A Tale Of Two (relatively) Massive Stars

Michela Mapelli 1,2,3

¹ INAF – Padova

² University of Innsbruck

³ INFN - Milano Bicocca

Collaborators: N. Giacobbo, M. Spera, A. Bressan, A. A. Trani, U. N. Di Carlo

Two neutron stars like several others in the nearby Universe..

~ 10 double NS binaries, https://jantoniadis.wordpress.com/research/ns-masses/

What do we know about their evolution?

1. Common envelope efficiency: how likely is ejection of the envelope? (problem similar to BHs)

From Ohlmann et al. 2016, ApJ, 816, L9

2. Problem of supernova (SN) kicks

(not a strong issue for BHs)

Hobbs+ (2005):

3-D velocity distribution of pulsars obtained from the observed 2-D distributions of SINGLE pulsars

→ Maxwellian distribution with sigma ~ 265 km/s

2. Problem of supernova (SN) kicks

(not a strong issue for BHs)

Beniamini & Piran 2016:

Estimate kick of double neutron stars only

Maximum likely-hood of ejected mass and kick from conservation of energy and angular momentum

3. What kind of SN explosion?

- detail of SN more important for small remnants than for big remnants

Spera & MM 2017

3. What kind of SN explosion?

- detail of SN more important for small remnants than for big remnants

- 3. What kind of SN explosion?
 - detail of SN more important for small remnants than for big remnants
 - core collapse or electron capture SN?

Core collapse SN:

collapse at the end of nuclear burning (Fe core) of >9 Msun star

- * High kicks?
- * High mass (>1.4 Msun)?

Electron-capture SN:

Collapse of ONe core triggered by electron capture in 5 – 10 Msun stars

- * Low kicks (<50 km/s)?
- * Low mass (1.0-1.4 Msun)?
- * Only in binary evolution?

- 4. Dynamical evolution?
 - Less important than for BHs because of small NS mass

4. Dynamical evolution?

- Less important than for BHs because of small NS mass
- However in old globular clusters NS are more massive than the other stars:
 may participate in exchanges, three-body encounters, etc.
 (Sigurdsson et al. 1995, no recent work)

M15 with HST

4. Dynamical evolution?

- Less important than for BHs because of small NS mass
- However in old globular clusters NS are more massive than the other stars:
 may participate in exchanges, three-body encounters, etc.
 (Sigurdsson et al. 1995, no recent work)
- NS binaries can be dynamically ejected from parent cluster

Are host-less short GRBs associated with dynamical ejections?

What can we learn from the environment of GW170817?

An early-type galaxy: mostly old stars

likely long evolution before merger

No globular clusters: either did not form in globular clusters

or ejected by SN or 3-body kicks

Pian et al. 2017

Features of galaxy merger?

The role of METALLICITY in BH mergers versus NS mergers:

Completely different trend with metallicity

we expect NS mergers to be produced with equal probability both in metal poor and in metal rich galaxies

But the redshift ~ 0 Universe is richer of metal rich than metal poor galaxies → dominant formation in metal-rich environment

Short summary:

- * properties of NSs in GW170817 similar to 10 DNS in Milky Way
- * evolution similar to merging BHs but with lower ZAMS and with SNe
- * many open issues:
 - common envelope
 - natal kick
 - supernova (core-collapse and electron-capture)
 - dynamics (formation and ejection)
- * NGC4993 is an early type galaxy: old population, long evolution

THANK YOU

* merging NS binaries much more common than BH binaries at high metallicity?