Higher poles and crossing phenomena from twisted elliptic genera

Sujay K. Ashok IMSc, Chennai

based on arXiv:1404.7396 [hep-th] w/Eleonora Dell'Aquila and Jan Troost

Cortona, Italy 2014

Plan of the talk

- ▶ The elliptic genus: definition and properties
- Elliptic genus of the cigar
 - Mock vs. modular: connection to Appell-Lerch sums
 - Effects of twisting the elliptic genus
- Generalization to higher pole Appell-Lerch sums
- Some interesting questions

Elliptic genus: definition

▶ The elliptic genus of $\mathcal{N} = 2$ CFT (in two dimensions):

$$\chi(\tau,\alpha) = \operatorname{Tr}_{\mathcal{H}}(-1)^F q^{L_0 - \frac{c}{24}} z^{J_0} \bar{q}^{\bar{L}_0 - \frac{c}{24}}$$

where $q = e^{2\pi i \tau}$ and $z = e^{2\pi i \alpha}$.

- ▶ L_0 and \bar{L}_0 are the left/right conformal dimensions.
- ▶ J_0 measures left-moving R-charge.
- c is the central charge of the CFT.
- ▶ Trace is in the Ramonnd sector.
- ► There is also a path integral definition. Quantum fields on the torus, with twisted periodic boundary conditions, determined by the R-charge of the fields.
- It is a right-moving Witten index.

$$\chi(\tau,\alpha) = \operatorname{Tr}_{\mathcal{H}} \left\{ \left[(-1)^{F_L} q^{L_0 - \frac{c}{24}} z^{J_0} \right] \left[(-1)^{F_R} \bar{q}^{\bar{L}_0 - \frac{c}{24}} \right] \right\}$$

Elliptic genus as a Jacobi form

- ▶ Holomorphic because it is a right-moving index.
- ▶ It has good **modular** properties (seen from the path integral):

$$\chi(-\frac{1}{\tau},\frac{\alpha}{\tau})=e^{\frac{\pi i c}{3}\frac{\alpha^2}{\tau}}\chi(\tau,\alpha).$$

▶ Spectral flow symmetry of $\mathcal{N}=2$ theory guarantees that χ has good **elliptic** properties:

$$\chi(\tau,\alpha+m\tau+n)=(-1)^{\frac{c}{3}(m+n)}q^{-\frac{c}{6}m^2}z^{-\frac{c}{3}m}\chi(\tau,\alpha).$$

▶ The modular and elliptic properties means that the elliptic genus of a CFT is a holomorphic Jacobi form of weight zero with an index proportional to the central charge *c*.

Overview of earlier work

- ► There are cases when these general conclusions are incorrect. [Troost '10; Eguchi-Sugawara, '10, SA, Troost '11]
- ▶ **Lesson 1:** When the CFT has
 - a continuum of states and
 - if there is spectral asymmetry in the continuum sector: i.e. $\rho_B \rho_F \neq 0$, where $\rho_{B/F}$ is the bosonic/fermionic density of states,

then, the "long multiplets" contribute to the elliptic genus [SA, Troost '11]. It is no longer holomorphic.

Well known for the Witten index (weighted trace)
 [Cecotti-Fendley-Intriligator-Vafa, Comtet-Akhoury]

$$Tr[(-1)^F e^{-\beta H}] = N_B - N_F$$

$$+ \int dE \ e^{-\beta E} \left(\rho_B(E) - \rho_F(E)\right)$$

Elliptic genus as mock-Jacobi forms

- Lesson 2: The elliptic genus is a very special kind of real analytic Jacobi form: the modular completion of a mock-Jacobi form.
- The holomorphic part is a sum over discrete states while the non-holomorphic part is an integral over the radial momentum.
- ▶ Caveat: There are examples where the elliptic genus is not strictly mock but nevertheless shows the same type of behaviour. [i.e. holomorphic part + remainder]. But these higher dimensional models will not be discussed here. [SA, Doroud, Troost; Murthy]
- ► The shadow does not satisfy the properties required for it to be a mock-Jacobi form.

Case study: $\mathcal{N}=2$ cigar

▶ The elliptic genus of the cigar is calculated using the path integral for the (axially) gauged WZW model $SL(2,\mathbb{R})/U(1)$ at level k. We will present the answer for a twisted elliptic genus, namely:

$$\chi(\tau,\alpha,\beta) = \operatorname{Tr}_{\mathcal{H}}(-1)^F q^{L_0 - \frac{c}{24}} \bar{q}^{\bar{L}_0 - \frac{c}{24}} z^{J_0} y^P.$$

where $q = e^{2\pi i \tau}$, $z = e^{2\pi i \alpha}$ and $y = e^{2\pi i \beta}$.

We find

$$\chi(\tau,\alpha,\beta) = k \int_{\mathbb{C}} \frac{d^2 u}{2\tau_2} \left[\frac{\theta_{11}(\tau,u-\alpha-\frac{\alpha}{k}+\beta)}{\theta_{11}(\tau,u-\frac{\alpha}{k}+\beta)} \right] e^{-\frac{k\pi}{\tau_2}|u|^2} e^{-2\pi i \alpha_2 u}.$$

u is the (complex) holonomy of the gauge field around the cycles of the torus T^2 .

Non-holomorphic in τ and β , holomorphic in α .

Properties of the elliptic genus

Modular and elliptic properties:

$$\chi(\tau+1,\alpha,\beta) = \chi(\tau,\alpha,\beta)$$

$$\chi(-\frac{1}{\tau},\frac{\alpha}{\tau},\frac{\beta}{\tau}) = e^{\pi i \frac{c}{3} \frac{\alpha^2}{\tau} - 2\pi i \frac{\alpha\beta}{\tau}} \chi(\tau,\alpha)$$

$$\chi(\tau,\alpha+k,\beta) = (-1)^{\frac{c}{3}k} \chi(\tau,\alpha,\beta)$$

$$\chi(\tau,\alpha+k\tau,\beta) = (-1)^{\frac{c}{3}k} e^{-\pi i \frac{c}{3} (k^2\tau + 2k\alpha)} e^{2\pi i \beta k} \chi(\tau,\alpha)$$

$$\chi(\tau,\alpha,\beta+1) = \chi(\tau,\alpha,\beta)$$

$$\chi(\tau,\alpha,\beta+\tau) = e^{2\pi i \alpha} \chi(\tau,\alpha,\beta).$$

Here, $c = 3 + \frac{6}{k}$, the central charge of the cigar CFT.

▶ Jacobi form in three variables, with weight zero and a matrix index that can be obtained from the above transformation rules.

The split

In order to make contact with the math literature, it is easiest to work with a \mathbb{Z}_k orbifold of this elliptic genus.

$$\chi_{L} = \sum_{n,m} \int \frac{d^{2}u}{2\tau_{2}} \frac{\theta_{11}(\tau, u - \alpha)}{\theta_{11}(\tau, u)} e^{2\pi i \alpha \frac{n}{k}} e^{-\frac{k\pi}{\tau_{2}}|(u + \frac{\alpha}{k} - \beta + \frac{n}{k}\tau + \frac{m}{k}|^{2}} \times e^{-2\pi i \alpha_{2}(u + \frac{\alpha}{k} - \beta \frac{n}{k}\tau + \frac{m}{k})}.$$

A non-trivial calculation shows that it is a sum of two terms:

$$\chi_{L,hol} = \frac{i\theta_{11}(\tau, -\alpha)}{\eta^{3}(q)} z^{\frac{[k]\beta_{2}}{k}} \sum_{m \in \mathbb{Z}} \frac{(z^{-2}y^{k}q^{-[k\beta_{2}]})^{m}q^{km^{2}}}{1 - z^{-\frac{1}{k}}q^{m}}$$

- This is a contribution from discrete states of the theory.
- ▶ It is a sum over spectral flowed (extended) $\mathcal{N}=2$ superconformal characters.
- ▶ It is holomorphic, elliptic but **not** modular.

The remainder

The second piece is called the remainder term and is denoted $\chi_{L,rem}$:

$$\frac{i\theta_{11}(\tau, -\alpha)}{\pi\eta^{3}(\tau)} \sum_{v,w} \int_{\mathbb{R}} \frac{ds}{2is + v - k\beta_{2}} z^{\frac{v}{k} - 2w} y^{kw} q^{kw^{2} - vw} (q\bar{q})^{\frac{s^{2}}{k} + \frac{(v - k\beta_{2})^{2}}{4k}}.$$

- ▶ This is the contribition from the continuum states in the CFT.
- ► The measure factor is precisely the spectral asymmetry, as can be checked independently using reflection coefficients.
- One can read off the R-charge and conformal dimensions from the above expressions.

Effects of the twist β

Consider now the remainder piece stripped of the oscillators:

$$\sum_{v,w} \int_{\mathbb{R}} \frac{ds}{2is + v - k\beta_2} z^{\frac{v}{k} - 2w} y^{kw} q^{kw^2 - vw} (q\bar{q})^{\frac{s^2}{k} + \frac{(v - k\beta_2)^2}{4k}}.$$

Here, v = n + kw and is the (usual) right moving momentum. We can read off

$$ar{L}_0 - rac{c}{24} = rac{s^2}{k} + rac{(n + kw - k\beta_2)^2}{4k}$$
 $L_0 - ar{L}_0 = -nw$ $J_0 = rac{n - kw}{k}$.

▶ The right-moving momentum shifts due to the y^P insertion in the trace. This shifts the right-moving Hamiltonian as well as the measure (spectral asymmetry).

Effects of the twist β : crossing phenomena

$$\chi_{L,hol} = z^{\frac{[k\beta_2]}{k}} \frac{i\theta_{11}(\tau, -\alpha)}{\eta^3(q)} \sum_{m \in \mathbb{Z}} \frac{(z^{-2}y^k q^{-[k\beta_2]})^m q^{km^2}}{1 - z^{-\frac{1}{k}}q^m}$$

- Whenever $[k\beta_2]$ crosses an integer value, terms are subtracted and add to the holomorphic sector; corresponding terms are subtracted and added, respectively, to the remainder so that the sum is left invariant.
- ► The latter fact is especially clear from the original path integral expression.
- ▶ Therefore there are jumps in the bound state spectra as a function of $k\beta_2$; in particular, to the R-charges of the Ramond ground states that contribute to the holomorphic part of the elliptic genus.

Relation to completed Appell-Lerch sums

The holomorphic Appell-Lerch sum is given by

$$A_{1,k}(\tau,u,v) = a^k \sum_{n \in \mathbb{Z}} \frac{q^{kn(n+1)}b^n}{1 - aq^n}$$

Here $a=e^{2\pi iu}$, $b=e^{2\pi iv}$ and $q=e^{2\pi i\tau}$. It was shown by Zwegers that, this can be completed to a Jacobi form by adding the following remainder term

$$\mathcal{R}_{1,k}(\tau,u,v) = \sum_{\nu \in \mathbb{Z} + \frac{1}{2}} \left(\operatorname{sgn}(\nu) - \operatorname{Erf}\left[\sqrt{2\pi\tau_2} \left(\nu + \frac{\operatorname{Im}(u)}{\tau_2}\right)\right] \right)$$
$$(-1)^{\nu - \frac{1}{2}} a^{-\nu} q^{-\frac{\nu^2}{2}}$$

We show explicitly in [arXiv 1404:7396] that

$$\chi_L(\tau,\alpha,\beta) = \frac{i\theta_{11}(\tau,\alpha)}{\eta^3(\tau)} \widehat{A}_{1,k}(\tau,\frac{\alpha}{k},2\alpha-k\beta)$$

Higher pole Appell-Lerch sums

 Dabholkar, Murthy and Zagier [DMZ] define an infinite number of higher pole Appell-Lerch sums; for intance,

$$A_{2,k} = \sum_{w} \frac{q^{kw^2 + w} y^{kw} z^{-\frac{1}{k} - 2w}}{(1 - z^{-\frac{1}{k}} q^w)^2}$$

This can also be completed by adding a remainder and is (technically) a mock-Jacobi form.

- ▶ Can we give an interpretation to this $A_{2,k}$ in the CFT?
- ► What about its remainder? Is there a sum over states interpretation?

Modular derivatives: new modular forms from old

The main observation is that $A_{2,k}$ can be obtained from $A_{1,k}$ via a derivative w.r.t the chemical potentials; defining

$$\mathcal{D} = \frac{1}{2\pi i} \left(2 \frac{\partial}{\partial \beta} + k \frac{\partial}{\partial \alpha} \right) ,$$

$$\mathcal{D} \cdot A_{1,k} = A_{2,k} .$$

On the modular completion, one can check that (with

$$eta = eta_1 + au eta_2$$
) $\widehat{A}_{2,k} = (\mathcal{D} - k eta_2) \widehat{A}_{1,k}$

is a modular form of weight one and the same index as $A_{1,k}$.

Strategy: use our path integral representation of the elliptic genus (and hence $\widehat{A}_{1,k}$) to obtain a representation for the remainder.

Interpretation in CFT

If we write the remainder of $A_{1,k}$ in the form

$$\mathcal{R}_{1,k} = \sum_{\mathbf{v}} S(\tau, \alpha, \mathbf{v})$$

where $v = n + kw \equiv$ right-moving momentum, then we find that if we set $\beta = 0$ after differentiation,

$$\mathcal{R}_{2,k}(\tau,\alpha) = \left[\sum_{v} v \ S(\tau,\alpha,v)\right] + Y(\tau,\alpha,v).$$

i.e. we find an insertion of right-moving momentum plus an additional term Y, which is an ordinary partition sum.

Operator insertions from differentiation

Recall that

$$\chi(\tau,\alpha,\beta) = \operatorname{Tr}_{\mathcal{H}}(-1)^F q^{L_0} \bar{q}^{\bar{L}_0} z^{J_0} y^P$$

The modular covariant derivative ${\mathcal D}$ acting on χ leads to

$$\mathcal{D}\chi(\tau,\alpha,\beta) = \mathsf{Tr}_{\mathcal{H}}\left[\left(kJ_0 + 2P \right) (-1)^F q^{L_0} \bar{q}^{\bar{L}_0} z^{J_0} y^P \right]$$

In the cigar CFT, the R current is related to the angular momentum and fermion number as follows:

$$J_0 = -\frac{2}{k}P_L + F_L$$
 $P = P_L + P_R$.

$$\mathcal{D}\chi(\tau,\alpha,\beta) = \mathrm{Tr}_{\mathcal{H}}\left[\left(\mathbf{k} F_L + \boxed{2P_R}\right) (-1)^F q^{L_0} \bar{q}^{\bar{L}_0} z^{J_0} y^P\right]$$

The extra contribution to the completion Y can be explained studying the quantum mechanics for right-movers. Proceed similarly for all $A_{n,k}$ and completions.

Summary of results

- ▶ Using the path integral formulation of the cigar CFT (as a gauged WZW model), we obtained the elliptic genus.
- We checked modularity, ellipticity and obtained a sum over states interpretation.
- The elliptic genus is the modular completion of a mock-Jacobi form. There is a holomorphic piece (discrete) and a non-holomorphic remainder (continuum).
- The remainder arises because of spectral asymmetry in the continuum sector.
- ► The elliptic genus can be identified with the completed Appell-Lerch sums studied by Zwegers in 2002.

Summary of results

- ▶ In fact, a twisted elliptic genus was computed, with the insertion of $e^{2\pi i\beta P}$ in the trace.
- One can observe crossing phenomena in this 2d CFT, where the contribution to the discrete spectrum jumps every time $k\beta_2$ crosses an integer. But the full elliptic genus is continuous in β . (Similar phenomena in d=4.)
- All higher pole Appell-Lerch sums introduced by DMZ can be understood within the CFT as operator insertions of (powers of) right-moving momenta, augmented by extra terms corresponding to ordinary parition sums.

Some interesting questions

• Using a GLSM description, we obtained the elliptic genus of a two dimensional σ -model with target space

$$\begin{split} ds^2 &= \frac{g_N(Y)}{2} dY^2 + \frac{2}{N^2 g_N(Y)} (d\psi + NA_{FS})^2 + 2Y \ ds_{\mathbb{CP}^{N-1}}^2 \,, \\ \Phi &= -\frac{NY}{k} \,. \end{split}$$

These were first studied by Kiritsis-Kounnas-Lúst (KKL).

► These are **not** mock-Jacobi forms, according to the DMZ definition. i.e. the shadow

$$\chi_{\mathsf{shad}} = \partial_{\bar{\tau}} \chi$$

does not have good modular properties.

What is the mathematatical characterization of these real analytic Jacobi forms?

More questions to think about

▶ Is there a geometric criterion that determines when the elliptic genus shows mock behaviour? For instance, the Taub-NUT metric has the same form as the d = 4 KKL metric.

$$ds^2 = g(r)dr^2 + \frac{1}{g(r)}(d\psi + A_{FS})^2 + f(r)ds_{\mathbb{CP}^1}^2$$

What is its elliptic genus? Does it show this type of mock behaviour? Or is it a holomorphic Jacobi form?

► Are there other observables that also show mock behaviour in the noncompact CFT?