Super-B Databases: Introduction

Igor Gaponenko
SLAC National Accelerator Laboratory, USA

Super-B Computing R&D Workshop Ferrara, Italy March 11, 2010

Our plan for today

- Review and discuss the past and current (state of the art) experience with databases in HEP
- Consider trends and risks in a projected timescale of Super-B
- Identify those issues which might be relevant for Super-B:
 - Name and agree upon most critical database areas for which we do NOT have an immediate answer:
 - either because the area hasn't been well developed/understood, or specific/unique requirements of Super-B, or technology transitions, or computing landscape movements
 - Define R&D to address these problems
- What's next in this session:
 - A preliminary analysis (personal view)
 - Talks on the database experience from LHC and BABAR
 - A discussion

Databases in HEP

- 10+ (probably up to 15) years of experience enabled by:
 - Stable and improving industry standards (SQL, ODBC, etc.)
 - Multiple affordable implementations (proprietary and open-source):
 - · RDBMS: ORACLE, MySQL, PostgreSQL, etc.
 - · ODBMS: Objectivity/DB
 - Expertise build-up within HEP
- Substantial progress in:
 - Identifying most suitable application domains/areas; successful implementations
 - Learning how to use databases effectively (performance, scalability, evolution, etc.)
- Some (mostly recently) progress in:
 - Dealing with distributed databases
 - Application Domain Programming interfaces (good example: COOL, CORAL)

Databases in HEP: known issues

Similar problems for most HEP software

Social & Organizational:

- Limited cooperation and a knowledge transfer across experiments
- Very little software reuse (with a few exceptions like ROOT)
- Duplication of efforts
- Many HEP databases (schema & contents) is a product of a collective development/use:
 - HEP is much less "controlled" environment compared with industry
 - Developers == Users
 - A tricky business of keeping in sync: database schema <-> contents <--> applications

Spatial:

- Staying in sync with distributed data production, processing and analysis

· Temporal:

- HEP experiments typically last for many years which makes them extremely susceptible to changes in the underlying databases area (fading/emerging technologies, schema evolution, etc.)
 - This problem is not always appreciated and/or understood, as well as methods which needs to be employed to deal with this.

...known issues (contd.)

· Technological:

- For a variety of reasons, RDBMS (and so ODBMS) alone isn't really a match for many HEP database applications, hence (except really trivial "all in one table" scenario) we end up with:
 - Complex schemas
 - Costly SQL/C++ translation (which has to be keep in sync with schema)
 - Multiple layers on top of vendor APIs
 - Poor performance, limited scalability
 - Various workarounds and solutions to compensate for missing (but desired) functionality
 - And multiple versions of all of those above at any given moment of time
- Non-existing or limited "out of a box" solutions for distributing RDBMS across sites
- Security models of many popular DBMS aren't always consistent with our requirements & practice:
 - Are we ready to enter a "special" password each time we're going to update a calibration...from a batch job?

New Computing Landscape

New trends & risks affecting Super-B:

- A rapid expansion of multiple forms of the distributed computing (GRID, Cloud, Folding@Home)
- Virtualization
- An explosion of parallelism at many levels (clusters, multi-core CPUs, GPUs)

· Consequences:

- Dramatically increased complexity of data processing/analysis systems:
 - The famous Moor's law is still in an effect, but now it translates into a number of processes (run on separate "cores"). Will the present database systems scale to handle x10, x100, x1000 more clients in the not so distant future?
 - The propagation of information across a highly distributed system has a limited speed and it's not trivial to deal with. How to ensure a consistency of this process and an overall data integrity?
- What would be an effect of new technologies? New opportunities or new borders?
 - No doubt, all of that will change ways we define/use databases for HEP.

What can we do then?

- · (obviously) Better be proactive than reactive
 - Analyze trends and risks
 - Think on how to mitigate negative consequences(?)
- The main issue here is how to preserve the "investments" into the code, procedures, people training?
 - The classical solution from the Software Engineering: "...one more level of indirection solves all problems (for now)...".
 - In our case this recipe would translate into:
 - Properly identified abstraction layers
 - Going from domain specific concepts to a technology (not an opposite!)
 - Quality programming & documentation

Suggested R&D topics (ideas)

· Focus on:

- Abstraction layers, Programming Interfaces, Tools
- Distributed Databases
- Usage and management models and scenarios

· Other questions:

- Should we consider databases in a broader context of a consistent ("holistic"?) approach to the Super-B Computing Model?
- What Super-B can inherit from BABAR and LHC?