Higher poles and crossing phenomena from twisted elliptic genera

Sujay K. Ashok
IMSc, Chennai
based on arXiv:1404.7396 [hep-th]
w/Eleonora Dell'Aquila and Jan Troost

Cortona, Italy 2014

Plan of the talk

- The elliptic genus: definition and properties
- Elliptic genus of the cigar
- Mock vs. modular: connection to Appell-Lerch sums
- Effects of twisting the elliptic genus
- Generalization to higher pole Appell-Lerch sums
- Some interesting questions

Elliptic genus: definition

- The elliptic genus of $\mathcal{N}=2$ CFT (in two dimensions):

$$
\chi(\tau, \alpha)=\operatorname{Tr}_{\mathcal{H}}(-1)^{F} q^{L_{0}-\frac{c}{24}} z^{J_{0}} \bar{q}^{\bar{L}_{0}-\frac{c}{24}}
$$

where $q=e^{2 \pi i \tau}$ and $z=e^{2 \pi i \alpha}$.

- L_{0} and \bar{L}_{0} are the left/right conformal dimensions.
- J_{0} measures left-moving R-charge.
- c is the central charge of the CFT.
- Trace is in the Ramonnd sector.
- There is also a path integral definition. Quantum fields on the torus, with twisted periodic boundary conditions, determined by the R-charge of the fields.
- It is a right-moving Witten index.

$$
\chi(\tau, \alpha)=\operatorname{Tr}_{\mathcal{H}}\left\{\left[(-1)^{F_{L}} q^{L_{0}-\frac{c}{24} z^{J_{0}}}\right]\left[(-1)^{F_{R}} \bar{q}^{\bar{L}_{0}-\frac{c}{24}}\right]\right\}
$$

Elliptic genus as a Jacobi form

- Holomorphic because it is a right-moving index.
- It has good modular properties (seen from the path integral):

$$
\chi\left(-\frac{1}{\tau}, \frac{\alpha}{\tau}\right)=e^{\frac{\pi i c}{3} \frac{\alpha^{2}}{\tau}} \chi(\tau, \alpha) .
$$

- Spectral flow symmetry of $\mathcal{N}=2$ theory guarantees that χ has good elliptic properties:

$$
\chi(\tau, \alpha+m \tau+n)=(-1)^{\frac{c}{3}(m+n)} q^{-\frac{c}{6} m^{2}} z^{-\frac{c}{3} m} \chi(\tau, \alpha)
$$

- The modular and elliptic properties means that the elliptic genus of a CFT is a holomorphic Jacobi form of weight zero with an index proportional to the central charge c.

Overview of earlier work

- There are cases when these general conclusions are incorrect. [Troost '10; Eguchi-Sugawara, '10, SA, Troost '11]
- Lesson 1: When the CFT has
- a continuum of states and
- if there is spectral asymmetry in the continuum sector: i.e. $\rho_{B}-\rho_{F} \neq 0$, where $\rho_{B / F}$ is the bosonic/fermionic density of states,
then, the "long multiplets" contribute to the elliptic genus [SA, Troost '11]. It is no longer holomorphic.
- Well known for the Witten index (weighted trace) [Cecotti-Fendley-Intriligator-Vafa, Comtet-Akhoury]

$$
\begin{aligned}
\operatorname{Tr}\left[(-1)^{F} e^{-\beta H}\right]=N_{B}- & N_{F} \\
& +\int d E e^{-\beta E}\left(\rho_{B}(E)-\rho_{F}(E)\right)
\end{aligned}
$$

Elliptic genus as mock-Jacobi forms

- Lesson 2: The elliptic genus is a very special kind of real analytic Jacobi form: the modular completion of a mock-Jacobi form.
- The holomorphic part is a sum over discrete states while the non-holomorphic part is an integral over the radial momentum.
- Caveat: There are examples where the elliptic genus is not strictly mock but nevertheless shows the same type of behaviour. [i.e. holomorphic part + remainder]. But these higher dimensional models will not be discussed here. [SA, Doroud, Troost; Murthy]
- The shadow does not satisfy the properties required for it to be a mock-Jacobi form.

Case study: $\mathcal{N}=2$ cigar

- The elliptic genus of the cigar is calculated using the path integral for the (axially) gauged WZW model $S L(2, \mathbb{R}) / U(1)$ at level k. We will present the answer for a twisted elliptic genus, namely:

$$
\chi(\tau, \alpha, \beta)=\operatorname{Tr}_{\mathcal{H}}(-1)^{F} q^{L_{0}-\frac{c}{24}} \bar{q}^{\bar{L}_{0}-\frac{c}{24}} z^{J_{0}} y^{P}
$$

where $q=e^{2 \pi i \tau}, z=e^{2 \pi i \alpha}$ and $y=e^{2 \pi i \beta}$.

- We find

$$
\chi(\tau, \alpha, \beta)=k \int_{\mathbb{C}} \frac{d^{2} u}{2 \tau_{2}}\left[\frac{\theta_{11}\left(\tau, u-\alpha-\frac{\alpha}{k}+\beta\right)}{\theta_{11}\left(\tau, u-\frac{\alpha}{k}+\beta\right)}\right] e^{-\frac{k \pi}{\tau_{2}}|u|^{2}} e^{-2 \pi i \alpha_{2} u} .
$$

u is the (complex) holonomy of the gauge field around the cycles of the torus T^{2}.

- Non-holomorphic in τ and β, holomorphic in α.

Properties of the elliptic genus

Modular and elliptic properties:

$$
\begin{aligned}
& \chi(\tau+1, \alpha, \beta)=\chi(\tau, \alpha, \beta) \\
& \chi\left(-\frac{1}{\tau}, \frac{\alpha}{\tau}, \frac{\beta}{\tau}\right)=e^{\pi i \frac{c}{3} \frac{\alpha^{2}}{\tau}}-2 \pi i \frac{\alpha \beta}{\tau} \\
& \\
& \chi(\tau, \alpha+k, \beta)=(-1)^{\frac{c}{3} k} \chi(\tau, \alpha, \beta) \\
& \chi(\tau, \alpha+k \tau, \beta)=(-1)^{\frac{c}{3} k} e^{-\pi i \frac{c}{3}\left(k^{2} \tau+2 k \alpha\right)} e^{2 \pi i \beta k} \chi(\tau, \alpha) \\
& \chi(\tau, \alpha, \beta+1)=\chi(\tau, \alpha, \beta) \\
& \chi(\tau, \alpha, \beta+\tau)=e^{2 \pi i \alpha} \chi(\tau, \alpha, \beta)
\end{aligned}
$$

Here, $c=3+\frac{6}{k}$, the central charge of the cigar CFT.

- Jacobi form in three variables, with weight zero and a matrix index that can be obtained from the above transformation rules.

The split

In order to make contact with the math literature, it is easiest to work with a \mathbb{Z}_{k} orbifold of this elliptic genus.

$$
\begin{aligned}
& \chi_{L}=\sum_{n, m} \int \frac{d^{2} u}{2 \tau_{2}} \frac{\theta_{11}(\tau, u-\alpha)}{\theta_{11}(\tau, u)} e^{2 \pi i \alpha \frac{n}{k}} e^{-\frac{k \pi}{\tau_{2}} \left\lvert\,\left(u+\frac{\alpha}{k}-\beta+\frac{n}{k} \tau+\left.\frac{m}{k}\right|^{2}\right.\right.} \\
& \times e^{-2 \pi i \alpha_{2}\left(u+\frac{\alpha}{k}-\beta \frac{n}{k} \tau+\frac{m}{k}\right)}
\end{aligned}
$$

A non-trivial calculation shows that it is a sum of two terms:

$$
\chi_{L, h o l}=\frac{i \theta_{11}(\tau,-\alpha)}{\eta^{3}(q)} z^{\frac{[k] \beta_{2}}{k}} \sum_{m \in \mathbb{Z}} \frac{\left(z^{-2} y^{k} q^{-\left[k \beta_{2}\right]}\right)^{m} q^{k m^{2}}}{1-z^{-\frac{1}{k}} q^{m}}
$$

- This is a contribution from discrete states of the theory.
- It is a sum over spectral flowed (extended) $\mathcal{N}=2$ superconformal characters.
- It is holomorphic, elliptic but not modular.

The remainder

The second piece is called the remainder term and is denoted $\chi_{L, \text { rem }}$:

$$
\frac{i \theta_{11}(\tau,-\alpha)}{\pi \eta^{3}(\tau)} \sum_{v, w} \int_{\mathbb{R}} \frac{d s}{2 i s+v-k \beta_{2}} z^{\frac{v}{k}-2 w} y^{k w} q^{k w^{2}-v w}(q \bar{q})^{\frac{s^{2}}{k}+\frac{\left(v-k \beta_{2}\right)^{2}}{4 k}}
$$

- This is the contribition from the continuum states in the CFT.
- The measure factor is precisely the spectral asymmetry, as can be checked independently using reflection coefficients.
- One can read off the R-charge and conformal dimensions from the above expressions.

Effects of the twist β

- Consider now the remainder piece stripped of the oscillators:

$$
\sum_{v, w} \int_{\mathbb{R}} \frac{d s}{2 i s+v-k \beta_{2}} z^{\frac{v}{k}-2 w} y^{k w} q^{k w^{2}-v w}(q \bar{q})^{\frac{s^{2}}{k}+\frac{\left(v-k \beta_{2}\right)^{2}}{4 k}}
$$

Here, $v=n+k w$ and is the (usual) right moving momentum. We can read off

$$
\begin{aligned}
& \bar{L}_{0}-\frac{c}{24}=\frac{s^{2}}{k}+\frac{\left(n+k w-k \beta_{2}\right)^{2}}{4 k} \\
& L_{0}-\bar{L}_{0}=-n w \quad J_{0}=\frac{n-k w}{k}
\end{aligned}
$$

- The right-moving momentum shifts due to the y^{P} insertion in the trace. This shifts the right-moving Hamiltonian as well as the measure (spectral asymmetry).

Effects of the twist β : crossing phenomena

$$
\chi_{L, \text { hol }}=z^{\frac{\left[k \beta_{2}\right]}{k}} \frac{i \theta_{11}(\tau,-\alpha)}{\eta^{3}(q)} \sum_{m \in \mathbb{Z}} \frac{\left(z^{-2} y^{k} q^{-\left[k \beta_{2}\right]}\right)^{m} q^{k m^{2}}}{1-z^{-\frac{1}{k}} q^{m}}
$$

- Whenever $\left[k \beta_{2}\right]$ crosses an integer value, terms are subtracted and add to the holomorphic sector; corresponding terms are subtracted and added, respectively, to the remainder so that the sum is left invariant.
- The latter fact is especially clear from the original path integral expression.
- Therefore there are jumps in the bound state spectra as a function of $k \beta_{2}$; in particular, to the R -charges of the Ramond ground states that contribute to the holomorphic part of the elliptic genus.

Relation to completed Appell-Lerch sums

The holomorphic Appell-Lerch sum is given by

$$
A_{1, k}(\tau, u, v)=a^{k} \sum_{n \in \mathbb{Z}} \frac{q^{k n(n+1)} b^{n}}{1-a q^{n}}
$$

Here $a=e^{2 \pi i u}, b=e^{2 \pi i v}$ and $q=e^{2 \pi i \tau}$. It was shown by Zwegers that, this can be completed to a Jacobi form by adding the following remainder term

$$
\begin{array}{r}
\mathcal{R}_{1, k}(\tau, u, v)=\sum_{\nu \in \mathbb{Z}+\frac{1}{2}}\left(\operatorname{sgn}(\nu)-\operatorname{Erf}\left[\sqrt{2 \pi \tau_{2}}\left(\nu+\frac{\operatorname{Im}(u)}{\tau_{2}}\right)\right]\right) \\
(-1)^{\nu-\frac{1}{2}} a^{-\nu} q^{-\frac{\nu^{2}}{2}}
\end{array}
$$

We show explicitly in [arXiv 1404:7396] that

$$
\chi_{L}(\tau, \alpha, \beta)=\frac{i \theta_{11}(\tau, \alpha)}{\eta^{3}(\tau)} \widehat{A}_{1, k}\left(\tau, \frac{\alpha}{k}, 2 \alpha-k \beta\right)
$$

Higher pole Appell-Lerch sums

- Dabholkar, Murthy and Zagier [DMZ] define an infinite number of higher pole Appell-Lerch sums; for intance,

$$
A_{2, k}=\sum_{w} \frac{q^{k w^{2}+w} y^{k w} z^{-\frac{1}{k}-2 w}}{\left(1-z^{-\frac{1}{k}} q^{w}\right)^{2}}
$$

This can also be completed by adding a remainder and is (technically) a mock-Jacobi form.

- Can we give an interpretation to this $A_{2, k}$ in the CFT?
- What about its remainder? Is there a sum over states interpretation?

Modular derivatives: new modular forms from old

The main observation is that $A_{2, k}$ can be obtained from $A_{1, k}$ via a derivative w.r.t the chemical potentials; defining

$$
\begin{aligned}
\mathcal{D}= & \frac{1}{2 \pi i}\left(2 \frac{\partial}{\partial \beta}+k \frac{\partial}{\partial \alpha}\right) \\
& \mathcal{D} \cdot A_{1, k}=A_{2, k}
\end{aligned}
$$

On the modular completion, one can check that (with $\left.\beta=\beta_{1}+\tau \beta_{2}\right)$

$$
\widehat{A}_{2, k}=\left(\mathcal{D}-k \beta_{2}\right) \widehat{A}_{1, k}
$$

is a modular form of weight one and the same index as $A_{1, k}$.
Strategy: use our path integral representation of the elliptic genus (and hence $\widehat{A}_{1, k}$) to obtain a representation for the remainder.

Interpretation in CFT

If we write the remainder of $A_{1, k}$ in the form

$$
\mathcal{R}_{1, k}=\sum_{v} S(\tau, \alpha, v)
$$

where $v=n+k w \equiv$ right-moving momentum, then we find that if we set $\beta=0$ after differentiation,

$$
\mathcal{R}_{2, k}(\tau, \alpha)=\sum_{v} v S(\tau, \alpha, v)+Y(\tau, \alpha, v)
$$

i.e. we find an insertion of right-moving momentum plus an additional term Y, which is an ordinary partition sum.

Operator insertions from differentiation

Recall that

$$
\chi(\tau, \alpha, \beta)=\operatorname{Tr}_{\mathcal{H}}(-1)^{F} q^{L_{0}} \bar{q}^{\bar{L}_{0}} z^{J_{0}} y^{P}
$$

The modular covariant derivative \mathcal{D} acting on χ leads to

$$
\mathcal{D} \chi(\tau, \alpha, \beta)=\operatorname{Tr}_{\mathcal{H}}\left[\left(k J_{0}+2 P\right)(-1)^{F} q^{L_{0}} \bar{q}^{\bar{L}_{0}} z^{J_{0}} y^{P}\right]
$$

In the cigar CFT, the R current is related to the angular momentum and fermion number as follows:

$$
\begin{gathered}
J_{0}=-\frac{2}{k} P_{L}+F_{L} \quad P=P_{L}+P_{R} \\
\mathcal{D} \chi(\tau, \alpha, \beta)=\operatorname{Tr}_{\mathcal{H}}\left[\left(k F_{L}+2 P_{R}\right)(-1)^{F} q^{L_{0}} \bar{q}^{\bar{L}_{0}} z^{J_{0}} y^{P}\right]
\end{gathered}
$$

The extra contribution to the completion Y can be explained studying the quantum mechanics for right-movers.
Proceed similarly for all $A_{n, k}$ and completions.

Summary of results

- Using the path integral formulation of the cigar CFT (as a gauged WZW model), we obtained the elliptic genus.
- We checked modularity, ellipticity and obtained a sum over states interpretation.
- The elliptic genus is the modular completion of a mock-Jacobi form. There is a holomorphic piece (discrete) and a non-holomorphic remainder (continuum).
- The remainder arises because of spectral asymmetry in the continuum sector.
- The elliptic genus can be identified with the completed Appell-Lerch sums studied by Zwegers in 2002.

Summary of results

- In fact, a twisted elliptic genus was computed, with the insertion of $e^{2 \pi i \beta P}$ in the trace.
- One can observe crossing phenomena in this 2d CFT, where the contribution to the discrete spectrum jumps every time $k \beta_{2}$ crosses an integer. But the full elliptic genus is continuous in β. (Similar phenomena in $d=4$.)
- All higher pole Appell-Lerch sums introduced by DMZ can be understood within the CFT as operator insertions of (powers of) right-moving momenta, augmented by extra terms corresponding to ordinary parition sums.

Some interesting questions

- Using a GLSM description, we obtained the elliptic genus of a two dimensional σ-model with target space

$$
\begin{aligned}
d s^{2} & =\frac{g_{N}(Y)}{2} d Y^{2}+\frac{2}{N^{2} g_{N}(Y)}\left(d \psi+N A_{F S}\right)^{2}+2 Y d s_{\mathbb{C P}^{N-1}}^{2} \\
\Phi & =-\frac{N Y}{k}
\end{aligned}
$$

These were first studied by Kiritsis-Kounnas-Lúst (KKL).

- These are not mock-Jacobi forms, according to the DMZ definition. i.e. the shadow

$$
\chi_{\text {shad }}=\partial_{\bar{\tau}} \chi
$$

does not have good modular properties.

- What is the mathemtatical characterization of these real analytic Jacobi forms?

More questions to think about

- Is there a geometric criterion that determines when the elliptic genus shows mock behaviour? For instance, the Taub-NUT metric has the same form as the $d=4 \mathrm{KKL}$ metric.

$$
d s^{2}=g(r) d r^{2}+\frac{1}{g(r)}\left(d \psi+A_{F S}\right)^{2}+f(r) d s_{\mathbb{C P}^{1}}^{2}
$$

What is its elliptic genus? Does it show this type of mock behaviour? Or is it a holomorphic Jacobi form?

- Are there other observables that also show mock behaviour in the noncompact CFT?

