg(\frac{dN_{el}}{dt}\bigg)_{t=0}^{\text{had}}$$

 σ_t = 101.7 ± 2.9 mb luminosity independent [PRL 111 (2013) 012001]